Search results for: lexical and numerical error-recognition tasks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5260

Search results for: lexical and numerical error-recognition tasks

910 Composite Laminate and Thin-Walled Beam Correlations for Aircraft Wing Box Design

Authors: S. J. M. Mohd Saleh, S. Guo

Abstract:

Composite materials have become an important option for the primary structure of aircraft due to their design flexibility and ability to improve the overall performance. At present, the option for composite usage in aircraft component is largely based on experience, knowledge, benchmarking and partly market driven. An inevitable iterative design during the design stage and validation process will increase the development time and cost. This paper aims at presenting the correlation between laminate and composite thin-wall beam structure, which contains the theoretical and numerical investigations on stiffness estimation of composite aerostructures with applications to aircraft wings. Classical laminate theory and thin-walled beam theory were applied to define the correlation between 1-dimensional composite laminate and 2-dimensional composite beam structure, respectively. Then FE model was created to represent the 3-dimensional structure. A detailed study on stiffness matrix of composite laminates has been carried out to understand the effects of stacking sequence on the coupling between extension, shear, bending and torsional deformation of wing box structures for 1-dimensional, 2-dimensional and 3-dimensional structures. Relationships amongst composite laminates and composite wing box structures of the same material have been developed in this study. These correlations will be guidelines for the design engineers to predict the stiffness of the wing box structure during the material selection process and laminate design stage.

Keywords: aircraft design, aircraft structures, classical lamination theory, composite structures, laminate theory, structural design, thin-walled beam theory, wing box design

Procedia PDF Downloads 232
909 Analysis of the Touch and Step Potential Characteristics of an Earthing System Based on Finite Element Method

Authors: Nkwa Agbor Etobi Arreneke

Abstract:

A well-designed earthing/grounding system will not only provide an effective path for direct dissipation of faulty currents into the earth/soil, but also ensure the safety of personnels withing and around its immediate surrounding perimeter is free from the possibility of fatal electric shock. In order to achieve the latter, it is of paramount importance to ensuring that both the step and touch potentials are kept within the allowable tolerance set by standards IEEE Std-80-2000. In this article, the step and touch potentials of an earthing system are simulated and conformity verified using the Finite Element Method (FEM), and has been found to be 242.4V and 194.80V respectively. The effect of injection current position is also analyzed to observe its effect on a person within or in contact with any active part of the earthing system of the substation. The values obtained closely matches those of other published works which made using different numerical methods and/or simulations Genetic Algorithm (GA). This current study is aimed at throwing more light to the dangers of step and touch potential of earthing systems of substation and electrical facilities as a whole, and the need for further in-dept analysis of these parameters. Observations made on this current paper shows that, the position of contact with an energize earthing system is of paramount important in determining its effect on living organisms in contact with any energized part of the earthing systems.

Keywords: earthing/grounding systems, finite element method (fem), ground/earth resistance, safety, touch and step potentials, generic algorithm

Procedia PDF Downloads 100
908 Fast Generation of High-Performance Driveshafts: A Digital Approach to Automated Linked Topology and Design Optimization

Authors: Willi Zschiebsch, Alrik Dargel, Sebastian Spitzer, Philipp Johst, Robert Böhm, Niels Modler

Abstract:

In this article, we investigate an approach that digitally links individual development process steps by using the drive shaft of an aircraft engine as a representative example of a fiber polymer composite. Such high-performance, lightweight composite structures have many adjustable parameters that influence the mechanical properties. Only a combination of optimal parameter values can lead to energy efficient lightweight structures. The development tools required for the Engineering Design Process (EDP) are often isolated solutions, and their compatibility with each other is limited. A digital framework is presented in this study, which allows individual specialised tools to be linked via the generated data in such a way that automated optimization across programs becomes possible. This is demonstrated using the example of linking geometry generation with numerical structural analysis. The proposed digital framework for automated design optimization demonstrates the feasibility of developing a complete digital approach to design optimization. The methodology shows promising potential for achieving optimal solutions in terms of mass, material utilization, eigenfrequency, and deformation under lateral load with less development effort. The development of such a framework is an important step towards promoting a more efficient design approach that can lead to stable and balanced results.

Keywords: digital linked process, composite, CFRP, multi-objective, EDP, NSGA-2, NSGA-3, TPE

Procedia PDF Downloads 76
907 Multifluid Computational Fluid Dynamics Simulation for Sawdust Gasification inside an Industrial Scale Fluidized Bed Gasifier

Authors: Vasujeet Singh, Pruthiviraj Nemalipuri, Vivek Vitankar, Harish Chandra Das

Abstract:

For the correct prediction of thermal and hydraulic performance (bed voidage, suspension density, pressure drop, heat transfer, and combustion kinetics), one should incorporate the correct parameters in the computational fluid dynamics simulation of a fluidized bed gasifier. Scarcity of fossil fuels, and to fulfill the energy demand of the increasing population, researchers need to shift their attention to the alternative to fossil fuels. The current research work focuses on hydrodynamics behavior and gasification of sawdust inside a 2D industrial scale FBG using the Eulerian-Eulerian multifluid model. The present numerical model is validated with experimental data. Further, this model extended for the prediction of gasification characteristics of sawdust by incorporating eight heterogeneous moisture release, volatile cracking, tar cracking, tar oxidation, char combustion, CO₂ gasification, steam gasification, methanation reaction, and five homogeneous oxidation of CO, CH₄, H₂, forward and backward water gas shift (WGS) reactions. In the result section, composition of gasification products is analyzed, along with the hydrodynamics of sawdust and sand phase, heat transfer between the gas, sand and sawdust, reaction rates of different homogeneous and heterogeneous reactions is being analyzed along the height of the domain.

Keywords: devolatilization, Eulerian-Eulerian, fluidized bed gasifier, mathematical modelling, sawdust gasification

Procedia PDF Downloads 107
906 Engage, Connect, Empower: Agile Approach in the University Students' Education

Authors: D. Bjelica, T. Slavinski, V. Vukimrovic, D. Pavlovic, D. Bodroza, V. Dabetic

Abstract:

Traditional methods and techniques used in higher education may be significantly persuasive on the university students' perception about quality of the teaching process. Students’ satisfaction with the university experience may be affected by chosen educational approaches. Contemporary project management trends recognize agile approaches' beneficial, so modern practice highlights their usage, especially in the IT industry. A key research question concerns the possibility of applying agile methods in youth education. As agile methodology pinpoint iteratively-incremental delivery of results, its employment could be remarkably fruitful in education. This paper demonstrates the agile concept's application in the university students’ education through the continuous delivery of student solutions. Therefore, based on the fundamental values and principles of the agile manifest, paper will analyze students' performance and learned lessons in their encounter with the agile environment. The research is based on qualitative and quantitative analysis that includes sprints, as preparation and realization of student tasks in shorter iterations. Consequently, the performance of student teams will be monitored through iterations, as well as the process of adaptive planning and realization. Grounded theory methodology has been used in this research, as so as descriptive statistics and Man Whitney and Kruskal Wallis test for group comparison. Developed constructs of the model will be showcase through qualitative research, then validated through a pilot survey, and eventually tested as a concept in the final survey. The paper highlights the variability of educational curricula based on university students' feedbacks, which will be collected at the end of every sprint and indicates to university students' satisfaction inconsistency according to approaches applied in education. Values delivered by the lecturers will also be continuously monitored; thus, it will be prioritizing in order to students' requests. Minimal viable product, as the early delivery of results, will be particularly emphasized in the implementation process. The paper offers both theoretical and practical implications. This research contains exceptional lessons that may be applicable by educational institutions in curriculum creation processes, or by lecturers in curriculum design and teaching. On the other hand, they can be beneficial regarding university students' satisfaction increscent in respect of teaching styles, gained knowledge, or even educational content.

Keywords: academic performances, agile, high education, university students' satisfaction

Procedia PDF Downloads 130
905 Constitutive Model for Analysis of Long-Term Municipal Solid Waste Landfill Settlement

Authors: Irena Basaric Ikodinovic, Dragoslav Rakic, Mirjana Vukicevic, Sanja Jockovic, Jovana Jankovic Pantic

Abstract:

Large long-term settlement occurs at the municipal solid waste landfills over an extended period of time which may lead to breakage of the geomembrane, damage of the cover systems, other protective systems or facilities constructed on top of a landfill. Also, municipal solid waste is an extremely heterogeneous material and its properties vary over location and time within a landfill. These material characteristics require the formulation of a new constitutive model to predict the long-term settlement of municipal solid waste. The paper presents a new constitutive model which is formulated to describe the mechanical behavior of municipal solid waste. Model is based on Modified Cam Clay model and the critical state soil mechanics framework incorporating time-dependent components: mechanical creep and biodegradation of municipal solid waste. The formulated constitutive model is optimized and defined with eight input parameters: five Modified Cam Clay parameters, one parameter for mechanical creep and two parameters for biodegradation of municipal solid waste. Thereafter, the constitutive model is implemented in the software suite for finite element analysis (ABAQUS) and numerical analysis of the experimental landfill settlement is performed. The proposed model predicts the total settlement which is in good agreement with field measured settlement at the experimental landfill.

Keywords: constitutive model, finite element analysis, municipal solid waste, settlement

Procedia PDF Downloads 231
904 Research on Territorial Ecological Restoration in Mianzhu City, Sichuan, under the Dual Evaluation Framework

Authors: Wenqian Bai

Abstract:

Background: In response to the post-pandemic directives of Xi Jinping concerning the new era of ecological civilization, China has embarked on ecological restoration projects across its territorial spaces. This initiative faces challenges such as complex evaluation metrics and subpar informatization standards. Methodology: This research focuses on Mianzhu City, Sichuan Province, to assess its resource and environmental carrying capacities and the appropriateness of land use for development from ecological, agricultural, and urban perspectives. The study incorporates a range of spatial data to evaluate factors like ecosystem services (including water conservation, soil retention, and biodiversity), ecological vulnerability (addressing issues like soil erosion and desertification), and resilience. Utilizing the Minimum Cumulative Resistance model along with the ‘Three Zones and Three Lines’ strategy, the research maps out ecological corridors and significant ecological networks. These frameworks support the ecological restoration and environmental enhancement of the area. Results: The study identifies critical ecological zones in Mianzhu City's northwestern region, highlighting areas essential for protection and particularly crucial for water conservation. The southeastern region is categorized as a generally protected ecological zone with respective ratings for water conservation functionality and ecosystem resilience. The research also explores the spatial challenges of three ecological functions and underscores the substantial impact of human activities, such as mining and agricultural expansion, on the ecological baseline. The proposed spatial arrangement for ecological restoration, termed ‘One Mountain, One Belt, Four Rivers, Five Zones, and Multiple Corridors’, strategically divides the city into eight major restoration zones, each with specific tasks and projects. Conclusion: With its significant ‘mountain-plain’ geography, Mianzhu City acts as a crucial ecological buffer for the Yangtze River's upper reaches. Future development should focus on enhancing ecological corridors in agriculture and urban areas, controlling soil erosion, and converting farmlands back to forests and grasslands to foster ecosystem rehabilitation.

Keywords: ecological restoration, resource and environmental carrying capacity, land development suitability, ecosystem services, ecological vulnerability, ecological networks

Procedia PDF Downloads 39
903 "IS Cybernetics": An Idea to Base the International System Theory upon the General System Theory and Cybernetics

Authors: Petra Suchovska

Abstract:

The spirit of post-modernity remains chaotic and obscure. Geopolitical rivalries raging at the more extreme levels and the ability of intellectual community to explain the entropy of global affairs has been diminishing. The Western-led idea of globalisation imposed upon the world does not seem to bring the bright future for human progress anymore, and its architects lose much of global control, as the strong non-western cultural entities develop new forms of post-modern establishments. The overall growing cultural misunderstanding and mistrust are expressions of political impotence to deal with the inner contradictions within the contemporary phenomenon (capitalism, economic globalisation) that embrace global society. The drivers and effects of global restructuring must be understood in the context of systems and principles reflecting on true complexity of society. The purpose of this paper is to set out some ideas about how cybernetics can contribute to understanding international system structure and analyse possible world futures. “IS Cybernetics” would apply to system thinking and cybernetic principles in IR in order to analyse and handle the complexity of social phenomena from global perspective. “IS cybernetics” would be, for now, the subfield of IR, concerned with applying theories and methodologies from cybernetics and system sciences by offering concepts and tools for addressing problems holistically. It would bring order to the complex relations between disciplines that IR touches upon. One of its tasks would be to map, measure, tackle and find the principles of dynamics and structure of social forces that influence human behaviour and consequently cause political, technological and economic structural reordering, forming and reforming the international system. “IS cyberneticists” task would be to understand the control mechanisms that govern the operation of international society (and the sub-systems in their interconnection) and only then suggest better ways operate these mechanisms on sublevels as cultural, political, technological, religious and other. “IS cybernetics” would also strive to capture the mechanism of social-structural changes in time, which would open space for syntheses between IR and historical sociology. With the cybernetic distinction between first order studies of observed systems and the second order study of observing systems, IS cybernetics would also provide a unifying epistemological and methodological, conceptual framework for multilateralism and multiple modernities theory.

Keywords: cybernetics, historical sociology, international system, systems theory

Procedia PDF Downloads 232
902 An Eulerian Method for Fluid-Structure Interaction Simulation Applied to Wave Damping by Elastic Structures

Authors: Julien Deborde, Thomas Milcent, Stéphane Glockner, Pierre Lubin

Abstract:

A fully Eulerian method is developed to solve the problem of fluid-elastic structure interactions based on a 1-fluid method. The interface between the fluid and the elastic structure is captured by a level set function, advected by the fluid velocity and solved with a WENO 5 scheme. The elastic deformations are computed in an Eulerian framework thanks to the backward characteristics. We use the Neo Hookean or Mooney Rivlin hyperelastic models and the elastic forces are incorporated as a source term in the incompressible Navier-Stokes equations. The velocity/pressure coupling is solved with a pressure-correction method and the equations are discretized by finite volume schemes on a Cartesian grid. The main difficulty resides in that large deformations in the fluid cause numerical instabilities. In order to avoid these problems, we use a re-initialization process for the level set and linear extrapolation of the backward characteristics. First, we verify and validate our approach on several test cases, including the benchmark of FSI proposed by Turek. Next, we apply this method to study the wave damping phenomenon which is a mean to reduce the waves impact on the coastline. So far, to our knowledge, only simulations with rigid or one dimensional elastic structure has been studied in the literature. We propose to place elastic structures on the seabed and we present results where 50 % of waves energy is absorbed.

Keywords: damping wave, Eulerian formulation, finite volume, fluid structure interaction, hyperelastic material

Procedia PDF Downloads 323
901 Efficient Estimation for the Cox Proportional Hazards Cure Model

Authors: Khandoker Akib Mohammad

Abstract:

While analyzing time-to-event data, it is possible that a certain fraction of subjects will never experience the event of interest, and they are said to be cured. When this feature of survival models is taken into account, the models are commonly referred to as cure models. In the presence of covariates, the conditional survival function of the population can be modelled by using the cure model, which depends on the probability of being uncured (incidence) and the conditional survival function of the uncured subjects (latency), and a combination of logistic regression and Cox proportional hazards (PH) regression is used to model the incidence and latency respectively. In this paper, we have shown the asymptotic normality of the profile likelihood estimator via asymptotic expansion of the profile likelihood and obtain the explicit form of the variance estimator with an implicit function in the profile likelihood. We have also shown the efficient score function based on projection theory and the profile likelihood score function are equal. Our contribution in this paper is that we have expressed the efficient information matrix as the variance of the profile likelihood score function. A simulation study suggests that the estimated standard errors from bootstrap samples (SMCURE package) and the profile likelihood score function (our approach) are providing similar and comparable results. The numerical result of our proposed method is also shown by using the melanoma data from SMCURE R-package, and we compare the results with the output obtained from the SMCURE package.

Keywords: Cox PH model, cure model, efficient score function, EM algorithm, implicit function, profile likelihood

Procedia PDF Downloads 144
900 Preparation of Corn Flour Based Extruded Product and Evaluate Its Physical Characteristics

Authors: C. S. Saini

Abstract:

The composite flour blend consisting of corn, pearl millet, black gram and wheat bran in the ratio of 80:5:10:5 was taken to prepare the extruded product and their effect on physical properties of extrudate was studied. The extrusion process was conducted in laboratory by using twin screw extruder. The physical characteristics evaluated include lateral expansion, bulk density, water absorption index, water solubility index, rehydration ratio and moisture retention. The Central Composite Rotatable Design (CCRD) was used to decide the level of processing variables i.e. feed moisture content (%), screw speed (rpm), and barrel temperature (oC) for the experiment. The data obtained after extrusion process were analyzed by using response surface methodology. A second order polynomial model for the dependent variables was established to fit the experimental data. The numerical optimization studies resulted in 127°C of barrel temperature, 246 rpm of screw speed, and 14.5% of feed moisture as optimum variables to produce acceptable extruded product. The responses predicted by the software for the optimum process condition resulted in lateral expansion 126 %, bulk density 0.28 g/cm3, water absorption index 4.10 g/g, water solubility index 39.90 %, rehydration ratio 544 % and moisture retention 11.90 % with 75 % desirability.

Keywords: black gram, corn flour, extrusion, physical characteristics

Procedia PDF Downloads 479
899 Modeling of Combustion Process in the Piston Aircraft Engine Using a MCFM-3Z Model

Authors: Marcin Szlachetka, Konrad Pietrykowski

Abstract:

Modeling of a combustion process in a 9-cylinder aircraft engine is presented. The simulations of the combustion process in the IC engine have provided the information on the spatial and time distributions of selected quantities within the combustion chamber of the engine. The numerical analysis results have been compared with the results of indication process of the engine on the test stand. Modeling of combustion process an auto-ignited IC engine in the AVL Fire was carried out within the study. For the calculations, a ECFM-3Z model was used. Verification of simulation results was carried out by comparison of the pressure in the cylinder. The courses of indicated pressure, obtained from the simulations and during the engine tests mounted on a test stand were compared. The engine was braked by the propeller, which results in an adequate external power characteristics. The test object is a modified ASz-62IR engine with the injection system. The engine was running at take-off power. To check the optimum ignition timing regarding power, calculations, tests were performed for 7 different moments of ignition. The analyses of temperature distribution in the cylinder depending on the moments of ignition were carried out. Additional the course of pressure in the cylinder at different angles of ignition delays of the second spark plug were examined. The swirling of the mixture in the combustion chamber was also analysed. It has been shown that the largest vortexes occur in the middle of the chamber, and gets smaller, closer to the combustion chamber walls. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: CFD, combustion, internal combustion engine, aircraft engine

Procedia PDF Downloads 372
898 Excitation of Guided Waves in Finite Width Plates Using a Numerical Approach

Authors: Wenbo Duan, Hossein Habibi, Vassilios Kappatos, Cem Selcuk, Tat-Hean Gan

Abstract:

Ultrasonic guided waves are often used to remove ice or fouling in different structures, such as ship hulls, wind turbine blades and so on. To achieve maximum sound power output, it is important that multiple transducers are arranged in a particular way so that a desired mode can be excited. The objective of this paper is thus to provide a theoretical basis for generating a particular mode in a finite width rectangular plate which can be used for removing potential ice or fouling on the plate. The number of transducers and their locations with respect to a particular mode will be investigated, and the link between dispersion curves and practical applications will be explored. To achieve this, a semi-analytical finite element (SAFE) method is used to study the dispersion characteristics of all the modes in the ultrasonic frequency range. The detailed modal shapes will be revealed, and from the modal analysis, the particular mode with the strongest yet continuous transverse and axial displacements on the surfaces of the plate will be chosen for the purpose of removing potential ice or fouling on the plate. The modal analysis is followed by providing information on the number, location and amplitude of transducers needed to excite this particular mode. Modal excitation is then implemented in a standard finite element commercial package, namely COMSOL Multiphysics. Wave motion is visualized in COMSOL, and the mode shapes generated in SAFE is found to be consistent with the mode shapes generated in COMSOL.

Keywords: dispersion analysis, finite width plate, guided wave, modal excitation

Procedia PDF Downloads 474
897 Using Risk Management Indicators in Decision Tree Analysis

Authors: Adel Ali Elshaibani

Abstract:

Risk management indicators augment the reporting infrastructure, particularly for the board and senior management, to identify, monitor, and manage risks. This enhancement facilitates improved decision-making throughout the banking organization. Decision tree analysis is a tool that visually outlines potential outcomes, costs, and consequences of complex decisions. It is particularly beneficial for analyzing quantitative data and making decisions based on numerical values. By calculating the expected value of each outcome, decision tree analysis can help assess the best course of action. In the context of banking, decision tree analysis can assist lenders in evaluating a customer’s creditworthiness, thereby preventing losses. However, applying these tools in developing countries may face several limitations, such as data availability, lack of technological infrastructure and resources, lack of skilled professionals, cultural factors, and cost. Moreover, decision trees can create overly complex models that do not generalize well to new data, known as overfitting. They can also be sensitive to small changes in the data, which can result in different tree structures and can become computationally expensive when dealing with large datasets. In conclusion, while risk management indicators and decision tree analysis are beneficial for decision-making in banks, their effectiveness is contingent upon how they are implemented and utilized by the board of directors, especially in the context of developing countries. It’s important to consider these limitations when planning to implement these tools in developing countries.

Keywords: risk management indicators, decision tree analysis, developing countries, board of directors, bank performance, risk management strategy, banking institutions

Procedia PDF Downloads 60
896 Optimisation of Pin Fin Heat Sink Using Taguchi Method

Authors: N. K. Chougule, G. V. Parishwad

Abstract:

The pin fin heat sink is a novel heat transfer device to transfer large amount of heat through with very small temperature differences and it also possesses large uniform cooling characteristics. Pin fins are widely used as elements that provide increased cooling for electronic devices. Increasing demands regarding the performance of such devices can be observed due to the increasing heat production density of electronic components. For this reason, extensive work is being carried out to select and optimize pin fin elements for increased heat transfer. In this paper, the effects of design parameters and the optimum design parameters for a Pin-Fin heat sink (PFHS) under multi-jet impingement case with thermal performance characteristics have been investigated by using Taguchi methodology based on the L9 orthogonal arrays. Various design parameters, such as pin-fin array size, gap between nozzle exit to impingement target surface (Z/d) and air velocity are explored by numerical experiment. The average convective heat transfer coefficient is considered as the thermal performance characteristics. The analysis of variance (ANOVA) is applied to find the effect of each design parameter on the thermal performance characteristics. Then the results of confirmation test with the optimal level constitution of design parameters have obviously shown that this logic approach can effective in optimizing the PFHS with the thermal performance characteristics. The analysis of the Taguchi method reveals that, all the parameters mentioned above have equal contributions in the performance of heat sink efficiency. Experimental results are provided to validate the suitability of the proposed approach.

Keywords: Pin Fin Heat Sink (PFHS), Taguchi method, CFD, thermal performance

Procedia PDF Downloads 248
895 Liability of AI in Workplace: A Comparative Approach Between Shari’ah and Common Law

Authors: Barakat Adebisi Raji

Abstract:

In the workplace, Artificial Intelligence has, in recent years, emerged as a transformative technology that revolutionizes how organizations operate and perform tasks. It is a technology that has a significant impact on transportation, manufacturing, education, cyber security, robotics, agriculture, healthcare, and so many other organizations. By harnessing AI technology, workplaces can enhance productivity, streamline processes, and make more informed decisions. Given the potential of AI to change the way we work and its impact on the labor market in years to come, employers understand that it entails legal challenges and risks despite the advantages inherent in it. Therefore, as AI continues to integrate into various aspects of the workplace, understanding the legal and ethical implications becomes paramount. Also central to this study is the question of who is held liable where AI makes any defaults; the person (company) who created the AI, the person who programmed the AI algorithm or the person who uses the AI? Thus, the aim of this paper is to provide a detailed overview of how AI-related liabilities are addressed under each legal tradition and shed light on potential areas of accord and divergence between the two legal cultures. The objectives of this paper are to (i) examine the ability of Common law and Islamic law to accommodate the issues and damage caused by AI in the workplace and the legality of compensation for such injury sustained; (ii) to discuss the extent to which AI can be described as a legal personality to bear responsibility: (iii) examine the similarities and disparities between Common Law and Islamic Jurisprudence on the liability of AI in the workplace. The methodology adopted in this work was qualitative, and the method was purely a doctrinal research method where information is gathered from the primary and secondary sources of law, such as comprehensive materials found in journal articles, expert-authored books and online news sources. Comparative legal method was also used to juxtapose the approach of Islam and Common Law. The paper concludes that since AI, in its current legal state, is not recognized as a legal entity, operators or manufacturers of AI should be held liable for any damage that arises, and the determination of who bears the responsibility should be dependent on the circumstances surrounding each scenario. The study recommends the granting of legal personality to AI systems, the establishment of legal rights and liabilities for AI, the establishment of a holistic Islamic virtue-based AI ethics framework, and the consideration of Islamic ethics.

Keywords: AI, health- care, agriculture, cyber security, common law, Shari'ah

Procedia PDF Downloads 37
894 Intersubjectivity of Forensic Handwriting Analysis

Authors: Marta Nawrocka

Abstract:

In each of the legal proceedings, in which expert evidence is carried out, a major concern is the assessment of the evidential value of expert reports. Judicial institutions, while making decisions, rely heavily on the expert reports, because they usually do not possess 'special knowledge' from a certain fields of science which makes it impossible for them to verify the results presented in the processes. In handwriting studies, the standards of analysis are developed. They unify procedures used by experts in comparing signs and in constructing expert reports. However, the methods used by experts are usually of a qualitative nature. They rely on the application of knowledge and experience of expert and in effect give significant range of margin in the assessment. Moreover, the standards used by experts are still not very precise and the process of reaching the conclusions is poorly understood. The above-mentioned circumstances indicate that expert opinions in the field of handwriting analysis, for many reasons, may not be sufficiently reliable. It is assumed that this state of affairs has its source in a very low level of intersubjectivity of measuring scales and analysis procedures, which consist elements of this kind of analysis. Intersubjectivity is a feature of cognition which (in relation to methods) indicates the degree of consistency of results that different people receive using the same method. The higher the level of intersubjectivity is, the more reliable and credible the method can be considered. The aim of the conducted research was to determine the degree of intersubjectivity of the methods used by the experts from the scope of handwriting analysis. 30 experts took part in the study and each of them received two signatures, with varying degrees of readability, for analysis. Their task was to distinguish graphic characteristics in the signature, estimate the evidential value of the found characteristics and estimate the evidential value of the signature. The obtained results were compared with each other using the Alpha Krippendorff’s statistic, which numerically determines the degree of compatibility of the results (assessments) that different people receive under the same conditions using the same method. The estimation of the degree of compatibility of the experts' results for each of these tasks allowed to determine the degree of intersubjectivity of the studied method. The study showed that during the analysis, the experts identified different signature characteristics and attributed different evidential value to them. In this scope, intersubjectivity turned out to be low. In addition, it turned out that experts in various ways called and described the same characteristics, and the language used was often inconsistent and imprecise. Thus, significant differences have been noted on the basis of language and applied nomenclature. On the other hand, experts attributed a similar evidential value to the entire signature (set of characteristics), which indicates that in this range, they were relatively consistent.

Keywords: forensic sciences experts, handwriting analysis, inter-rater reliability, reliability of methods

Procedia PDF Downloads 149
893 Optimization of a Flexible Thermoelectric Generator for Energy Harvesting from Human Skin to Power Wearable Electronics

Authors: Dessalegn Abera Waktole, Boru Jia, Zhengxing Zuo, Wei Wang, Nianling Kuang

Abstract:

A flexible thermoelectric generator is one method for recycling waste heat. This research provides the optimum performance of a flexible thermoelectric generator with optimal geometric parameters and a detailed structural design. In this research, a numerical simulation and experiment were carried out to develop an efficient, flexible thermoelectric generator for energy harvesting from human skin. Heteromorphic electrodes and a polyimide substrate with a copper-printed circuit board were introduced into the structural design of a flexible thermoelectric generator. The heteromorphic electrode was used as a heat sink and component of a flexible thermoelectric generator to enhance the temperature difference within the thermoelectric legs. Both N-type and P-type thermoelectric legs were made of bismuth selenium telluride (Bi1.7Te3.7Se0.3) and bismuth antimony telluride (Bi0.4Sb1.6Te3). The output power of the flexible thermoelectric generator was analyzed under different heat source temperatures and heat dissipation conditions. The COMSOL Multiphysics 5.6 software was used to conduct the simulation, which was validated by experiment. It is recorded that the maximum power output of 232.064μW was obtained by considering different wind speed conditions, the ambient temperature of 20℃, and the heat source temperature of 36℃ under various load resistance conditions, which range from 0.24Ω to 0. 91Ω. According to this finding, heteromorphic electrodes have a significant impact on the performance of the device.

Keywords: flexible thermoelectric generator, optimization, performance, temperature gradient, waste heat recovery

Procedia PDF Downloads 165
892 Physical Characterization of a Watershed for Correlation with Parameters of Thomas Hydrological Model and Its Application in Iber Hidrodinamic Model

Authors: Carlos Caro, Ernest Blade, Nestor Rojas

Abstract:

This study determined the relationship between basic geo-technical parameters and parameters of the hydro logical model Thomas for water balance of rural watersheds, as a methodological calibration application, applicable in distributed models as IBER model, which represents a distributed system simulation models for unsteady flow numerical free surface. There was an exploration in 25 points (on 15 sub) basin of Rio Piedras (Boy.) obtaining soil samples, to which geo-technical characterization was performed by laboratory tests. Thomas model has a physical characterization of the input area by only four parameters (a, b, c, d). Achieve measurable relationship between geo technical parameters and 4 values of hydro logical parameters helps to determine subsurface, underground and surface flow more agile manner. It is intended in this way to reach some solutions regarding limits initial model parameters on the basis of Thomas geo-technical characterization. In hydro geological models of rural watersheds, calibration is an important process in the characterization of the study area. This step can require a significant computational cost and time, especially if the initial values or parameters before calibration are outside of the geo-technical reality. A better approach in these initial values means optimization of these process through a geo-technical materials area, where is obtained an important approach to the study as in the starting range of variation for the calibration parameters.

Keywords: distributed hydrology, hydrological and geotechnical characterization, Iber model

Procedia PDF Downloads 522
891 Advanced Numerical and Analytical Methods for Assessing Concrete Sewers and Their Remaining Service Life

Authors: Amir Alani, Mojtaba Mahmoodian, Anna Romanova, Asaad Faramarzi

Abstract:

Pipelines are extensively used engineering structures which convey fluid from one place to another. Most of the time, pipelines are placed underground and are encumbered by soil weight and traffic loads. Corrosion of pipe material is the most common form of pipeline deterioration and should be considered in both the strength and serviceability analysis of pipes. The study in this research focuses on concrete pipes in sewage systems (concrete sewers). This research firstly investigates how to involve the effect of corrosion as a time dependent process of deterioration in the structural and failure analysis of this type of pipe. Then three probabilistic time dependent reliability analysis methods including the first passage probability theory, the gamma distributed degradation model and the Monte Carlo simulation technique are discussed and developed. Sensitivity analysis indexes which can be used to identify the most important parameters that affect pipe failure are also discussed. The reliability analysis methods developed in this paper contribute as rational tools for decision makers with regard to the strengthening and rehabilitation of existing pipelines. The results can be used to obtain a cost-effective strategy for the management of the sewer system.

Keywords: reliability analysis, service life prediction, Monte Carlo simulation method, first passage probability theory, gamma distributed degradation model

Procedia PDF Downloads 457
890 A Study on the Reinforced Earth Walls Using Sandwich Backfills under Seismic Loads

Authors: Kavitha A.S., L.Govindaraju

Abstract:

Reinforced earth walls offer excellent solution to many problems associated with earth retaining structures especially under seismic conditions. Use of cohesive soils as backfill material reduces the cost of reinforced soil walls if proper drainage measures are taken. This paper presents a numerical study on the application of a new technique called sandwich technique in reinforced earth walls. In this technique, a thin layer of granular soil is placed above and below the reinforcement layer to initiate interface friction and the remaining portion of the backfill is filled up using the existing insitu cohesive soil. A 6 m high reinforced earth wall has been analysed as a two-dimensional plane strain finite element model. Three types of reinforcing elements such as geotextile, geogrid and metallic strips were used. The horizontal wall displacements and the tensile loads in the reinforcement were used as the criteria to evaluate the results at the end of construction and dynamic excitation phases. Also to verify the effectiveness of sandwich layer on the performance of the wall, the thickness of sand fill surrounding the reinforcement was varied. At the end of construction stage it is found that the wall with sandwich type backfill yielded lower displacements when compared to the wall with cohesive soil as backfill. Also with sandwich backfill, the reinforcement loads reduced substantially when compared to the wall with cohesive soil as backfill. Further, it is found that sandwich technique as backfill and geogrid as reinforcement is a good combination to reduce the deformations of geosynthetic reinforced walls during seismic loading.

Keywords: geogrid, geotextile, reinforced earth, sandwich technique

Procedia PDF Downloads 287
889 Generating Spherical Surface of Wear Drain in Cutting Metal by Finite Element Method Analysis

Authors: D. Kabeya Nahum, L. Y. Kabeya Mukeba

Abstract:

In this work, the design of surface defects some support of the anchor rod ball joint. The future adhesion contact was rocking in manufacture machining, for giving by the numerical analysis of a short simple solution of thermo-mechanical coupled problem in process engineering. The analysis of geometrical evaluation and the quasi-static and dynamic states are discussed in kinematic dimensional tolerances onto surfaces of part. Geometric modeling using the finite element method (FEM) in rough part of such phase provides an opportunity to solve the nonlinearity behavior observed by empirical data to improve the discrete functional surfaces. The open question here is to obtain spherical geometry of drain wear with the operation of rolling. The formulation with (1 ± 0.01) mm thickness near the drain wear semi-finishing tool for studying different angles, do not help the professional factor in design cutting metal related vibration, friction and interface solid-solid of part and tool during this physical complex process, with multi-parameters no-defined in Sobolev Spaces. The stochastic approach of cracking, wear and fretting due to the cutting forces face boundary layers small dimensions thickness of the workpiece and the tool in the machining position is predicted neighbor to ‘Yakam Matrix’.

Keywords: FEM, geometry, part, simulation, spherical surface engineering, tool, workpiece

Procedia PDF Downloads 274
888 Knowledge Management in Public Sector Employees: A Case Study of Training Participants at National Institute of Management, Pakistan

Authors: Muhammad Arif Khan, Haroon Idrees, Imran Aziz, Sidra Mushtaq

Abstract:

The purpose of this study is to investigate the current level of knowledge mapping skills of the public sector employees in Pakistan. National Institute of Management is one of the premiere public sector training organization for mid-career public sector employees in Pakistan. This study is conducted on participants of fourteen weeks long training course called Mid-Career Management Course (MCMC) which is mandatory for public sector employees in order to ascertain how to enhance their knowledge mapping skills. Methodology: Researcher used both qualitative and quantitative approach to conduct this study. Primary data about current level of participants’ understanding of knowledge mapping was collected through structured questionnaire. Later on, Participant Observation method was used where researchers acted as part of the group to gathered data from the trainees during their performance in training activities and tasks. Findings: Respondents of the study were examined for skills and abilities to organizing ideas, helping groups to develop conceptual framework, identifying critical knowledge areas of an organization, study large networks and identifying the knowledge flow using nodes and vertices, visualizing information, represent organizational structure etc. Overall, the responses varied in different skills depending on the performance and presentations. However, generally all participants have demonstrated average level of using both the IT and Non-IT K-mapping tools and techniques during simulation exercises, analysis paper de-briefing, case study reports, post visit presentation, course review, current issue presentation, syndicate meetings, and daily synopsis. Research Limitations: This study is conducted on a small-scale population of 67 public sector employees nominated by federal government to undergo 14 weeks extensive training program called MCMC (Mid-Career Management Course) at National Institute of Management, Peshawar, Pakistan. Results, however, reflects only a specific class of public sector employees i.e. working in grade 18 and having more than 5 years of work. Practical Implications: Research findings are useful for trainers, training agencies, government functionaries, and organizations working for capacity building of public sector employees.

Keywords: knowledge management, km in public sector, knowledge management and professional development, knowledge management in training, knowledge mapping

Procedia PDF Downloads 254
887 Procedural Protocol for Dual Energy Computed Tomography (DECT) Inversion

Authors: Rezvan Ravanfar Haghighi, S. Chatterjee, Pratik Kumar, V. C. Vani, Priya Jagia, Sanjiv Sharma, Susama Rani Mandal, R. Lakshmy

Abstract:

The dual energy computed tomography (DECT) aims at noting the HU(V) values for the sample at two different voltages V=V1, V2 and thus obtain the electron densities (ρe) and effective atomic number (Zeff) of the substance. In the present paper, we aim to obtain a numerical algorithm by which (ρe, Zeff) can be obtained from the HU(100) and HU(140) data, where V=100, 140 kVp. The idea is to use this inversion method to characterize and distinguish between the lipid and fibrous coronary artery plaques.With the idea to develop the inversion algorithm for low Zeff materials, as is the case with non calcified coronary artery plaque, we prepare aqueous samples whose calculated values of (ρe, Zeff) lie in the range (2.65×1023≤ ρe≤ 3.64×1023 per cc ) and (6.80≤ Zeff ≤ 8.90). We fill the phantom with these known samples and experimentally determine HU(100) and HU(140) for the same pixels. Knowing that the HU(V) values are related to the attenuation coefficient of the system, we present an algorithm by which the (ρe, Zeff) is calibrated with respect to (HU(100), HU(140)). The calibration is done with a known set of 20 samples; its accuracy is checked with a different set of 23 known samples. We find that the calibration gives the ρe with an accuracy of ± 4% while Zeff is found within ±1% of the actual value, the confidence being 95%.In this inversion method (ρe, Zeff) of the scanned sample can be found by eliminating the effects of the CT machine and also by ensuring that the determination of the two unknowns (ρe, Zeff) does not interfere with each other. It is found that this algorithm can be used for prediction of chemical characteristic (ρe, Zeff) of unknown scanned materials with 95% confidence level, by inversion of the DECT data.

Keywords: chemical composition, dual-energy computed tomography, inversion algorithm

Procedia PDF Downloads 438
886 Sound Selection for Gesture Sonification and Manipulation of Virtual Objects

Authors: Benjamin Bressolette, S´ebastien Denjean, Vincent Roussarie, Mitsuko Aramaki, Sølvi Ystad, Richard Kronland-Martinet

Abstract:

New sensors and technologies – such as microphones, touchscreens or infrared sensors – are currently making their appearance in the automotive sector, introducing new kinds of Human-Machine Interfaces (HMIs). The interactions with such tools might be cognitively expensive, thus unsuitable for driving tasks. It could for instance be dangerous to use touchscreens with a visual feedback while driving, as it distracts the driver’s visual attention away from the road. Furthermore, new technologies in car cockpits modify the interactions of the users with the central system. In particular, touchscreens are preferred to arrays of buttons for space improvement and design purposes. However, the buttons’ tactile feedback is no more available to the driver, which makes such interfaces more difficult to manipulate while driving. Gestures combined with an auditory feedback might therefore constitute an interesting alternative to interact with the HMI. Indeed, gestures can be performed without vision, which means that the driver’s visual attention can be totally dedicated to the driving task. In fact, the auditory feedback can both inform the driver with respect to the task performed on the interface and on the performed gesture, which might constitute a possible solution to the lack of tactile information. As audition is a relatively unused sense in automotive contexts, gesture sonification can contribute to reducing the cognitive load thanks to the proposed multisensory exploitation. Our approach consists in using a virtual object (VO) to sonify the consequences of the gesture rather than the gesture itself. This approach is motivated by an ecological point of view: Gestures do not make sound, but their consequences do. In this experiment, the aim was to identify efficient sound strategies, to transmit dynamic information of VOs to users through sound. The swipe gesture was chosen for this purpose, as it is commonly used in current and new interfaces. We chose two VO parameters to sonify, the hand-VO distance and the VO velocity. Two kinds of sound parameters can be chosen to sonify the VO behavior: Spectral or temporal parameters. Pitch and brightness were tested as spectral parameters, and amplitude modulation as a temporal parameter. Performances showed a positive effect of sound compared to a no-sound situation, revealing the usefulness of sounds to accomplish the task.

Keywords: auditory feedback, gesture sonification, sound perception, virtual object

Procedia PDF Downloads 302
885 Efficacy of Erector Spinae Plane Block for Postoperative Pain Management in Coronary Artery Bypass Graft Patients

Authors: Santosh Sharma Parajuli, Diwas Manandhar

Abstract:

Background: Perioperative pain management plays an integral part in patients undergoing cardiac surgery. We studied the effect of Erector Spinae Plane block on acute postoperative pain reduction and 24 hours opioid consumption in adult cardiac surgical patients. Methods: Twenty-five adult cardiac surgical patients who underwent cardiac surgery with sternotomy in whom ESP catheters were placed preoperatively were kept in group E, and the other 25 patients who had undergone cardiac surgery without ESP catheter and pain management done with conventional opioid injection were placed in group C. Fentanyl was used for pain management. The primary study endpoint was to compare the consumption of fentanyl and to assess the numeric rating scale in the postoperative period in the first 24 hours in both groups. Results: The 24 hours fentanyl consumption was 43.00±51.29 micrograms in the Erector Spinae Plane catheter group and 147.00±60.94 micrograms in the control group postoperatively which was statistically significant (p <0.001). The numeric rating scale was also significantly reduced in the Erector Spinae Plane group compared to the control group in the first 24 hours postoperatively. Conclusion: Erector Spinae Plane block is superior to the conventional opioid injection method for postoperative pain management in CABG patients. Erector Spinae Plane block not only decreases the overall opioid consumption but also the NRS score in these patients.

Keywords: erector, spinae, plane, numerical rating scale

Procedia PDF Downloads 67
884 Propeller Performance Modeling through a Computational Fluid Dynamics Analysis Method

Authors: Maxime Alex Junior Kuitche, Ruxandra Mihaela Botez, Jean-Chirstophe Maunand

Abstract:

The evolution of aircraft is closely linked to the study and improvement of propulsion systems. Determining the propulsion performance is a real challenge in aircraft modeling and design. In addition to theoretical methodologies, experimental procedures are used to obtain a good estimation of the propulsion performances. For piston-propeller propulsion, the propeller needs several experimental tests which could be extremely demanding in terms of time and money. This paper presents a new procedure to estimate the performance of a propeller from a numerical approach using computational fluid dynamic analysis. The propeller was initially scanned, and then, its 3D model was represented using CATIA. A structured meshing and Shear Stress Transition k-ω turbulence model were applied to describe accurately the flow pattern around the propeller. Thus, the Partial Differential Equations were solved using ANSYS FLUENT software. The method was applied on the UAS-S45’s propeller designed and manufactured by Hydra Technologies in Mexico. An extensive investigation was performed for several flight conditions in terms of altitudes and airspeeds with the aim to determine thrust coefficients, power coefficients and efficiency of the propeller. The Computational Fluid Dynamics results were compared with experimental data acquired from wind tunnel tests performed at the LARCASE Price-Paidoussis wind tunnel. The results of this comparison have demonstrated that our approach was highly accurate.

Keywords: CFD analysis, propeller performance, unmanned aerial system propeller, UAS-S45

Procedia PDF Downloads 353
883 Awarding Copyright Protection to Artificial Intelligence Technology for its Original Works: The New Way Forward

Authors: Vibhuti Amarnath Madhu Agrawal

Abstract:

Artificial Intelligence (AI) and Intellectual Property are two emerging concepts that are growing at a fast pace and have the potential of having a huge impact on the economy in the coming times. In simple words, AI is nothing but work done by a machine without any human intervention. It is a coded software embedded in a machine, which over a period of time, develops its own intelligence and begins to take its own decisions and judgments by studying various patterns of how people think, react to situations and perform tasks, among others. Intellectual Property, especially Copyright Law, on the other hand, protects the rights of individuals and Companies in content creation that primarily deals with application of intellect, originality and expression of the same in some tangible form. According to some of the reports shared by the media lately, ChatGPT, an AI powered Chatbot, has been involved in the creation of a wide variety of original content, including but not limited to essays, emails, plays and poetry. Besides, there have been instances wherein AI technology has given creative inputs for background, lights and costumes, among others, for films. Copyright Law offers protection to all of these different kinds of content and much more. Considering the two key parameters of Copyright – application of intellect and originality, the question, therefore, arises that will awarding Copyright protection to a person who has not directly invested his / her intellect in the creation of that content go against the basic spirit of Copyright laws? This study aims to analyze the current scenario and provide answers to the following questions: a. If the content generated by AI technology satisfies the basic criteria of originality and expression in a tangible form, why should such content be denied protection in the name of its creator, i.e., the specific AI tool / technology? B. Considering the increasing role and development of AI technology in our lives, should it be given the status of a ‘Legal Person’ in law? C. If yes, what should be the modalities of awarding protection to works of such Legal Person and management of the same? Considering the current trends and the pace at which AI is advancing, it is not very far when AI will start functioning autonomously in the creation of new works. Current data and opinions on this issue globally reflect that they are divided and lack uniformity. In order to fill in the existing gaps, data obtained from Copyright offices from the top economies of the world have been analyzed. The role and functioning of various Copyright Societies in these countries has been studied in detail. This paper provides a roadmap that can be adopted to satisfy various objectives, constraints and dynamic conditions related AI technology and its protection under Copyright Law.

Keywords: artificial intelligence technology, copyright law, copyright societies, intellectual property

Procedia PDF Downloads 71
882 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling

Authors: Florin Leon, Silvia Curteanu

Abstract:

Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.

Keywords: batch bulk methyl methacrylate polymerization, adaptive sampling, machine learning, large margin nearest neighbor regression

Procedia PDF Downloads 305
881 Settlement Analysis of Back-To-Back Mechanically Stabilized Earth Walls

Authors: Akhila Palat, B. Umashankar

Abstract:

Back-to-back Mechanically Stabilized Earth (MSE) walls are cost-effective soil-retaining structures that can tolerate large settlements compared to conventional gravity retaining walls. They are also an economical way to meet everyday earth retention needs for highway and bridge grade separations, railroads, commercial and residential developments. But, existing design guidelines (FHWA/BS/ IS codes) do not provide a mechanistic approach for the design of back-to-back reinforced retaining walls. The settlement analysis of such structures is limited in the literature. A better understanding of the deformations of this wall system requires an analytical tool that incorporates the properties of backfill material, foundation soil, and geosynthetic reinforcement, and account for the soil–structure interactions in a realistic manner. This study was conducted to investigate the effect of reinforced back-to-back MSE walls on wall settlements and facing deformations. Back-to-back reinforced retaining walls were modeled and compared using commercially available finite difference package FLAC 2D. Parametric studies were carried out for various angles of shearing resistance of backfill material and foundation soil, and the axial stiffness of the reinforcement. A 6m-high wall was modeled, and the facing panels were taken as full-length panels with nominal thickness. Reinforcement was modeled as cable elements (two-dimensional structural elements). Interfaces were considered between soil and wall, and soil and reinforcement.

Keywords: back-to-back walls, numerical modeling, reinforced wall, settlement

Procedia PDF Downloads 303