Search results for: continuous speed profile data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30089

Search results for: continuous speed profile data

25769 A Proposal of Advanced Key Performance Indicators for Assessing Six Performances of Construction Projects

Authors: Wi Sung Yoo, Seung Woo Lee, Youn Kyoung Hur, Sung Hwan Kim

Abstract:

Large-scale construction projects are continuously increasing, and the need for tools to monitor and evaluate the project success is emphasized. At the construction industry level, there are limitations in deriving performance evaluation factors that reflect the diversity of construction sites and systems that can objectively evaluate and manage performance. Additionally, there are difficulties in integrating structured and unstructured data generated at construction sites and deriving improvements. In this study, we propose the Key Performance Indicators (KPIs) to enable performance evaluation that reflects the increased diversity of construction sites and the unstructured data generated, and present a model for measuring performance by the derived indicators. The comprehensive performance of a unit construction site is assessed based on 6 areas (Time, Cost, Quality, Safety, Environment, Productivity) and 26 indicators. We collect performance indicator information from 30 construction sites that meet legal standards and have been successfully performed. And We apply data augmentation and optimization techniques into establishing measurement standards for each indicator. In other words, the KPI for construction site performance evaluation presented in this study provides standards for evaluating performance in six areas using institutional requirement data and document data. This can be expanded to establish a performance evaluation system considering the scale and type of construction project. Also, they are expected to be used as a comprehensive indicator of the construction industry and used as basic data for tracking competitiveness at the national level and establishing policies.

Keywords: key performance indicator, performance measurement, structured and unstructured data, data augmentation

Procedia PDF Downloads 42
25768 Fighting the Crisis with 4.0 Competences: Higher Education Projects in the Times of Pandemic

Authors: Jadwiga Fila, Mateusz Jezowski, Pawel Poszytek

Abstract:

The outbreak of the global COVID-19 pandemic started the times of crisis full of uncertainty, especially in the field of transnational cooperation projects based on the international mobility of their participants. This is notably the case of Erasmus+ Program for higher education, which is the flagship European initiative boosting cooperation between educational institutions, businesses, and other actors, enabling students and staff mobility, as well as strategic partnerships between different parties. The aim of this abstract is to study whether competences 4.0 are able to empower Erasmus+ project leaders in sustaining their international cooperation in times of global crisis, widespread online learning, and common project disruption or cancellation. The concept of competences 4.0 emerged from the notion of the industry 4.0, and it relates to skills that are fundamental for the current labor market. For the aim of the study presented in this abstract, four main 4.0 competences were distinguished: digital, managerial, social, and cognitive competence. The hypothesis for the study stipulated that the above-mentioned highly-developed competences may act as a protective shield against the pandemic challenges in terms of projects’ sustainability and continuation. The objective of the research was to assess to what extent individual competences are useful in managing projects in times of crisis. For this purpose, the study was conducted, involving, among others, 141 Polish higher education project leaders who were running their cooperation projects during the peak of the COVID-19 pandemic (Mar-Nov 2020). The research explored the self-perception of the above-mentioned competences among Erasmus+ project leaders and the contextual data regarding the sustainability of the projects. The quantitative character of data permitted validation of scales (Cronbach’s Alfa measure), and the use of factor analysis made it possible to create a distinctive variable for each competence and its dimensions. Finally, logistic regression was used to examine the association of competences and other factors on project status. The study shows that the project leaders’ competence profile attributed the highest score to digital competence (4.36 on the 1-5 scale). Slightly lower values were obtained for cognitive competence (3.96) and managerial competence (3.82). The lowest score was accorded to one specific dimension of social competence: adaptability and ability to manage stress (1.74), which proves that the pandemic was a real challenge which had to be faced by project coordinators. For higher education projects, 10% were suspended or prolonged because of the COVID-19 pandemic, whereas 90% were undisrupted (continued or already successfully finished). The quantitative analysis showed a positive relationship between the leaders’ levels of competences and the projects status. In the case of all competences, the scores were higher for project leaders who finished projects successfully than for leaders who suspended or prolonged their projects. The research demonstrated that, in the demanding times of the COVID-19 pandemic, competences 4.0, to a certain extent, do play a significant role in the successful management of Erasmus+ projects. The implementation and sustainability of international educational projects, despite mobility and sanitary obstacles, depended, among other factors, on the level of leaders’ competences.

Keywords: Competences 4.0, COVID-19 pandemic, Erasmus+ Program, international education, project sustainability

Procedia PDF Downloads 94
25767 Aerodynamic Analysis of Multiple Winglets for Aircrafts

Authors: S. Pooja Pragati, B. Sudarsan, S. Raj Kumar

Abstract:

This paper provides a practical design of a new concept of massive Induced Drag reductions of stream vise staggered multiple winglets. It is designed to provide an optimum performance of a winglet from conventional designs. In preparing for a mechanical design, aspects such as shape, dimensions are analyzed to yield a huge amount of reduction in fuel consumption and increased performance. Owing to its simplicity of application and effectiveness we believe that it will enable us to consider its enhanced version for the grid effect of the staggered multiple winglets on the deflected mass flow of the wing system. The objective of the analysis were to compare the aerodynamic characteristics of two winglet configuration and to investigate the performance of two winglets shape simulated at selected cant angle of 0,45,60 degree.

Keywords: multiple winglets, induced drag, aerodynamics analysis, low speed aircrafts

Procedia PDF Downloads 480
25766 Comprehensive Literature Review of the Humanistic Burden of Clostridium (Clostridiodes) difficile Infection

Authors: Caroline Seo, Jennifer Stephens, Kirstin H. Heinrich

Abstract:

Background: Clostridiodes (formerly Clostridium) difficile infection (CDI) is an anaerobic, spore-forming bacterium with manifestations including diarrhea, pseudomembranous colitis and toxic megacolon. Despite general understanding that CDI may be associated with marked burden on patients’ health, there has been limited information available on the humanistic burden of CDI. The objective of this literature review was to summarize the published data on the humanistic burden of CDI globally, in order to better inform future research efforts and increase awareness of the patient perspective in this disease. Methods: A comprehensive literature review of the past 15 years (2002-2017) was conducted using MEDLINE, Embase and Cumulative Index of Nursing and Allied Health Literature. Additional searches were conducted from conference proceedings (2015-2017). Articles selected were studies specifically designed to examine the humanistic burden of illness associated with adult patients with CDI. Results: Of 3,325 articles or abstracts identified, 33 remained after screening and full text review. Sixty percent (60%) were published in 2016 or 2017. Data from the United States or Western Europe were most common. Data from Brazil, Canada, China and Spain also exist. Thirteen (13) studies used validated patient-reported outcomes instruments, mostly EQ-5D utility and SF-36 generic instruments. Three (3) studies used CDI-specific instruments (CDiff32, CDI-DaySyms). The burden of CDI impacts patients in multiple health-related quality of life (HRQOL) domains. SF-36 domains with the largest decrements compared to other GI diarrheal diseases (IBS-D and Crohn’s) were role physical, physical functioning, vitality, social functioning, and role emotional. Reported EQ-5D utilities for CDI ranged from 0.35-0.42 compared to 0.65 in Crohn’s and 0.72 in IBS-D. The majority of papers addressed physical functioning and mental health domains (67% for both). Across various studies patients reported weakness, lack of appetite, sleep disturbance, functional dependence, and decreased activities of daily lives due to the continuous diarrhea. Due to lack of control over this infection, CDI also impacts the psychological and emotional quality of life of the patients. Patients reported feelings of fear, anxiety, frustration, depression, and embarrassment. Additionally, the type of disease (primary vs. recurrent) may impact mental health. One study indicated that there is a decrement in SF-36 mental scores in patients with recurrent CDI, in comparison to patients with primary CDI. Other domains highlighted by these studies include pain (27%), social isolation (27%), vitality and fatigue (24%), self-care (9%), and caregiver burden (0%). Two studies addressed work productivity, with 1 of these studies reporting that CDI patients had the highest work productivity and activity impairment scores among the gastrointestinal diseases. No study specifically included caregiver self-report. However, 3 studies did provide mention of patients’ worry on how their diagnosis of CDI would impact family, caregivers, and/or friends. Conclusions: Despite being a serious public health issue there has been a paucity of research on the HRQOL among those with CDI. While progress is being made, gaps exist in understanding the burden on patients, caregivers, and families. Future research is warranted to aid understanding of the CDI patient perspective.

Keywords: burden, Clostridiodes, difficile, humanistic, infection

Procedia PDF Downloads 136
25765 A Fuzzy TOPSIS Based Model for Safety Risk Assessment of Operational Flight Data

Authors: N. Borjalilu, P. Rabiei, A. Enjoo

Abstract:

Flight Data Monitoring (FDM) program assists an operator in aviation industries to identify, quantify, assess and address operational safety risks, in order to improve safety of flight operations. FDM is a powerful tool for an aircraft operator integrated into the operator’s Safety Management System (SMS), allowing to detect, confirm, and assess safety issues and to check the effectiveness of corrective actions, associated with human errors. This article proposes a model for safety risk assessment level of flight data in a different aspect of event focus based on fuzzy set values. It permits to evaluate the operational safety level from the point of view of flight activities. The main advantages of this method are proposed qualitative safety analysis of flight data. This research applies the opinions of the aviation experts through a number of questionnaires Related to flight data in four categories of occurrence that can take place during an accident or an incident such as: Runway Excursions (RE), Controlled Flight Into Terrain (CFIT), Mid-Air Collision (MAC), Loss of Control in Flight (LOC-I). By weighting each one (by F-TOPSIS) and applying it to the number of risks of the event, the safety risk of each related events can be obtained.

Keywords: F-topsis, fuzzy set, flight data monitoring (FDM), flight safety

Procedia PDF Downloads 168
25764 Preservation of Near-Extinct African Culture: The Case of Yoruba Proverbs

Authors: Makinde David Olajide

Abstract:

Proverb is an important aspect of most indigenous culture in Africa including that of the Yoruba people of southwestern Nigeria. As revealed by recent studies, Yoruba proverbs as an important cultural heritage are threatened and near extinct. This fear of proverb extinct in Yoruba cultural growth has been observed and expressed at different fora by many researchers and professionals including Art historians, culture patrons, social critics’ and teachers among others. Investigation revealed that the intangible nature of proverb is largely responsible for its continuous disappearance in the language structure and creative speeches which give the unique identity to the Yoruba people. Some of the factors that are responsible for culture extinct include: absence of moonlight stories by the elderly, the nuclear family system, and total assimilation of western culture, the concept of modernity and urban nature of Yoruba towns among others. Therefore, to preserve this creative heritage (proverb), there is need for a conscious shift of the traditional role of proverbs in speech development to its use as tool for artistic creations and expressions in visual form. The study was carried out between June, 2013 and February, 2015 in three Yoruba towns; Ilorin, Ede and Ogbomoso selected from Kwara, Osun and Oyo states respectively. The data used in this study were collected through oral and structured interviews. Fifteen interviewers were purposively selected in each of the study areas. It also employs the use of electronic and printed media to generate relevant literature on the subject matter. The study revealed that many Yoruba proverbs are preserved or hidden in text books, monograph, home videos, films and pastoral messages. However, this has not stopped the problem of lack of understanding of its usage, meaning and reasons for its extinction that may hinder its preservation for the incoming generations. This study concludes that indigenous culture can be revived and preserved for future generations when there is a conscious attempt to integrate or convert their traditional roles for present day realities and relevance in our social and educational needs.

Keywords: culture, assimilation, extinct, heritage, preservation

Procedia PDF Downloads 333
25763 From Modeling of Data Structures towards Automatic Programs Generating

Authors: Valentin P. Velikov

Abstract:

Automatic program generation saves time, human resources, and allows receiving syntactically clear and logically correct modules. The 4-th generation programming languages are related to drawing the data and the processes of the subject area, as well as, to obtain a frame of the respective information system. The application can be separated in interface and business logic. That means, for an interactive generation of the needed system to be used an already existing toolkit or to be created a new one.

Keywords: computer science, graphical user interface, user dialog interface, dialog frames, data modeling, subject area modeling

Procedia PDF Downloads 305
25762 Optimized Weight Selection of Control Data Based on Quotient Space of Multi-Geometric Features

Authors: Bo Wang

Abstract:

The geometric processing of multi-source remote sensing data using control data of different scale and different accuracy is an important research direction of multi-platform system for earth observation. In the existing block bundle adjustment methods, as the controlling information in the adjustment system, the approach using single observation scale and precision is unable to screen out the control information and to give reasonable and effective corresponding weights, which reduces the convergence and adjustment reliability of the results. Referring to the relevant theory and technology of quotient space, in this project, several subjects are researched. Multi-layer quotient space of multi-geometric features is constructed to describe and filter control data. Normalized granularity merging mechanism of multi-layer control information is studied and based on the normalized scale factor, the strategy to optimize the weight selection of control data which is less relevant to the adjustment system can be realized. At the same time, geometric positioning experiment is conducted using multi-source remote sensing data, aerial images, and multiclass control data to verify the theoretical research results. This research is expected to break through the cliché of the single scale and single accuracy control data in the adjustment process and expand the theory and technology of photogrammetry. Thus the problem to process multi-source remote sensing data will be solved both theoretically and practically.

Keywords: multi-source image geometric process, high precision geometric positioning, quotient space of multi-geometric features, optimized weight selection

Procedia PDF Downloads 284
25761 Predicting Mass-School-Shootings: Relevance of the FBI’s ‘Threat Assessment Perspective’ Two Decades Later

Authors: Frazer G. Thompson

Abstract:

The 1990s in America ended with a mass-school-shooting (at least four killed by gunfire excluding the perpetrator(s)) at Columbine High School in Littleton, Colorado. Post-event, many demanded that government and civilian experts develop a ‘profile’ of the potential school shooter in order to identify and preempt likely future acts of violence. This grounded theory research study seeks to explore the validity of the original hypotheses proposed by the Federal Bureau of Investigation (FBI) in 2000, as it relates to the commonality of disclosure by perpetrators of mass-school-shootings, by evaluating fourteen mass-school-shooting events between 2000 and 2019 at locations around the United States. Methods: The strategy of inquiry seeks to investigate case files, public records, witness accounts, and available psychological profiles of the shooter. The research methodology is inclusive of one-on-one interviews with members of the FBI’s Critical Incident Response Group seeking perspective on commonalities between individuals; specifically, disclosure of intent pre-event. Results: The research determined that school shooters do not ‘unfailingly’ notify others of their plans. However, in nine of the fourteen mass-school-shooting events analyzed, the perpetrator did inform the third party of their intent pre-event in some form of written, oral, or electronic communication. In the remaining five instances, the so-called ‘red-flag’ indicators of the potential for an event to occur were profound, and unto themselves, might be interpreted as notification to others of an imminent deadly threat. Conclusion: Data indicates that conclusions drawn in the FBI’s threat assessment perspective published in 2000 are relevant and current. There is evidence that despite potential ‘red-flag’ indicators which may or may not include a variety of other characteristics, perpetrators of mass-school-shooting events are likely to share their intentions with others through some form of direct or indirect communication. More significantly, implications of this research might suggest that society is often informed of potential danger pre-event but lacks any equitable means by which to disseminate, prevent, intervene, or otherwise act in a meaningful way considering said revelation.

Keywords: columbine, FBI profiling, guns, mass shooting, mental health, school violence

Procedia PDF Downloads 118
25760 Consortium Blockchain-based Model for Data Management Applications in the Healthcare Sector

Authors: Teo Hao Jing, Shane Ho Ken Wae, Lee Jin Yu, Burra Venkata Durga Kumar

Abstract:

Current distributed healthcare systems face the challenge of interoperability of health data. Storing electronic health records (EHR) in local databases causes them to be fragmented. This problem is aggravated as patients visit multiple healthcare providers in their lifetime. Existing solutions are unable to solve this issue and have caused burdens to healthcare specialists and patients alike. Blockchain technology was found to be able to increase the interoperability of health data by implementing digital access rules, enabling uniformed patient identity, and providing data aggregation. Consortium blockchain was found to have high read throughputs, is more trustworthy, more secure against external disruptions and accommodates transactions without fees. Therefore, this paper proposes a blockchain-based model for data management applications. In this model, a consortium blockchain is implemented by using a delegated proof of stake (DPoS) as its consensus mechanism. This blockchain allows collaboration between users from different organizations such as hospitals and medical bureaus. Patients serve as the owner of their information, where users from other parties require authorization from the patient to view their information. Hospitals upload the hash value of patients’ generated data to the blockchain, whereas the encrypted information is stored in a distributed cloud storage.

Keywords: blockchain technology, data management applications, healthcare, interoperability, delegated proof of stake

Procedia PDF Downloads 138
25759 Postpartum Female Sexual Dysfunctions in Hungary: A Cross-Sectional Study

Authors: Katalin Szöllősi, László Szabó

Abstract:

Introduction and purpose: Even though female sexual dysfunctions are common among women in the postpartum period, the profile of these disturbances has not been well investigated in Hungary yet. The aim of the study was to evaluate the postpartum female sexual functions in Hungary. This research sought to investigate the possible predictor factors which can influence postpartum female sexual functions. Method and sample: This was a cross-sectional study, including patients from two maternity clinics in Budapest. 113 women were recruited into our study 3 months after their childbirth. 53 had vaginal birth, 60 had a caesarian section. Data were collected from medical reports in addition by using self-developed questions and validated questionnaires in order to measure important predictors which may be responsible for postpartum sexual dysfunctions such as mode of delivery, parity, urinary incontinence and body image. Sexual functions were evaluated by the Hungarian version of the Female Sexual Function Index (FSFI). The Hungarian version of Body Image Questionnaire-Short Form14 (BSQ-SF14) was applied for assessing body image. Results: 82,3% of the participants began to have sexual intercourse within three months postpartum. 53,98% of the participants reported sexual dysfunctions (cut-off FSFI score 26,55). According to our results mode of delivery, parity, hemorrhoids, time of intercourse, resumption was not associated with female sexual dysfunctions. We found correlation at a tendential level between urinary incontinence and sexual dysfunctions (p=0,003, R=0,26). We found a negative correlation at a tendential level between the total score of BSQ-SF14 and FSFI (p=0,03, R=-0,269). Only 32,74% of women reported discussing sexual life with health care professionals. However, 67,25% of them would have had the need to be asked about their postpartum health issues. Conclusions and recommendations: The prevalence of female sexual dysfunctions were relatively high after childbirth. We found that incontinence and body image was associated with sexual dysfunctions; other risk factors remained unknown. Despite regular contact with health care professionals, women rarely get any information about postpartum sexual health issues. The high prevalence of dysfunctions indicates the need for further investigation to address other risk factors and proper counselling of women after childbirth.

Keywords: body image, postpartum, sexual dysfunction, urinary incontinence

Procedia PDF Downloads 111
25758 Simulation Study of the Microwave Heating of the Hematite and Coal Mixture

Authors: Prasenjit Singha, Sunil Yadav, Soumya Ranjan Mohantry, Ajay Kumar Shukla

Abstract:

Temperature distribution in the hematite ore mixed with 7.5% coal was predicted by solving a 1-D heat conduction equation using an implicit finite difference approach. In this work, it was considered a square slab of 20 cm x 20 cm, which assumed the coal to be uniformly mixed with hematite ore. It was solved the equations with the use of MATLAB 2018a software. Heat transfer effects in this 1D dimensional slab convective and the radiative boundary conditions are also considered. Temperature distribution obtained inside hematite slab by considering microwave heating time, thermal conductivity, heat capacity, carbon percentage, sample dimensions, and many other factors such as penetration depth, permittivity, and permeability of coal and hematite ore mixtures. The resulting temperature profile can be used as a guiding tool for optimizing the microwave-assisted carbothermal reduction process of hematite slab was extended to other dimensions as well, viz., 1 cm x 1 cm, 5 cm x 5 cm, 10 cm x 10 cm, 20 cm x 20 cm. The model predictions are in good agreement with experimental results.

Keywords: hematite ore, coal, microwave processing, heat transfer, implicit method, temperature distribution

Procedia PDF Downloads 169
25757 Efficient DCT Architectures

Authors: Mr. P. Suryaprasad, R. Lalitha

Abstract:

This paper presents an efficient area and delay architectures for the implementation of one dimensional and two dimensional discrete cosine transform (DCT). These are supported to different lengths (4, 8, 16, and 32). DCT blocks are used in the different video coding standards for the image compression. The 2D- DCT calculation is made using the 2D-DCT separability property, such that the whole architecture is divided into two 1D-DCT calculations by using a transpose buffer. Based on the existing 1D-DCT architecture two different types of 2D-DCT architectures, folded and parallel types are implemented. Both of these two structures use the same transpose buffer. Proposed transpose buffer occupies less area and high speed than existing transpose buffer. Hence the area, low power and delay of both the 2D-DCT architectures are reduced.

Keywords: transposition buffer, video compression, discrete cosine transform, high efficiency video coding, two dimensional picture

Procedia PDF Downloads 522
25756 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves

Authors: Shengnan Chen, Shuhua Wang

Abstract:

Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.

Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves

Procedia PDF Downloads 283
25755 Efficiency of DMUs in Presence of New Inputs and Outputs in DEA

Authors: Esmat Noroozi, Elahe Sarfi, Farha Hosseinzadeh Lotfi

Abstract:

Examining the impacts of data modification is considered as sensitivity analysis. A lot of studies have considered the data modification of inputs and outputs in DEA. The issues which has not heretofore been considered in DEA sensitivity analysis is modification in the number of inputs and (or) outputs and determining the impacts of this modification in the status of efficiency of DMUs. This paper is going to present systems that show the impacts of adding one or multiple inputs or outputs on the status of efficiency of DMUs and furthermore a model is presented for recognizing the minimum number of inputs and (or) outputs from among specified inputs and outputs which can be added whereas an inefficient DMU will become efficient. Finally the presented systems and model have been utilized for a set of real data and the results have been reported.

Keywords: data envelopment analysis, efficiency, sensitivity analysis, input, out put

Procedia PDF Downloads 450
25754 Developing Methodology of Constructing the Unified Action Plan for External and Internal Risks in University

Authors: Keiko Tamura, Munenari Inoguchi, Michiyo Tsuji

Abstract:

When disasters occur, in order to raise the speed of each decision making and response, it is common that delegation of authority is carried out. This tendency is particularly evident when the department or branch of the organization are separated by the physical distance from the main body; however, there are some issues to think about. If the department or branch is too dependent on the head office in the usual condition, they might feel lost in the disaster response operation when they are face to the situation. Avoiding this problem, an organization should decide how to delegate the authority and also who accept the responsibility for what before the disaster. This paper will discuss about the method which presents an approach for executing the delegation of authority process, implementing authorities, management by objectives, and preparedness plans and agreement. The paper will introduce the examples of efforts for the three research centers of Niigata University, Japan to arrange organizations capable of taking necessary actions for disaster response. Each center has a quality all its own. One is the center for carrying out the research in order to conserve the crested ibis (or Toki birds in Japanese), the endangered species. The another is the marine biological laboratory. The third one is very unique because of the old growth forests maintained as the experimental field. Those research centers are in the Sado Island, located off the coast of Niigata Prefecture, is Japan's second largest island after Okinawa and is known for possessing a rich history and culture. It takes 65 minutes jetfoil (high-speed ferry) ride to get to Sado Island from the mainland. The three centers are expected to be easily isolated at the time of a disaster. A sense of urgency encourages 3 centers in the process of organizational restructuring for enhancing resilience. The research team from the risk management headquarters offer those procedures; Step 1: Offer the hazard scenario based on the scientific evidence, Step 2: Design a risk management organization for disaster response function, Step 3: Conduct the participatory approach to make consensus about the overarching objectives, Step 4: Construct the unified operational action plan for 3 centers, Step 5: Simulate how to respond in each phase based on the understanding the various phases of the timeline of a disaster. Step 6: Document results to measure performance and facilitate corrective action. This paper shows the result of verifying the output and effects.

Keywords: delegation of authority, disaster response, risk management, unified command

Procedia PDF Downloads 125
25753 Credit Card Fraud Detection with Ensemble Model: A Meta-Heuristic Approach

Authors: Gong Zhilin, Jing Yang, Jian Yin

Abstract:

The purpose of this paper is to develop a novel system for credit card fraud detection based on sequential modeling of data using hybrid deep learning models. The projected model encapsulates five major phases are pre-processing, imbalance-data handling, feature extraction, optimal feature selection, and fraud detection with an ensemble classifier. The collected raw data (input) is pre-processed to enhance the quality of the data through alleviation of the missing data, noisy data as well as null values. The pre-processed data are class imbalanced in nature, and therefore they are handled effectively with the K-means clustering-based SMOTE model. From the balanced class data, the most relevant features like improved Principal Component Analysis (PCA), statistical features (mean, median, standard deviation) and higher-order statistical features (skewness and kurtosis). Among the extracted features, the most optimal features are selected with the Self-improved Arithmetic Optimization Algorithm (SI-AOA). This SI-AOA model is the conceptual improvement of the standard Arithmetic Optimization Algorithm. The deep learning models like Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and optimized Quantum Deep Neural Network (QDNN). The LSTM and CNN are trained with the extracted optimal features. The outcomes from LSTM and CNN will enter as input to optimized QDNN that provides the final detection outcome. Since the QDNN is the ultimate detector, its weight function is fine-tuned with the Self-improved Arithmetic Optimization Algorithm (SI-AOA).

Keywords: credit card, data mining, fraud detection, money transactions

Procedia PDF Downloads 131
25752 National Digital Soil Mapping Initiatives in Europe: A Review and Some Examples

Authors: Dominique Arrouays, Songchao Chen, Anne C. Richer-De-Forges

Abstract:

Soils are at the crossing of many issues such as food and water security, sustainable energy, climate change mitigation and adaptation, biodiversity protection, human health and well-being. They deliver many ecosystem services that are essential to life on Earth. Therefore, there is a growing demand for soil information on a national and global scale. Unfortunately, many countries do not have detailed soil maps, and, when existing, these maps are generally based on more or less complex and often non-harmonized soil classifications. An estimate of their uncertainty is also often missing. Thus, there are not easy to understand and often not properly used by end-users. Therefore, there is an urgent need to provide end-users with spatially exhaustive grids of essential soil properties, together with an estimate of their uncertainty. One way to achieve this is digital soil mapping (DSM). The concept of DSM relies on the hypothesis that soils and their properties are not randomly distributed, but that they depend on the main soil-forming factors that are climate, organisms, relief, parent material, time (age), and position in space. All these forming factors can be approximated using several exhaustive spatial products such as climatic grids, remote sensing products or vegetation maps, digital elevation models, geological or lithological maps, spatial coordinates of soil information, etc. Thus, DSM generally relies on models calibrated with existing observed soil data (point observations or maps) and so-called “ancillary co-variates” that come from other available spatial products. Then the model is generalized on grids where soil parameters are unknown in order to predict them, and the prediction performances are validated using various methods. With the growing demand for soil information at a national and global scale and the increase of available spatial co-variates national and continental DSM initiatives are continuously increasing. This short review illustrates the main national and continental advances in Europe, the diversity of the approaches and the databases that are used, the validation techniques and the main scientific and other issues. Examples from several countries illustrate the variety of products that were delivered during the last ten years. The scientific production on this topic is continuously increasing and new models and approaches are developed at an incredible speed. Most of the digital soil mapping (DSM) products rely mainly on machine learning (ML) prediction models and/or the use or pedotransfer functions (PTF) in which calibration data come from soil analyses performed in labs or for existing conventional maps. However, some scientific issues remain to be solved and also political and legal ones related, for instance, to data sharing and to different laws in different countries. Other issues related to communication to end-users and education, especially on the use of uncertainty. Overall, the progress is very important and the willingness of institutes and countries to join their efforts is increasing. Harmonization issues are still remaining, mainly due to differences in classifications or in laboratory standards between countries. However numerous initiatives are ongoing at the EU level and also at the global level. All these progress are scientifically stimulating and also promissing to provide tools to improve and monitor soil quality in countries, EU and at the global level.

Keywords: digital soil mapping, global soil mapping, national and European initiatives, global soil mapping products, mini-review

Procedia PDF Downloads 184
25751 WebAppShield: An Approach Exploiting Machine Learning to Detect SQLi Attacks in an Application Layer in Run-time

Authors: Ahmed Abdulla Ashlam, Atta Badii, Frederic Stahl

Abstract:

In recent years, SQL injection attacks have been identified as being prevalent against web applications. They affect network security and user data, which leads to a considerable loss of money and data every year. This paper presents the use of classification algorithms in machine learning using a method to classify the login data filtering inputs into "SQLi" or "Non-SQLi,” thus increasing the reliability and accuracy of results in terms of deciding whether an operation is an attack or a valid operation. A method Web-App auto-generated twin data structure replication. Shielding against SQLi attacks (WebAppShield) that verifies all users and prevents attackers (SQLi attacks) from entering and or accessing the database, which the machine learning module predicts as "Non-SQLi" has been developed. A special login form has been developed with a special instance of data validation; this verification process secures the web application from its early stages. The system has been tested and validated, up to 99% of SQLi attacks have been prevented.

Keywords: SQL injection, attacks, web application, accuracy, database

Procedia PDF Downloads 151
25750 From Theory to Practice: Harnessing Mathematical and Statistical Sciences in Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid growth of data in diverse domains has created an urgent need for effective utilization of mathematical and statistical sciences in data analytics. This abstract explores the journey from theory to practice, emphasizing the importance of harnessing mathematical and statistical innovations to unlock the full potential of data analytics. Drawing on a comprehensive review of existing literature and research, this study investigates the fundamental theories and principles underpinning mathematical and statistical sciences in the context of data analytics. It delves into key mathematical concepts such as optimization, probability theory, statistical modeling, and machine learning algorithms, highlighting their significance in analyzing and extracting insights from complex datasets. Moreover, this abstract sheds light on the practical applications of mathematical and statistical sciences in real-world data analytics scenarios. Through case studies and examples, it showcases how mathematical and statistical innovations are being applied to tackle challenges in various fields such as finance, healthcare, marketing, and social sciences. These applications demonstrate the transformative power of mathematical and statistical sciences in data-driven decision-making. The abstract also emphasizes the importance of interdisciplinary collaboration, as it recognizes the synergy between mathematical and statistical sciences and other domains such as computer science, information technology, and domain-specific knowledge. Collaborative efforts enable the development of innovative methodologies and tools that bridge the gap between theory and practice, ultimately enhancing the effectiveness of data analytics. Furthermore, ethical considerations surrounding data analytics, including privacy, bias, and fairness, are addressed within the abstract. It underscores the need for responsible and transparent practices in data analytics, and highlights the role of mathematical and statistical sciences in ensuring ethical data handling and analysis. In conclusion, this abstract highlights the journey from theory to practice in harnessing mathematical and statistical sciences in data analytics. It showcases the practical applications of these sciences, the importance of interdisciplinary collaboration, and the need for ethical considerations. By bridging the gap between theory and practice, mathematical and statistical sciences contribute to unlocking the full potential of data analytics, empowering organizations and decision-makers with valuable insights for informed decision-making.

Keywords: data analytics, mathematical sciences, optimization, machine learning, interdisciplinary collaboration, practical applications

Procedia PDF Downloads 93
25749 Regression for Doubly Inflated Multivariate Poisson Distributions

Authors: Ishapathik Das, Sumen Sen, N. Rao Chaganty, Pooja Sengupta

Abstract:

Dependent multivariate count data occur in several research studies. These data can be modeled by a multivariate Poisson or Negative binomial distribution constructed using copulas. However, when some of the counts are inflated, that is, the number of observations in some cells are much larger than other cells, then the copula based multivariate Poisson (or Negative binomial) distribution may not fit well and it is not an appropriate statistical model for the data. There is a need to modify or adjust the multivariate distribution to account for the inflated frequencies. In this article, we consider the situation where the frequencies of two cells are higher compared to the other cells, and develop a doubly inflated multivariate Poisson distribution function using multivariate Gaussian copula. We also discuss procedures for regression on covariates for the doubly inflated multivariate count data. For illustrating the proposed methodologies, we present a real data containing bivariate count observations with inflations in two cells. Several models and linear predictors with log link functions are considered, and we discuss maximum likelihood estimation to estimate unknown parameters of the models.

Keywords: copula, Gaussian copula, multivariate distributions, inflated distributios

Procedia PDF Downloads 156
25748 Using of Cavitational Disperser for Porous Ceramic and Concrete Material Preparation

Authors: Andrei Shishkin, Aleksandrs Korjakins, Viktors Mironovs

Abstract:

Present paper describes method of obtaining clay ceramic foam (CCF) and foam concrete (FC), by direct foaming with high speed mixer-disperser (HSMD). Three foaming agents (FA) are compared for the FC and CCF production: SCHÄUMUNGSMITTEL W 53 FLÜSSIG (Zschimmer & Schwarz Gmbh, Germany), SCF-1245 (Sika, test sample, Latvia) and FAB-12 (Elade, Latvija). CCF were obtained at 950, 1000°C, 1150°C and 1150°C firing temperature and have mechanical compressive strength 1.2, 2.55, and 4.3 MPa and porosity 79.4, 75.1, 71.6%, respectively. Obtained FC has 6-14 MPa compressive strength and porosity 44-55%. The goal of this work was the development of a sustainable and durable ceramic cellular structures using HSMD.

Keywords: ceramic foam, foam concrete, clay foam, open cell, close cell, direct foaming

Procedia PDF Downloads 808
25747 Psychological Intervention for Partners Post-Stroke: A Case Study

Authors: Natasha Yasmin Felles, Gerard Riley

Abstract:

Background and Aims: Relationship breakdown is typical when one partner lives with an acquired brain injury caused by issues like a stroke. Research has found that the perception of relationship satisfaction decreases following such an injury among non-injured partners. Non-injured partners also are found to experience caregiver stress/burden as they immediately have to take the role of a caregiver along with being a partner of the injured. Research has also found that the perception of a continuous relationship, i.e. the perception of the relationship to be essentially the same as it was before the injury, also changes among those caregiving partners. However, there is a lack of available intervention strategies that can help those partners with both individual and relationship difficulties. The aim of this case study was to conduct a pilot test of an intervention aimed to explore whether it is possible to support a partner to experience greater continuity within the relationship poststroke, and what benefits such a change might have. Method: A couple, where one partner experienced an acquired brain injury poststroke were provided with Integrated Behavioural Couples Therapy for 3-months. The intervention addressed goals identified as necessary by the couple and by the formulation of their individual and relationship difficulties, alongside the goal of promoting relationship continuity. Before and after measures were taken using a battery of six questionnaires to evaluate changes in perceptions of continuity, stress, and other aspects of the relationship. Results: Both quantitative and qualitative data showed that relationship continuity was improved after the therapy, as were the measures of stress and other aspects of the relationship. The stress felt by the person with the acquired brain injury also showed some evidence of improvement. Conclusion: The study found that perceptions of relationship continuity can be improved by therapy and that improving these might have a beneficial impact on the stress felt by the carer, their satisfaction with the relationship and overall levels of conflict and closeness within the relationship. The study suggested the value of further research on enhancing perceptions of continuity in the relationship after an acquired brain injury. Currently, the findings of the study have been used to develop a pilot feasibility study to collect substantive evidence on the impact of the intervention on the couples and assess its feasibility and acceptability, which will help in further developing a specific generalized relationship continuity intervention, that will be beneficial in preventing relationship breakdown in the future.

Keywords: acquired brain injury, couples therapy, relationship continuity, stroke

Procedia PDF Downloads 124
25746 A Case Study of Meningoencephalitis following Le Fort I Osteotomy

Authors: Ryan Goh, Nicholas Beech

Abstract:

Introduction: Le Fort I Osteotomies, although are common procedures in Oral and Maxillofacial Surgery, carry a degree of risk of unfavourable propagation of the down-fracture of the maxilla. This may be the first reported case in the literature for meningoencephalitis to occur following a Le Fort I Osteotomy. Case: A 32-year-old female was brought into the Emergency Department four days after a Le Fort I Osteotomy, with a Glasgow Coma Scale (GCS) of 8 (E3V1M4). A Computed Tomography (CT) Head showed a skull base fracture at the right sphenoid sinus. Lumbar puncture was completed, and Klebsiella oxytoca was found in the Cerebrospinal Fluid (CSF). She was treated with Meropenem, and rapidly improved thereafter. CSF rhinorrhoea was identified when she was extubated, which was successfully managed via a continuous lumbar drain. She was discharged on day 14 without any neurological deficits. Conclusion: The most likely aspect of the Le Fort I Osteotomy to obtain a skull base fracture is during the pterygomaxillary disjunction. Care should always be taken to avoid significant risks of skull base fractures, CSF rhinorrhoea, meningitis and encephalitis.

Keywords: meningitis, orthognathic surgery, post-operative complication, skull base, rhinorrhea

Procedia PDF Downloads 125
25745 An Exploratory Research of Human Character Analysis Based on Smart Watch Data: Distinguish the Drinking State from Normal State

Authors: Lu Zhao, Yanrong Kang, Lili Guo, Yuan Long, Guidong Xing

Abstract:

Smart watches, as a handy device with rich functionality, has become one of the most popular wearable devices all over the world. Among the various function, the most basic is health monitoring. The monitoring data can be provided as an effective evidence or a clue for the detection of crime cases. For instance, the step counting data can help to determine whether the watch wearer was quiet or moving during the given time period. There is, however, still quite few research on the analysis of human character based on these data. The purpose of this research is to analyze the health monitoring data to distinguish the drinking state from normal state. The analysis result may play a role in cases involving drinking, such as drunk driving. The experiment mainly focused on finding the figures of smart watch health monitoring data that change with drinking and figuring up the change scope. The chosen subjects are mostly in their 20s, each of whom had been wearing the same smart watch for a week. Each subject drank for several times during the week, and noted down the begin and end time point of the drinking. The researcher, then, extracted and analyzed the health monitoring data from the watch. According to the descriptive statistics analysis, it can be found that the heart rate change when drinking. The average heart rate is about 10% higher than normal, the coefficient of variation is less than about 30% of the normal state. Though more research is needed to be carried out, this experiment and analysis provide a thought of the application of the data from smart watches.

Keywords: character analysis, descriptive statistics analysis, drink state, heart rate, smart watch

Procedia PDF Downloads 167
25744 Preliminary Evaluation of Echinacea Species by UV-VIS Spectroscopy Fingerprinting of Phenolic Compounds

Authors: Elena Ionescu, Elena Iacob, Marie-Louise Ionescu, Carmen Elena Tebrencu, Oana Teodora Ciuperca

Abstract:

Echinacea species (Asteraceae) has received a global attention because it is widely used for treatment of cold, flu and upper respiratory tract infections. Echinacea species contain a great variety of chemical components that contribute to their activity. The most important components responsible for the biological activity are those with high molecular-weight such as polysaccharides, polyacetylenes, highly unsaturated alkamides and caffeic acid derivatives. The principal factors that may influence the chemical composition of Echinacea include the species and the part of plant used (aerial parts or roots ). In recent years the market for Echinacea has grown rapidly and also the cases of adultery/replacement especially for Echinacea root. The identification of presence or absence of same biomarkers provide information for safe use of Echinacea species in food supplements industry. The aim of the study was the preliminary evaluation and fingerprinting by UV-VISIBLE spectroscopy of biomarkers in terms of content in phenolic derivatives of some Echinacea species (E. purpurea, E. angustifolia and E. pallida) for identification and authentication of the species. The steps of the study were: (1) samples (extracts) preparation from Echinacea species (non-hydrolyzed and hydrolyzed ethanol extracts); (2) samples preparation of reference substances (polyphenol acids: caftaric acid, caffeic acid, chlorogenic acid, ferulic acid; flavonoids: rutoside, hyperoside, isoquercitrin and their aglycones: quercitri, quercetol, luteolin, kaempferol and apigenin); (3) identification of specific absorption at wavelengths between 700-200 nm; (4) identify the phenolic compounds from Echinacea species based on spectral characteristics and the specific absorption; each class of compounds corresponds to a maximum absorption in the UV spectrum. The phytochemical compounds were identified at specific wavelengths between 700-200 nm. The absorption intensities were measured. The obtained results proved that ethanolic extract showed absorption peaks attributed to: phenolic compounds (free phenolic acids and phenolic acids derivatives) registrated between 220-280 nm, unsymmetrical chemical structure compounds (caffeic acid, chlorogenic acid, ferulic acid) with maximum absorption peak and absorption "shoulder" that may be due to substitution of hydroxyl or methoxy group, flavonoid compounds (in free form or glycosides) between 330-360 nm, due to the double bond in position 2,3 and carbonyl group in position 4 flavonols. UV spectra showed two major peaks of absorption (quercetin glycoside, rutin, etc.). The results obtained by UV-VIS spectroscopy has revealed the presence of phenolic derivatives such as cicoric acid (240 nm), caftaric acid (329 nm), caffeic acid (240 nm), rutoside (205 nm), quercetin (255 nm), luteolin (235 nm) in all three species of Echinacea. The echinacoside is absent. This profile mentioned above and the absence of phenolic compound echinacoside leads to the conclusion that species harvested as Echinacea angustifolia and Echinacea pallida are Echinacea purpurea also; It can be said that preliminary fingerprinting of Echinacea species through correspondence with the phenolic derivatives profile can be achieved by UV-VIS spectroscopic investigation, which is an adequate technique for preliminary identification and authentication of Echinacea in medicinal herbs.

Keywords: Echinacea species, Fingerprinting, Phenolic compounds, UV-VIS spectroscopy

Procedia PDF Downloads 261
25743 Modeling and Analysis Of Occupant Behavior On Heating And Air Conditioning Systems In A Higher Education And Vocational Training Building In A Mediterranean Climate

Authors: Abderrahmane Soufi

Abstract:

The building sector is the largest consumer of energy in France, accounting for 44% of French consumption. To reduce energy consumption and improve energy efficiency, France implemented an energy transition law targeting 40% energy savings by 2030 in the tertiary building sector. Building simulation tools are used to predict the energy performance of buildings but the reliability of these tools is hampered by discrepancies between the real and simulated energy performance of a building. This performance gap lies in the simplified assumptions of certain factors, such as the behavior of occupants on air conditioning and heating, which is considered deterministic when setting a fixed operating schedule and a fixed interior comfort temperature. However, the behavior of occupants on air conditioning and heating is stochastic, diverse, and complex because it can be affected by many factors. Probabilistic models are an alternative to deterministic models. These models are usually derived from statistical data and express occupant behavior by assuming a probabilistic relationship to one or more variables. In the literature, logistic regression has been used to model the behavior of occupants with regard to heating and air conditioning systems by considering univariate logistic models in residential buildings; however, few studies have developed multivariate models for higher education and vocational training buildings in a Mediterranean climate. Therefore, in this study, occupant behavior on heating and air conditioning systems was modeled using logistic regression. Occupant behavior related to the turn-on heating and air conditioning systems was studied through experimental measurements collected over a period of one year (June 2023–June 2024) in three classrooms occupied by several groups of students in engineering schools and professional training. Instrumentation was provided to collect indoor temperature and indoor relative humidity in 10-min intervals. Furthermore, the state of the heating/air conditioning system (off or on) and the set point were determined. The outdoor air temperature, relative humidity, and wind speed were collected as weather data. The number of occupants, age, and sex were also considered. Logistic regression was used for modeling an occupant turning on the heating and air conditioning systems. The results yielded a proposed model that can be used in building simulation tools to predict the energy performance of teaching buildings. Based on the first months (summer and early autumn) of the investigations, the results illustrate that the occupant behavior of the air conditioning systems is affected by the indoor relative humidity and temperature in June, July, and August and by the indoor relative humidity, temperature, and number of occupants in September and October. Occupant behavior was analyzed monthly, and univariate and multivariate models were developed.

Keywords: occupant behavior, logistic regression, behavior model, mediterranean climate, air conditioning, heating

Procedia PDF Downloads 62
25742 The Appeal of Vocal Islamism in the West: The Case of Hizb ut-Tahrir vis-à-vis Its Competitors

Authors: Elisa Orofino

Abstract:

Islamism is a very debated topic in the West but almost exclusively explored in its violent forms. Nevertheless, a number of “vocal radical Islamist” groups exist in the West and legally operate because of their non-violent nature. Vocal radicals continually inspire individuals and lead them towards specific goals and priorities, sometimes even towards violence. This paper uses the long-living group Hizb ut-Tahrir (HT) to explore the elements that make the organization appealing to segments of Muslim community in the West. This paper uses three agency variables - reflexive monitoring, the rationalization of action and the motivations for actions – to analyze HT’s appeal vis-à-vis two other Islamist groups, Ikhwan al-Muslimun and Jamaat-e-Islami (JeI), having similar goals and the same high international profile. This paper concludes that HT’s uniqueness is given by its method, detailed vision of the caliphate, consistency over time and the emphasis placed on the caliphate as the leading force of HT’s unchanged motivation for action.

Keywords: agency, caliphate, Islamist groups, radicalization, vocal radicals

Procedia PDF Downloads 120
25741 Recognizing Human Actions by Multi-Layer Growing Grid Architecture

Authors: Z. Gharaee

Abstract:

Recognizing actions performed by others is important in our daily lives since it is necessary for communicating with others in a proper way. We perceive an action by observing the kinematics of motions involved in the performance. We use our experience and concepts to make a correct recognition of the actions. Although building the action concepts is a life-long process, which is repeated throughout life, we are very efficient in applying our learned concepts in analyzing motions and recognizing actions. Experiments on the subjects observing the actions performed by an actor show that an action is recognized after only about two hundred milliseconds of observation. In this study, hierarchical action recognition architecture is proposed by using growing grid layers. The first-layer growing grid receives the pre-processed data of consecutive 3D postures of joint positions and applies some heuristics during the growth phase to allocate areas of the map by inserting new neurons. As a result of training the first-layer growing grid, action pattern vectors are generated by connecting the elicited activations of the learned map. The ordered vector representation layer receives action pattern vectors to create time-invariant vectors of key elicited activations. Time-invariant vectors are sent to second-layer growing grid for categorization. This grid creates the clusters representing the actions. Finally, one-layer neural network developed by a delta rule labels the action categories in the last layer. System performance has been evaluated in an experiment with the publicly available MSR-Action3D dataset. There are actions performed by using different parts of human body: Hand Clap, Two Hands Wave, Side Boxing, Bend, Forward Kick, Side Kick, Jogging, Tennis Serve, Golf Swing, Pick Up and Throw. The growing grid architecture was trained by applying several random selections of generalization test data fed to the system during on average 100 epochs for each training of the first-layer growing grid and around 75 epochs for each training of the second-layer growing grid. The average generalization test accuracy is 92.6%. A comparison analysis between the performance of growing grid architecture and self-organizing map (SOM) architecture in terms of accuracy and learning speed show that the growing grid architecture is superior to the SOM architecture in action recognition task. The SOM architecture completes learning the same dataset of actions in around 150 epochs for each training of the first-layer SOM while it takes 1200 epochs for each training of the second-layer SOM and it achieves the average recognition accuracy of 90% for generalization test data. In summary, using the growing grid network preserves the fundamental features of SOMs, such as topographic organization of neurons, lateral interactions, the abilities of unsupervised learning and representing high dimensional input space in the lower dimensional maps. The architecture also benefits from an automatic size setting mechanism resulting in higher flexibility and robustness. Moreover, by utilizing growing grids the system automatically obtains a prior knowledge of input space during the growth phase and applies this information to expand the map by inserting new neurons wherever there is high representational demand.

Keywords: action recognition, growing grid, hierarchical architecture, neural networks, system performance

Procedia PDF Downloads 157
25740 An Approach to Practical Determination of Fair Premium Rates in Crop Hail Insurance Using Short-Term Insurance Data

Authors: Necati Içer

Abstract:

Crop-hail insurance plays a vital role in managing risks and reducing the financial consequences of hail damage on crop production. Predicting insurance premium rates with short-term data is a major difficulty in numerous nations because of the unique characteristics of hailstorms. This study aims to suggest a feasible approach for establishing equitable premium rates in crop-hail insurance for nations with short-term insurance data. The primary goal of the rate-making process is to determine premium rates for high and zero loss costs of villages and enhance their credibility. To do this, a technique was created using the author's practical knowledge of crop-hail insurance. With this approach, the rate-making method was developed using a range of temporal and spatial factor combinations with both hypothetical and real data, including extreme cases. This article aims to show how to incorporate the temporal and spatial elements into determining fair premium rates using short-term insurance data. The article ends with a suggestion on the ultimate premium rates for insurance contracts.

Keywords: crop-hail insurance, premium rate, short-term insurance data, spatial and temporal parameters

Procedia PDF Downloads 55