Search results for: dynamic constraints
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5065

Search results for: dynamic constraints

775 Arabic Lexicon Learning to Analyze Sentiment in Microblogs

Authors: Mahmoud B. Rokaya

Abstract:

The study of opinion mining and sentiment analysis includes analysis of opinions, sentiments, evaluations, attitudes, and emotions. The rapid growth of social media, social networks, reviews, forum discussions, microblogs, and Twitter, leads to a parallel growth in the field of sentiment analysis. The field of sentiment analysis tries to develop effective tools to make it possible to capture the trends of people. There are two approaches in the field, lexicon-based and corpus-based methods. A lexicon-based method uses a sentiment lexicon which includes sentiment words and phrases with assigned numeric scores. These scores reveal if sentiment phrases are positive or negative, their intensity, and/or their emotional orientations. Creation of manual lexicons is hard. This brings the need for adaptive automated methods for generating a lexicon. The proposed method generates dynamic lexicons based on the corpus and then classifies text using these lexicons. In the proposed method, different approaches are combined to generate lexicons from text. The proposed method classifies the tweets into 5 classes instead of +ve or –ve classes. The sentiment classification problem is written as an optimization problem, finding optimum sentiment lexicons are the goal of the optimization process. The solution was produced based on mathematical programming approaches to find the best lexicon to classify texts. A genetic algorithm was written to find the optimal lexicon. Then, extraction of a meta-level feature was done based on the optimal lexicon. The experiments were conducted on several datasets. Results, in terms of accuracy, recall and F measure, outperformed the state-of-the-art methods proposed in the literature in some of the datasets. A better understanding of the Arabic language and culture of Arab Twitter users and sentiment orientation of words in different contexts can be achieved based on the sentiment lexicons proposed by the algorithm.

Keywords: social media, Twitter sentiment, sentiment analysis, lexicon, genetic algorithm, evolutionary computation

Procedia PDF Downloads 189
774 The Study of Ecological Seabirds in Algeria

Authors: A. Baaloudj, F. Samraoui, B. Samraoui

Abstract:

We have been studied the reproductive ecology and dispersal of Yellow-legged Gull Larus michahellis for three years 2009-2011. The study of the breeding ecology of the species was undertaken at the Srigina Island (Skikda). The mean clutch size was 2.64±0.62, 2.49±0.72 and 2.37±0.77eggsin the three study years 2009-2011 respectively. Hatching success was similar for the first two years of study (53% in 2009and 54% in 2010) but significantly lower in the third year (27% in 2011). The same trend was found for the fledging success, it was 33% and 32% in 2009and 2010respectivelyandonly 14% in 2011. Cannibalism and predation by cats were the two likely causes of low reproductive success in the third year. Regarding the species dispersal, we started a banding program of the yellow-legged gulls Larus michahellis michahellis in 2009, the first scheme of its kind in North Africa. Banding of chicks was initiated at Skikda and extended, a year later, to four other colonies located along the Algerian coast. Preliminary analysis of ringed yellow-legged gulls from Algerian colonies indicates that juveniles dispersed in a north-westerly direction to the Balearic Sea, the Bay of Biscay, the Alboran Sea and the western Atlantic coast from the Bay of Cadiz to the Galician shores. Preliminary data suggested two distinct routes: gulls from the eastern North African colonies moved N/NW to eastern Spain and overland to the Bay of Biscay, a pattern of dispersal previously reported for birds from Spanish and French western Mediterranean colonies. Juveniles from western colonies seemed also to move N/NW to the Alboran Sea and the Bay of Cadiz. In Spain, where most of the dispersal took place, data suggested that Algerian gulls occupied coastal areas which are used as aestivating refuges before returning to North Africa in late autumn and winter.

Keywords: breeding ecology, population dynamic, dispersal, yellow-legged gull larus michahellis, sea bird, banding scheme, Srigina, Algeria

Procedia PDF Downloads 203
773 Flame Propagation Velocity of Selected Gas Mixtures Depending on the Temperature

Authors: Kaczmarzyk Piotr, Anna Dziechciarz, Wojciech Klapsa

Abstract:

The purpose of this paper is demonstration the test results of research influence of temperature on the velocity of flame propagation using gas and air mixtures for selected gas mixtures. The research was conducted on the test apparatus in the form of duct 2 m long. The test apparatus was funded from the project: “Development of methods to neutralize threats of explosion for determined tanks contained technical gases, including alternative sources of supply in the fire environment, taking into account needs of rescuers” number: DOB-BIO6/02/50/2014. The Project is funded by The National Centre for Research and Development. This paper presents the results of measurement of rate of pressure rise and rate in flame propagation, using test apparatus for mixtures air and methane or air and propane. This paper presents the results performed using the test apparatus in the form of duct measuring the rate of flame and overpressure wave. Studies were performed using three gas mixtures with different concentrations: Methane (3% to 8% vol), Propane (3% to 6% vol). As regard to the above concentrations, tests were carried out at temperatures 20 and 30 ̊C. The gas mixture was supplied to the inside of the duct by the partial pressure molecules. Data acquisition was made using 5 dynamic pressure transducers and 5 ionization probes, arranged along of the duct. Temperature conditions changes were performed using heater which was mounted on the duct’s bottom. During the tests, following parameters were recorded: maximum explosion pressure, maximum pressure recorded by sensors and voltage recorded by ionization probes. Performed tests, for flammable gas and air mixtures, indicate that temperature changes have an influence on overpressure velocity. It should be noted, that temperature changes do not have a major impact on the flame front velocity. In the case of propane and air mixtures (temperature 30 ̊C) was observed DDT (Deflagration to Detonation) phenomena. The velocity increased from 2 to 20 m/s. This kind of explosion could turn into a detonation, but the duct length is too short (2 m).

Keywords: flame propagation, flame propagation velocity, explosion, propane, methane

Procedia PDF Downloads 226
772 Revolutionizing Project Management: A Comprehensive Review of Artificial Intelligence and Machine Learning Applications for Smarter Project Execution

Authors: Wenzheng Fu, Yue Fu, Zhijiang Dong, Yujian Fu

Abstract:

The integration of artificial intelligence (AI) and machine learning (ML) into project management is transforming how engineering projects are executed, monitored, and controlled. This paper provides a comprehensive survey of AI and ML applications in project management, systematically categorizing their use in key areas such as project data analytics, monitoring, tracking, scheduling, and reporting. As project management becomes increasingly data-driven, AI and ML offer powerful tools for improving decision-making, optimizing resource allocation, and predicting risks, leading to enhanced project outcomes. The review highlights recent research that demonstrates the ability of AI and ML to automate routine tasks, provide predictive insights, and support dynamic decision-making, which in turn increases project efficiency and reduces the likelihood of costly delays. This paper also examines the emerging trends and future opportunities in AI-driven project management, such as the growing emphasis on transparency, ethical governance, and data privacy concerns. The research suggests that AI and ML will continue to shape the future of project management by driving further automation and offering intelligent solutions for real-time project control. Additionally, the review underscores the need for ongoing innovation and the development of governance frameworks to ensure responsible AI deployment in project management. The significance of this review lies in its comprehensive analysis of AI and ML’s current contributions to project management, providing valuable insights for both researchers and practitioners. By offering a structured overview of AI applications across various project phases, this paper serves as a guide for the adoption of intelligent systems, helping organizations achieve greater efficiency, adaptability, and resilience in an increasingly complex project management landscape.

Keywords: artificial intelligence, decision support systems, machine learning, project management, resource optimization, risk prediction

Procedia PDF Downloads 21
771 Hydrodynamics of Undulating Ribbon-fin and Its Application in Bionic Underwater Robot

Authors: Zhang Jun, Zhai Shucheng, Bai Yaqiang, Zhang Guoping

Abstract:

The Gymnarchus Niioticus fish(GNF) cruises generally with high efficiency by undulating ribbon-fin propulsion while keeping its body for straight line. The swing amplitude of GNF fins is usually in 60° to 90°, and in normal state the amplitude is close to 90°, only in the control of hovering or swimming at very low speed, the amplitude is smaller (about 60°). It provides inspiration for underwater robot design. In the paper, the unsteady flow of undulating ribbon-fin propulsion is numerical simulated by the dynamic grid technique including spring-based smoothing model and local grid remeshing to adapt to the fin surface significantly deforming, and the swing amplitude of fin ray reaches 850. The numerical simulation method is validated by thrust experiments. The spatial vortex structure and its evolution with phase angle is analyzed. The propulsion mechanism is investigated by comprehensive analysis of the hydrodynamics, vortex structure, and pressure distribution on the fin surface. The numerical results indicates that there are mainly three kinds of vortexes, i.e. streamwise vortex, crescent vortex and toroidal vortex. The intensity of streamwise vortex is the strongest among all kinds of vortexes. Streamwise vortexes and crescent vortexes all alternately distribute on the two sides of mid-sagittal plane. Inside the crescent vortexes is high-speed flow, while outside is low-speed flow. The crescent vortexes mainly induce high-speed axial jet, which produces the primary thrust. This is hydrodynamic mechanism undulating ribbon-fin propulsion. The streamwise vortexes mainly induce the vertical jet, which generates the primary heave force. The effect on hydrodynamics of main geometry and movement parameters including wave length, amplitude and advanced coefficients is investigated. A bionic underwater robot with bilateral undulating ribbon-fins is designed, and its navigation performance and maneuverability are measured.

Keywords: bionic propulsion, mobile robot, underwater robot, undulating ribbon-fins

Procedia PDF Downloads 284
770 Performance Assessment of Carrier Aggregation-Based Indoor Mobile Networks

Authors: Viktor R. Stoynov, Zlatka V. Valkova-Jarvis

Abstract:

The intelligent management and optimisation of radio resource technologies will lead to a considerable improvement in the overall performance in Next Generation Networks (NGNs). Carrier Aggregation (CA) technology, also known as Spectrum Aggregation, enables more efficient use of the available spectrum by combining multiple Component Carriers (CCs) in a virtual wideband channel. LTE-A (Long Term Evolution–Advanced) CA technology can combine multiple adjacent or separate CCs in the same band or in different bands. In this way, increased data rates and dynamic load balancing can be achieved, resulting in a more reliable and efficient operation of mobile networks and the enabling of high bandwidth mobile services. In this paper, several distinct CA deployment strategies for the utilisation of spectrum bands are compared in indoor-outdoor scenarios, simulated via the recently-developed Realistic Indoor Environment Generator (RIEG). We analyse the performance of the User Equipment (UE) by integrating the average throughput, the level of fairness of radio resource allocation, and other parameters, into one summative assessment termed a Comparative Factor (CF). In addition, comparison of non-CA and CA indoor mobile networks is carried out under different load conditions: varying numbers and positions of UEs. The experimental results demonstrate that the CA technology can improve network performance, especially in the case of indoor scenarios. Additionally, we show that an increase of carrier frequency does not necessarily lead to improved CF values, due to high wall-penetration losses. The performance of users under bad-channel conditions, often located in the periphery of the cells, can be improved by intelligent CA location. Furthermore, a combination of such a deployment and effective radio resource allocation management with respect to user-fairness plays a crucial role in improving the performance of LTE-A networks.

Keywords: comparative factor, carrier aggregation, indoor mobile network, resource allocation

Procedia PDF Downloads 178
769 A Coupled Model for Two-Phase Simulation of a Heavy Water Pressure Vessel Reactor

Authors: D. Ramajo, S. Corzo, M. Nigro

Abstract:

A Multi-dimensional computational fluid dynamics (CFD) two-phase model was developed with the aim to simulate the in-core coolant circuit of a pressurized heavy water reactor (PHWR) of a commercial nuclear power plant (NPP). Due to the fact that this PHWR is a Reactor Pressure Vessel type (RPV), three-dimensional (3D) detailed modelling of the large reservoirs of the RPV (the upper and lower plenums and the downcomer) were coupled with an in-house finite volume one-dimensional (1D) code in order to model the 451 coolant channels housing the nuclear fuel. Regarding the 1D code, suitable empirical correlations for taking into account the in-channel distributed (friction losses) and concentrated (spacer grids, inlet and outlet throttles) pressure losses were used. A local power distribution at each one of the coolant channels was also taken into account. The heat transfer between the coolant and the surrounding moderator was accurately calculated using a two-dimensional theoretical model. The implementation of subcooled boiling and condensation models in the 1D code along with the use of functions for representing the thermal and dynamic properties of the coolant and moderator (heavy water) allow to have estimations of the in-core steam generation under nominal flow conditions for a generic fission power distribution. The in-core mass flow distribution results for steady state nominal conditions are in agreement with the expected from design, thus getting a first assessment of the coupled 1/3D model. Results for nominal condition were compared with those obtained with a previous 1/3D single-phase model getting more realistic temperature patterns, also allowing visualize low values of void fraction inside the upper plenum. It must be mentioned that the current results were obtained by imposing prescribed fission power functions from literature. Therefore, results are showed with the aim of point out the potentiality of the developed model.

Keywords: PHWR, CFD, thermo-hydraulic, two-phase flow

Procedia PDF Downloads 468
768 Covid -19 Pandemic and Impact on Public Spaces of Tourism and Hospitality in Dubai- an Exploratory Study from a Design Perspective

Authors: Manju Bala Jassi

Abstract:

The Covid 19 pandemic has badly mauled Dubai’s GDP heavily dependent on hospitality, tourism, entertainment, logistics, property and the retail sectors. In the context of the World Health protocols on social distancing for better maintenance of health and hygiene, the revival of the battered tourism and hospitality sectors has serious lessons for designers- interiors and public places. The tangible and intangible aesthetic elements and design –ambiance, materials, furnishings, colors, lighting and interior with architectural design issues of tourism and hospitality need a rethink to ensure a memorable tourist experience. Designers ought to experiment with sustainable places of tourism and design, develop, build and projects are aesthetic and leave as little negative impacts on the environment and public as possible. In short, they ought to conceive public spaces that makes use of little untouched materials and energy, and creates pollution and waste that are minimal. The spaces can employ healthier and more resource-efficient prototypes of construction, renovation, operation, maintenance, and demolition and thereby mitigate the environment impacts of the construction activities and it is sustainable These measures encompass the hospitality sector that includes hotels and restaurants which has taken the hardest fall from the pandemic. The paper sought to examine building energy efficiency and materials and design employed in public places, green buildings to achieve constructive sustainability and to establish the benefits of utilizing energy efficiency, green materials and sustainable design; to document diverse policy interventions, design and Spatial dimensions of tourism and hospitality sectors; to examine changes in the hospitality, aviation sector especially from a design perspective regarding infrastructure or operational constraints and additional risk-mitigation measures; to dilate on the nature of implications for interior designers and architects to design public places to facilitate sustainable tourism and hospitality while balancing convenient space and their operations' natural surroundings. The qualitative research approach was adopted for the study. The researcher collected and analyzed data in continuous iteration. Secondary data was collected from articles in journals, trade publications, government reports, newspaper/ magazine articles, policy documents etc. In depth interviews were conducted with diverse stakeholders. Preliminary data indicates that designers have started imagining public places of tourism and hospitality against the backdrop of the government push and WHO guidelines. For instance, with regard to health, safety, hygiene and sanitation, Emirates, the Dubai-based airline has augmented health measures at the Dubai International Airport and on board its aircraft. It has leveraged high tech/ Nano-tech, social distancing to encourage least human contact, flexible design layouts to limit the occupancy. The researcher organized the data into thematic categories and found that the Government of Dubai has initiated comprehensive measures in the hospitality, tourism and aviation sectors in compliance with the WHO guidelines.

Keywords: Covid 19, design, Dubai, hospitality, public spaces, tourism

Procedia PDF Downloads 166
767 Enhancement of Long Term Peak Demand Forecast in Peninsular Malaysia Using Hourly Load Profile

Authors: Nazaitul Idya Hamzah, Muhammad Syafiq Mazli, Maszatul Akmar Mustafa

Abstract:

The peak demand forecast is crucial to identify the future generation plant up needed in the long-term capacity planning analysis for Peninsular Malaysia as well as for the transmission and distribution network planning activities. Currently, peak demand forecast (in Mega Watt) is derived from the generation forecast by using load factor assumption. However, a forecast using this method has underperformed due to the structural changes in the economy, emerging trends and weather uncertainty. The dynamic changes of these drivers will result in many possible outcomes of peak demand for Peninsular Malaysia. This paper will look into the independent model of peak demand forecasting. The model begins with the selection of driver variables to capture long-term growth. This selection and construction of variables, which include econometric, emerging trend and energy variables, will have an impact on the peak forecast. The actual framework begins with the development of system energy and load shape forecast by using the system’s hourly data. The shape forecast represents the system shape assuming all embedded technology and use patterns to continue in the future. This is necessary to identify the movements in the peak hour or changes in the system load factor. The next step would be developing the peak forecast, which involves an iterative process to explore model structures and variables. The final step is combining the system energy, shape, and peak forecasts into the hourly system forecast then modifying it with the forecast adjustments. Forecast adjustments are among other sales forecasts for electric vehicles, solar and other adjustments. The framework will result in an hourly forecast that captures growth, peak usage and new technologies. The advantage of this approach as compared to the current methodology is that the peaks capture new technology impacts that change the load shape.

Keywords: hourly load profile, load forecasting, long term peak demand forecasting, peak demand

Procedia PDF Downloads 172
766 Deep Learning for SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network

Procedia PDF Downloads 69
765 Application of Stochastic Models on the Portuguese Population and Distortion to Workers Compensation Pensioners Experience

Authors: Nkwenti Mbelli Njah

Abstract:

This research was motivated by a project requested by AXA on the topic of pensions payable under the workers compensation (WC) line of business. There are two types of pensions: the compulsorily recoverable and the not compulsorily recoverable. A pension is compulsorily recoverable for a victim when there is less than 30% of disability and the pension amount per year is less than six times the minimal national salary. The law defines that the mathematical provisions for compulsory recoverable pensions must be calculated by applying the following bases: mortality table TD88/90 and rate of interest 5.25% (maybe with rate of management). To manage pensions which are not compulsorily recoverable is a more complex task because technical bases are not defined by law and much more complex computations are required. In particular, companies have to predict the amount of payments discounted reflecting the mortality effect for all pensioners (this task is monitored monthly in AXA). The purpose of this research was thus to develop a stochastic model for the future mortality of the worker’s compensation pensioners of both the Portuguese market workers and AXA portfolio. Not only is past mortality modeled, also projections about future mortality are made for the general population of Portugal as well as for the two portfolios mentioned earlier. The global model was split in two parts: a stochastic model for population mortality which allows for forecasts, combined with a point estimate from a portfolio mortality model obtained through three different relational models (Cox Proportional, Brass Linear and Workgroup PLT). The one-year death probabilities for ages 0-110 for the period 2013-2113 are obtained for the general population and the portfolios. These probabilities are used to compute different life table functions as well as the not compulsorily recoverable reserves for each of the models required for the pensioners, their spouses and children under 21. The results obtained are compared with the not compulsory recoverable reserves computed using the static mortality table (TD 73/77) that is currently being used by AXA, to see the impact on this reserve if AXA adopted the dynamic tables.

Keywords: compulsorily recoverable, life table functions, relational models, worker’s compensation pensioners

Procedia PDF Downloads 164
764 Third Eye: A Hybrid Portrayal of Visuospatial Attention through Eye Tracking Research and Modular Arithmetic

Authors: Shareefa Abdullah Al-Maqtari, Ruzaika Omar Basaree, Rafeah Legino

Abstract:

A pictorial representation of hybrid forms in science-art collaboration has become a crucial issue in the course of exploring a new painting technique development. This is straight related to the reception of an invisible-recognition phenomenology. In hybrid pictorial representation of invisible-recognition phenomenology, the challenging issue is how to depict the pictorial features of indescribable objects from its mental source, modality and transparency. This paper proposes the hybrid technique of painting Demonstrate, Resemble, and Synthesize (DRS) through a combination of the hybrid aspect-recognition representation of understanding picture, demonstrative mod, the number theory, pattern in the modular arithmetic system, and the coherence theory of visual attention in the dynamic scenes representation. Multi-methods digital gaze data analyses, pattern-modular table operation design, and rotation parameter were used for the visualization. In the scientific processes, Eye-trackingvideo-sections based was conducted using Tobii T60 remote eye tracking hardware and TobiiStudioTM analysis software to collect and analyze the eye movements of ten participants when watching the video clip, Alexander Paulikevitch’s performance’s ‘Tajwal’. Results: we found that correlation of fixation count in section one was positively and moderately correlated with section two Person’s (r=.10, p < .05, 2-tailed) as well as in fixation duration Person’s (r=.10, p < .05, 2-tailed). However, a paired-samples t-test indicates that scores were significantly higher for the section one (M = 2.2, SD = .6) than for the section two (M = 1.93, SD = .6) t(9) = 2.44, p < .05, d = 0.87. In the visual process, the exported data of gaze number N was resembled the hybrid forms of visuospatial attention using the table-mod-analyses operation. The explored hybrid guideline was simply applicable, and it could be as alternative approach to the sustainability of contemporary visual arts.

Keywords: science-art collaboration, hybrid forms, pictorial representation, visuospatial attention, modular arithmetic

Procedia PDF Downloads 364
763 Design of Traffic Counting Android Application with Database Management System and Its Comparative Analysis with Traditional Counting Methods

Authors: Muhammad Nouman, Fahad Tiwana, Muhammad Irfan, Mohsin Tiwana

Abstract:

Traffic congestion has been increasing significantly in major metropolitan areas as a result of increased motorization, urbanization, population growth and changes in the urban density. Traffic congestion compromises efficiency of transport infrastructure and causes multiple traffic concerns; including but not limited to increase of travel time, safety hazards, air pollution, and fuel consumption. Traffic management has become a serious challenge for federal and provincial governments, as well as exasperated commuters. Effective, flexible, efficient and user-friendly traffic information/database management systems characterize traffic conditions by making use of traffic counts for storage, processing, and visualization. While, the emerging data collection technologies continue to proliferate, its accuracy can be guaranteed through the comparison of observed data with the manual handheld counters. This paper presents the design of tablet based manual traffic counting application and framework for development of traffic database management system for Pakistan. The database management system comprises of three components including traffic counting android application; establishing online database and its visualization using Google maps. Oracle relational database was chosen to develop the data structure whereas structured query language (SQL) was adopted to program the system architecture. The GIS application links the data from the database and projects it onto a dynamic map for traffic conditions visualization. The traffic counting device and example of a database application in the real-world problem provided a creative outlet to visualize the uses and advantages of a database management system in real time. Also, traffic data counts by means of handheld tablet/ mobile application can be used for transportation planning and forecasting.

Keywords: manual count, emerging data sources, traffic information quality, traffic surveillance, traffic counting device, android; data visualization, traffic management

Procedia PDF Downloads 193
762 Systematic Review of Technology-Based Mental Health Solutions for Modelling in Low and Middle Income Countries

Authors: Mukondi Esther Nethavhakone

Abstract:

In 2020 World Health Organization announced the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as Coronavirus disease 2019 (COVID-19) pandemic. To curb or contain the spread of the novel coronavirus (COVID 19), global governments implemented social distancing and lockdown regulations. Subsequently, it was no longer business as per usual, life as we knew it had changed, and so many aspects of people's lives were negatively affected, including financial and employment stability. Mainly, because companies/businesses had to put their operations on hold, some had to shut down completely, resulting in the loss of income for many people globally. Finances and employment insecurities are some of the issues that exacerbated many social issues that the world was already faced with, such as school drop-outs, teenage pregnancies, sexual assaults, gender-based violence, crime, child abuse, elderly abuse, to name a few. Expectedly the majority of the population's mental health state was threatened. This resulted in an increased number of people seeking mental healthcare services. The increasing need for mental healthcare services in Low and Middle-income countries proves to be a challenge because it is a well-known fact due to financial constraints and not well-established healthcare systems, mental healthcare provision is not as prioritised as the primary healthcare in these countries. It is against this backdrop that the researcher seeks to find viable, cost-effective, and accessible mental health solutions for low and middle-income countries amid the pressures of any pandemic. The researcher will undertake a systematic review of the technology-based mental health solutions that have been implemented/adopted by developed countries during COVID 19 lockdown and social distancing periods. This systematic review study aims to determine if low and middle-income countries can adopt the cost-effective version of digital mental health solutions for the healthcare system to adequately provide mental healthcare services during critical times such as pandemics (when there's an overwhelming diminish in mental health globally). The researcher will undertake a systematic review study through mixed methods. It will adhere to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The mixed-methods uses findings from both qualitative and quantitative studies in one review study. It will be beneficial to conduct this kind of study using mixed methods because it is a public health topic that involves social interventions and it is not purely based on medical interventions. Therefore, the meta-ethnographic (qualitative data) analysis will be crucial in understanding why and which digital methods work and for whom does it work, rather than only the meta-analysis (quantitative data) providing what digital mental health methods works. The data collection process will be extensive, involving the development of a database, table of summary of evidence/findings, and quality assessment process lastly, The researcher will ensure that ethical procedures are followed and adhered to, ensuring that sensitive data is protected and the study doesn't pose any harm to the participants.

Keywords: digital, mental health, covid, low and middle-income countries

Procedia PDF Downloads 95
761 Deep Learning Based Polarimetric SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry

Procedia PDF Downloads 90
760 Learning Curve Effect on Materials Procurement Schedule of Multiple Sister Ships

Authors: Vijaya Dixit Aasheesh Dixit

Abstract:

Shipbuilding industry operates in Engineer Procure Construct (EPC) context. Product mix of a shipyard comprises of various types of ships like bulk carriers, tankers, barges, coast guard vessels, sub-marines etc. Each order is unique based on the type of ship and customized requirements, which are engineered into the product right from design stage. Thus, to execute every new project, a shipyard needs to upgrade its production expertise. As a result, over the long run, holistic learning occurs across different types of projects which contributes to the knowledge base of the shipyard. Simultaneously, in the short term, during execution of a project comprising of multiple sister ships, repetition of similar tasks leads to learning at activity level. This research aims to capture above learnings of a shipyard and incorporate learning curve effect in project scheduling and materials procurement to improve project performance. Extant literature provides support for the existence of such learnings in an organization. In shipbuilding, there are sequences of similar activities which are expected to exhibit learning curve behavior. For example, the nearly identical structural sub-blocks which are successively fabricated, erected, and outfitted with piping and electrical systems. Learning curve representation can model not only a decrease in mean completion time of an activity, but also a decrease in uncertainty of activity duration. Sister ships have similar material requirements. The same supplier base supplies materials for all the sister ships within a project. On one hand, this provides an opportunity to reduce transportation cost by batching the order quantities of multiple ships. On the other hand, it increases the inventory holding cost at shipyard and the risk of obsolescence. Further, due to learning curve effect the production scheduled of each consequent ship gets compressed. Thus, the material requirement schedule of every next ship differs from its previous ship. As more and more ships get constructed, compressed production schedules increase the possibility of batching the orders of sister ships. This work aims at integrating materials management with project scheduling of long duration projects for manufacturing of multiple sister ships. It incorporates the learning curve effect on progressively compressing material requirement schedules and addresses the above trade-off of transportation cost and inventory holding and shortage costs while satisfying budget constraints of various stages of the project. The activity durations and lead time of items are not crisp and are available in the form of probabilistic distribution. A Stochastic Mixed Integer Programming (SMIP) model is formulated which is solved using evolutionary algorithm. Its output provides ordering dates of items and degree of order batching for all types of items. Sensitivity analysis determines the threshold number of sister ships required in a project to leverage the advantage of learning curve effect in materials management decisions. This analysis will help materials managers to gain insights about the scenarios: when and to what degree is it beneficial to treat a multiple ship project as an integrated one by batching the order quantities and when and to what degree to practice distinctive procurement for individual ship.

Keywords: learning curve, materials management, shipbuilding, sister ships

Procedia PDF Downloads 502
759 Feasibility Study on the Application of Waste Materials for Production of Sustainable Asphalt Mixtures

Authors: Farzaneh Tahmoorian, Bijan Samali, John Yeaman

Abstract:

Road networks are expanding all over the world during the past few decades to meet the increasing freight volumes created by the population growth and industrial development. At the same time, the rate of generation of solid wastes in the society is increasing with the population growth, technological development, and changes in the lifestyle of people. Thus, the management of solid wastes has become an acute problem. Accordingly, there is a need for greater efficiency in the construction and maintenance of road networks, in reducing the overall cost, especially the utilization of natural materials such as aggregates. An efficient means to reduce construction and maintenance costs of road networks is to replace natural (virgin) materials by secondary, recycled materials. Recycling will also help to reduce pressure on landfills and demand for extraction of natural virgin materials thus ensuring sustainability. Application of solid wastes in asphalt layer reduces not only environmental issues associated with waste disposal but also the demand for virgin materials which will subsequently result in sustainability. Therefore, this research aims to investigate the feasibility of the application of some of the waste materials such as glass, construction and demolition wastes, etc. as alternative materials in pavement construction, particularly flexible pavements. To this end, various combination of different waste materials in certain percentages is considered in designing the asphalt mixture. One of the goals of this research is to determine the optimum percentage of all these materials in the mixture. This is done through a series of tests to evaluate the volumetric properties and resilient modulus of the mixture. The information and data collected from these tests are used to select the adequate samples for further assessment through advanced tests such as triaxial dynamic test and fatigue test, in order to investigate the asphalt mixture resistance to permanent deformation and also cracking. This paper presents the results of these investigations on the application of waste materials in asphalt mixture for production of a sustainable asphalt mix.

Keywords: asphalt, glass, pavement, recycled aggregate, sustainability

Procedia PDF Downloads 236
758 Transformation of Aluminum Unstable Oxyhydroxides in Ultrafine α-Al2O3 in Presence of Various Seeds

Authors: T. Kuchukhidze, N. Jalagonia, Z. Phachulia, R. Chedia

Abstract:

Ceramic obtained on the base of aluminum oxide has wide application range, because it has unique properties, for example, wear-resistance, dielectric characteristics, exploitation ability at high temperatures and in corrosive atmosphere. Low temperature synthesis of α-Al2O3 is energo-economical process and it is actual for developing technologies of corundum ceramics fabrication. In the present work possibilities of low temperature transformation of oxyhydroxides in α-Al2O3, during a presence of small amount of rare–earth elements compounds (also Th, Re), have been discussed. Aluminium unstable oxyhydroxides have been obtained by hydrolysis of aluminium isopropoxide, nitrates, sulphate, chloride in alkaline environment at 80-90ºC tempertures. β-Al(OH)3 has been received from aluminium powder by ultrasonic development. Drying of oxyhydroxide sol has been conducted with presence of various types seeds, which amount reaches 0,1-0,2% (mas). Neodymium, holmium, thorium, lanthanum, cerium, gadolinium, disprosium nitrates and rhenium carbonyls have been used as seeds and they have been added to the sol specimens in amount of 0.1-0.2% (mas) calculated on metals. Annealing of obtained gels is carried out at 70 – 1100ºC for 2 hrs. The same specimen transforms in α-Al2O3 at 1100ºC. At this temperature in case of presence of lanthanum and gadolinium transformation takes place by 70-85%. In case of presence of thorium stabilization of γ-and θ-phases takes place. It is established, that thorium causes inhibition of α-phase generation at 1100ºC, at the time in all other doped specimens α-phase is generated at lower temperatures (1000-1050ºC). During the work the following devices have been used: X-ray difractometer DRON-3M (Cu-Kα, Ni filter, 2º/min), High temperature vacuum furnace OXY-GON, electronic scanning microscopes Nikon ECLIPSE LV 150, NMM-800TRF, planetary mill Pulverisette 7 premium line, SHIMADZU Dynamic Ultra Micro Hardness Tester, DUH-211S, Analysette 12 Dyna sizer.

Keywords: α-Alumina, combustion, phase transformation, seeding

Procedia PDF Downloads 393
757 Parametric Evaluation for the Optimization of Gastric Emptying Protocols Used in Health Care Institutions

Authors: Yakubu Adamu

Abstract:

The aim of this research was to assess the factors contributing to the need for optimisation of the gastric emptying protocols in nuclear medicine and molecular imaging (SNMMI) procedures. The objective is to suggest whether optimisation is possible and provide supporting evidence for the current imaging protocols of gastric emptying examination used in nuclear medicine. The research involved the use of some selected patients with 30 dynamic series for the image processing using ImageJ, and by so doing, the calculated half-time, retention fraction to the 60 x1 minute, 5 minute and 10-minute protocol, and other sampling intervals were obtained. Results from the study IDs for the gastric emptying clearance half-time were classified into normal, abnormal fast, and abnormal slow categories. In the normal category, which represents 50% of the total gastric emptying image IDs processed, their clearance half-time was within the range of 49.5 to 86.6 minutes of the mean counts. Also, under the abnormal fast category, their clearance half-time fell between 21 to 43.3 minutes of the mean counts, representing 30% of the total gastric emptying image IDs processed, and the abnormal slow category had clearance half-time within the range of 138.6 to 138.6 minutes of the mean counts, representing 20%. The results indicated that the calculated retention fraction values from the 1, 5, and 10-minute sampling curves and the measured values of gastric emptying retention fraction from sampling curves of the study IDs had a normal retention fraction of <60% and decreased exponentially with an increase in time and it was evident with low percentages of retention fraction ratios of < 10% after the 4 hours. Thus, this study does not change categories suggesting that these values could feasibly be used instead of having to acquire actual images. Findings from the study suggest that the current gastric emptying protocol can be optimized by acquiring fewer images. The study recommended that the gastric emptying studies should be performed with imaging at a minimum of 0, 1, 2, and 4 hours after meal ingestion.

Keywords: gastric emptying, retention fraction, clearance halftime, optimisation, protocol

Procedia PDF Downloads 5
756 Reinforcement Learning For Agile CNC Manufacturing: Optimizing Configurations And Sequencing

Authors: Huan Ting Liao

Abstract:

In a typical manufacturing environment, computer numerical control (CNC) machining is essential for automating production through precise computer-controlled tool operations, significantly enhancing efficiency and ensuring consistent product quality. However, traditional CNC production lines often rely on manual loading and unloading, limiting operational efficiency and scalability. Although automated loading systems have been developed, they frequently lack sufficient intelligence and configuration efficiency, requiring extensive setup adjustments for different products and impacting overall productivity. This research addresses the job shop scheduling problem (JSSP) in CNC machining environments, aiming to minimize total completion time (makespan) and maximize CNC machine utilization. We propose a novel approach using reinforcement learning (RL), specifically the Q-learning algorithm, to optimize scheduling decisions. The study simulates the JSSP, incorporating robotic arm operations, machine processing times, and work order demand allocation to determine optimal processing sequences. The Q-learning algorithm enhances machine utilization by dynamically balancing workloads across CNC machines, adapting to varying job demands and machine states. This approach offers robust solutions for complex manufacturing environments by automating decision-making processes for job assignments. Additionally, we evaluate various layout configurations to identify the most efficient setup. By integrating RL-based scheduling optimization with layout analysis, this research aims to provide a comprehensive solution for improving manufacturing efficiency and productivity in CNC-based job shops. The proposed method's adaptability and automation potential promise significant advancements in tackling dynamic manufacturing challenges.

Keywords: job shop scheduling problem, reinforcement learning, operations sequence, layout optimization, q-learning

Procedia PDF Downloads 24
755 Verification and Validation of Simulated Process Models of KALBR-SIM Training Simulator

Authors: T. Jayanthi, K. Velusamy, H. Seetha, S. A. V. Satya Murty

Abstract:

Verification and Validation of Simulated Process Model is the most important phase of the simulator life cycle. Evaluation of simulated process models based on Verification and Validation techniques checks the closeness of each component model (in a simulated network) with the real system/process with respect to dynamic behaviour under steady state and transient conditions. The process of Verification and validation helps in qualifying the process simulator for the intended purpose whether it is for providing comprehensive training or design verification. In general, model verification is carried out by comparison of simulated component characteristics with the original requirement to ensure that each step in the model development process completely incorporates all the design requirements. Validation testing is performed by comparing the simulated process parameters to the actual plant process parameters either in standalone mode or integrated mode. A Full Scope Replica Operator Training Simulator for PFBR - Prototype Fast Breeder Reactor has been developed at IGCAR, Kalpakkam, INDIA named KALBR-SIM (Kalpakkam Breeder Reactor Simulator) wherein the main participants are engineers/experts belonging to Modeling Team, Process Design and Instrumentation and Control design team. This paper discusses the Verification and Validation process in general, the evaluation procedure adopted for PFBR operator training Simulator, the methodology followed for verifying the models, the reference documents and standards used etc. It details out the importance of internal validation by design experts, subsequent validation by external agency consisting of experts from various fields, model improvement by tuning based on expert’s comments, final qualification of the simulator for the intended purpose and the difficulties faced while co-coordinating various activities.

Keywords: Verification and Validation (V&V), Prototype Fast Breeder Reactor (PFBR), Kalpakkam Breeder Reactor Simulator (KALBR-SIM), steady state, transient state

Procedia PDF Downloads 266
754 A Tool Tuning Approximation Method: Exploration of the System Dynamics and Its Impact on Milling Stability When Amending Tool Stickout

Authors: Nikolai Bertelsen, Robert A. Alphinas, Klaus B. Orskov

Abstract:

The shortest possible tool stickout has been the traditional go-to approach with expectations of increased stability and productivity. However, experimental studies at Danish Advanced Manufacturing Research Center (DAMRC) have proven that for some tool stickout lengths, there exist local productivity optimums when utilizing the Stability Lobe Diagrams for chatter avoidance. This contradicts with traditional logic and the best practices taught to machinists. This paper explores the vibrational characteristics and behaviour of a milling system over the tool stickout length. The experimental investigation has been conducted by tap testing multiple endmills where the tool stickout length has been varied. For each length, the modal parameters have been recorded and mapped to visualize behavioural tendencies. Furthermore, the paper explores the correlation between the modal parameters and the Stability Lobe Diagram to outline the influence and importance of each parameter in a multi-mode system. The insights are conceptualized into a tool tuning approximation solution. It builds on an almost linear change in the natural frequencies when amending tool stickout, which results in changed positions of the Chatter-free Stability Lobes. Furthermore, if the natural frequency of two modes become too close, it will onset of the dynamic absorber effect phenomenon. This phenomenon increases the critical stable depth of cut, allowing for a more stable milling process. Validation tests on the tool tuning approximation solution have shown varying success of the solution. This outlines the need for further research on the boundary conditions of the solution to understand at which conditions the tool tuning approximation solution is applicable. If the conditions get defined, the conceptualized tool tuning approximation solution outlines an approach for quick and roughly approximating tool stickouts with the potential for increased stiffness and optimized productivity.

Keywords: milling, modal parameters, stability lobes, tap testing, tool tuning

Procedia PDF Downloads 157
753 Brand Tips of Thai Halal Products

Authors: Pibool Waijittragum

Abstract:

The purpose of this research is to analyze the marketing strategies of Thai Halal products which related to the way of life for Thai Muslims. The expected benefit is the marketing strategy for brand building process for Halal products in Thailand. 4 elements of marketing strategies which necessary for the brand identity creation is the research framework: Consists of Attributes, Benefits, Values and Personality. The research methodology was applied using qualitative and quantitative; 19 marketing experts with dynamic roles in Thai consumer products were interviewed. In addition, a field survey of 122 Thai Muslims selected from 175 Muslim communities in Bangkok was studied. Data analysis will be according to 5 categories of Thai Halal product: 1) Meat 2) Vegetable and Fruits 3) Instant foods and Garnishing ingredient 4) Beverages, desserts and snacks 5) Hygienic daily products; such as soap, shampoo and body lotion. The results will explain some suitable representation in the marketing strategies of Thai Halal products as are: 1) Benefit; the characteristics of the product with its benefit. Consumers will purchase this product with the reason of; it is beneficial nutrients product, there are no toxic or chemical residues. Fresh and clean materials 2) Attribute; the exterior images that attract to consumer. Consumers will purchase this product with the reason of; there is a standard proof mark, food and drug secure proof mark and Halal products mark. Packaging and its materials should be draw attention. Use an attractive graphic. Use outstanding images of product, material or ingredients. 3) Value; the value of products that affect to consumers perception; it is healthy products. Accumulate quality of life. It is a product of expertise, manufacturing of research result. Consumers are important. It’s sincere, honest and reliable to all. 4) Personality; reflection of consumers thought. The personality feedback to them after they were consumes this product; they are health care persons. They are the rational person, moral person, justice person and thoughtful person like a progressive thinking.

Keywords: marketing strategies, product identity, branding, Thai Halal products

Procedia PDF Downloads 386
752 Aero-Hydrodynamic Model for a Floating Offshore Wind Turbine

Authors: Beatrice Fenu, Francesco Niosi, Giovanni Bracco, Giuliana Mattiazzo

Abstract:

In recent years, Europe has seen a great development of renewable energy, in a perspective of reducing polluting emissions and transitioning to cleaner forms of energy, as established by the European Green New Deal. Wind energy has come to cover almost 15% of European electricity needs andis constantly growing. In particular, far-offshore wind turbines are attractive from the point of view of exploiting high-speed winds and high wind availability. Considering offshore wind turbine siting that combines the resources analysis, the bathymetry, environmental regulations, and maritime traffic and considering the waves influence in the stability of the platform, the hydrodynamic characteristics of the platform become fundamental for the evaluation of the performances of the turbine, especially for the pitch motion. Many platform's geometries have been studied and used in the last few years. Their concept is based upon different considerations as hydrostatic stability, material, cost and mooring system. A new method to reach a high-performances substructure for different kinds of wind turbines is proposed. The system that considers substructure, mooring, and wind turbine is implemented in Orcaflex, and the simulations are performed considering several sea states and wind speeds. An external dynamic library is implemented for the turbine control system. The study shows the comparison among different substructures and the new concepts developed. In order to validate the model, CFD simulations will be performed by mean of STAR CCM+, and a comparison between rigid and elastic body for what concerns blades and tower will be carried out. A global model will be built to predict the productivity of the floating turbine according to siting, resources, substructure, and mooring. The Levelized Cost of Electricity (LCOE) of the system is estimated, giving a complete overview about the advantages of floating offshore wind turbine plants. Different case studies will be presented.

Keywords: aero-hydrodynamic model, computational fluid dynamics, floating offshore wind, siting, verification, and validation

Procedia PDF Downloads 215
751 Aerial Photogrammetry-Based Techniques to Rebuild the 30-Years Landform Changes of a Landslide-Dominated Watershed in Taiwan

Authors: Yichin Chen

Abstract:

Taiwan is an island characterized by an active tectonics and high erosion rates. Monitoring the dynamic landscape of Taiwan is an important issue for disaster mitigation, geomorphological research, and watershed management. Long-term and high spatiotemporal landform data is essential for quantifying and simulating the geomorphological processes and developing warning systems. Recently, the advances in unmanned aerial vehicle (UAV) and computational photogrammetry technology have provided an effective way to rebuild and monitor the topography changes in high spatio-temporal resolutions. This study rebuilds the 30-years landform change in the Aiyuzi watershed in 1986-2017 by using the aerial photogrammetry-based techniques. The Aiyuzi watershed, located in central Taiwan and has an area of 3.99 Km², is famous for its frequent landslide and debris flow disasters. This study took the aerial photos by using UAV and collected multi-temporal historical, stereo photographs, taken by the Aerial Survey Office of Taiwan’s Forestry Bureau. To rebuild the orthoimages and digital surface models (DSMs), Pix4DMapper, a photogrammetry software, was used. Furthermore, to control model accuracy, a set of ground control points was surveyed by using eGPS. The results show that the generated DSMs have the ground sampling distance (GSD) of ~10 cm and ~0.3 cm from the UAV’s and historical photographs, respectively, and vertical error of ~1 m. By comparing the DSMs, there are many deep-seated landslides (with depth over 20 m) occurred on the upstream in the Aiyuzi watershed. Even though a large amount of sediment is delivered from the landslides, the steep main channel has sufficient capacity to transport sediment from the channel and to erode the river bed to ~20 m in depth. Most sediments are transported to the outlet of watershed and deposits on the downstream channel. This case study shows that UAV and photogrammetry technology are useful for topography change monitoring effectively.

Keywords: aerial photogrammetry, landslide, landform change, Taiwan

Procedia PDF Downloads 157
750 Renovate to nZEB of an Existing Building in the Mediterranean Area: Analysis of the Use of Renewable Energy Sources for the HVAC System

Authors: M. Baratieri, M. Beccali, S. Corradino, B. Di Pietra, C. La Grassa, F. Monteleone, G. Morosinotto, G. Puglisi

Abstract:

The energy renovation of existing buildings represents an important opportunity to increase the decarbonization and the sustainability of urban environments. In this context, the work carried out has the objective of demonstrating the technical and economic feasibility of an energy renovate of a public building destined for offices located on the island of Lampedusa in the Mediterranean Sea. By applying the Italian transpositions of European Directives 2010/31/EU and 2009/28/EC, the building has been renovated from the current energy requirements of 111.7 kWh/m² to 16.4 kWh/m². The result achieved classifies the building as nZEB (nearly Zero Energy Building) according to the Italian national definition. The analysis was carried out using in parallel a quasi-stationary software, normally used in the professional field, and a dynamic simulation model often used in the academic world. The proposed interventions cover the components of the building’s envelope, the heating-cooling system and the supply of energy from renewable sources. In these latter points, the analysis has focused more on assessing two aspects that affect the supply of renewable energy. The first concerns the use of advanced logic control systems for air conditioning units in order to increase photovoltaic self-consumption. With these adjustments, a considerable increase in photovoltaic self-consumption and a decrease in the electricity exported to the Island's electricity grid have been obtained. The second point concerned the evaluation of the building's energy classification considering the real efficiency of the heating-cooling plant. Normally the energy plants have lower operational efficiency than the designed one due to multiple reasons; the decrease in the energy classification of the building for this factor has been quantified. This study represents an important example for the evaluation of the best interventions for the energy renovation of buildings in the Mediterranean Climate and a good description of the correct methodology to evaluate the resulting improvements.

Keywords: heat pumps, HVAC systems, nZEB renovation, renewable energy sources

Procedia PDF Downloads 451
749 Psychological Capital and Intention for Self-Employment among Students in HEIs: A Multi-group Analysis Approach

Authors: Ugur Choban, Aruzhan Zhaksylyk, Assylbek Nurgabdeshov

Abstract:

In recent years, there has been an increasing understanding of the value of encouraging entrepreneurial attitudes in university students. This is motivated by the belief that stimulating entrepreneurship not only promotes economic growth but also fosters innovation. This study looks at the complex link and addresses critical gaps between psychological capital and entrepreneurial intention among university students, with a specific emphasis on how contextual factors like academic support and past business experience impact this dynamic. Using a quantitative research method, data were gathered from a broad sample of 300 university students drawn from several faculties. The study used a questionnaire that included the Psychological Capital Questionnaire (PCQ) to assess psychological capital and a validated scale for entrepreneurial intention, as well as binary measures of academic support and prior entrepreneurial experience. Statistical investigations, including multigroup analyses performed with SmartPLS software, provided interesting insights into the effect of contextual factors on the relationship between psychological capital and entrepreneurial intention. The findings highlight that psychological capital had a strong favorable influence on university students' entrepreneurial inclinations. Furthermore, the study found that academic support enhances the influence of psychological capital on entrepreneurial intentions, emphasizing the significance of institutional backing in fostering entrepreneurial mindsets. Furthermore, students with prior entrepreneurial experience had a stronger propensity for entrepreneurship, showing a synergistic link between psychological capital and entrepreneurial background. These findings have both theoretical and practical implications. By explaining the mechanisms by which psychological capital promotes entrepreneurial intentions, the study contributes to the establishment of focused entrepreneurship education programs and support activities that are suited to student requirements. Policymakers may use these findings to create policies that encourage student entrepreneurship, ultimately encouraging economic development and innovation.

Keywords: academic support, entrepreneurial intentions, higher education institutions, psychological capital, prior entrepreneurial experience

Procedia PDF Downloads 56
748 Best Combination of Design Parameters for Buildings with Buckling-Restrained Braces

Authors: Ángel de J. López-Pérez, Sonia E. Ruiz, Vanessa A. Segovia

Abstract:

Buildings vulnerability due to seismic activity has been highly studied since the middle of last century. As a solution to the structural and non-structural damage caused by intense ground motions, several seismic energy dissipating devices, such as buckling-restrained braces (BRB), have been proposed. BRB have shown to be effective in concentrating a large portion of the energy transmitted to the structure by the seismic ground motion. A design approach for buildings with BRB elements, which is based on a seismic Displacement-Based formulation, has recently been proposed by the coauthors in this paper. It is a practical and easy design method which simplifies the work of structural engineers. The method is used here for the design of the structure-BRB damper system. The objective of the present study is to extend and apply a methodology to find the best combination of design parameters on multiple-degree-of-freedom (MDOF) structural frame – BRB systems, taking into account simultaneously: 1) initial costs and 2) an adequate engineering demand parameter. The design parameters considered here are: the stiffness ratio (α = Kframe/Ktotal), and the strength ratio (γ = Vdamper/Vtotal); where K represents structural stiffness and V structural strength; and the subscripts "frame", "damper" and "total" represent: the structure without dampers, the BRB dampers and the total frame-damper system, respectively. The selection of the best combination of design parameters α and γ is based on an initial costs analysis and on the structural dynamic response of the structural frame-damper system. The methodology is applied to a 12-story 5-bay steel building with BRB, which is located on the intermediate soil of Mexico City. It is found the best combination of design parameters α and γ for the building with BRB under study.

Keywords: best combination of design parameters, BRB, buildings with energy dissipating devices, buckling-restrained braces, initial costs

Procedia PDF Downloads 258
747 A Molecular Dynamic Simulation Study to Explore Role of Chain Length in Predicting Useful Characteristic Properties of Commodity and Engineering Polymers

Authors: Lokesh Soni, Sushanta Kumar Sethi, Gaurav Manik

Abstract:

This work attempts to use molecular simulations to create equilibrated structures of a range of commercially used polymers. Generated equilibrated structures for polyvinyl acetate (isotactic), polyvinyl alcohol (atactic), polystyrene, polyethylene, polyamide 66, poly dimethyl siloxane, poly carbonate, poly ethylene oxide, poly amide 12, natural rubber, poly urethane, and polycarbonate (bisphenol-A) and poly ethylene terephthalate are employed to estimate the correct chain length that will correctly predict the chain parameters and properties. Further, the equilibrated structures are used to predict some properties like density, solubility parameter, cohesive energy density, surface energy, and Flory-Huggins interaction parameter. The simulated densities for polyvinyl acetate, polyvinyl alcohol, polystyrene, polypropylene, and polycarbonate are 1.15 g/cm3, 1.125 g/cm3, 1.02 g/cm3, 0.84 g/cm3 and 1.223 g/cm3 respectively are found to be in good agreement with the available literature estimates. However, the critical repeating units or the degree of polymerization after which the solubility parameter showed saturation were 15, 20, 25, 10 and 20 respectively. This also indicates that such properties that dictate the miscibility of two or more polymers in their blends are strongly dependent on the chosen polymer or its characteristic properties. An attempt has been made to correlate such properties with polymer properties like Kuhn length, free volume and the energy term which plays a vital role in predicting the mentioned properties. These results help us to screen and propose a useful library which may be used by the research groups in estimating the polymer properties using the molecular simulations of chains with the predicted critical lengths. The library shall help to obviate the need for researchers to spend efforts in finding the critical chain length needed for simulating the mentioned polymer properties.

Keywords: Kuhn length, Flory Huggins interaction parameter, cohesive energy density, free volume

Procedia PDF Downloads 193
746 Development of Power System Stability by Reactive Power Planning in Wind Power Plant With Doubley Fed Induction Generators Generator

Authors: Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee, Oriol Gomis Bellmunt, Vinicius Albernaz Lacerda Freitas

Abstract:

The use of distributed and renewable sources in power systems has grown significantly, recently. One the most popular sources are wind farms which have grown massively. However, ¬wind farms are connected to the grid, this can cause problems such as reduced voltage stability, frequency fluctuations and reduced dynamic stability. Variable speed generators (asynchronous) are used due to the uncontrollability of wind speed specially Doubley Fed Induction Generators (DFIG). The most important disadvantage of DFIGs is its sensitivity to voltage drop. In the case of faults, a large volume of reactive power is induced therefore, use of FACTS devices such as SVC and STATCOM are suitable for improving system output performance. They increase the capacity of lines and also passes network fault conditions. In this paper, in addition to modeling the reactive power control system in a DFIG with converter, FACTS devices have been used in a DFIG wind turbine to improve the stability of the power system containing two synchronous sources. In the following paper, recent optimal control systems have been designed to minimize fluctuations caused by system disturbances, for FACTS devices employed. For this purpose, a suitable method for the selection of nine parameters for MPSH-phase-post-phase compensators of reactive power compensators is proposed. The design algorithm is formulated ¬¬as an optimization problem searching for optimal parameters in the controller. Simulation results show that the proposed controller Improves the stability of the network and the fluctuations are at desired speed.

Keywords: renewable energy sources, optimization wind power plant, stability, reactive power compensator, double-feed induction generator, optimal control, genetic algorithm

Procedia PDF Downloads 95