Search results for: deep layer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4448

Search results for: deep layer

158 Stakeholder Mapping and Requirements Identification for Improving Traceability in the Halal Food Supply Chain

Authors: Laila A. H. F. Dashti, Tom Jackson, Andrew West, Lisa Jackson

Abstract:

Traceability systems are important in the agri-food and halal food sectors for monitoring ingredient movements, tracking sources, and ensuring food integrity. However, designing a traceability system for the halal food supply chain is challenging due to diverse stakeholder requirements and complex needs. Existing literature on stakeholder mapping and identifying requirements for halal food supply chains is limited. To address this gap, a pilot study was conducted to identify the objectives, requirements, and recommendations of stakeholders in the Kuwaiti halal food industry. The study collected data through semi-structured interviews with an international halal food manufacturer based in Kuwait. The aim was to gain a deep understanding of stakeholders' objectives, requirements, processes, and concerns related to the design of a traceability system in the country's halal food sector. Traceability systems are being developed and tested in the agri-food and halal food sectors due to their ability to monitor ingredient movements, track sources, and detect potential issues related to food integrity. Designing a traceability system for the halal food supply chain poses significant challenges due to diverse stakeholder requirements and the complexity of their needs (including varying food ingredients, different sources, destinations, supplier processes, certifications, etc.). Achieving a halal food traceability solution tailored to stakeholders' requirements within the supply chain necessitates prior knowledge of these needs. Although attempts have been made to address design-related issues in traceability systems, literature on stakeholder mapping and identification of requirements specific to halal food supply chains is scarce. Thus, this pilot study aims to identify the objectives, requirements, and recommendations of stakeholders in the halal food industry. The paper presents insights gained from the pilot study, which utilized semi-structured interviews to collect data from a Kuwait-based international halal food manufacturer. The objective was to gain an in-depth understanding of stakeholders' objectives, requirements, processes, and concerns pertaining to the design of a traceability system in Kuwait's halal food sector. The stakeholder mapping results revealed that government entities, food manufacturers, retailers, and suppliers are key stakeholders in Kuwait's halal food supply chain. Lessons learned from this pilot study regarding requirement capture for traceability systems include the need to streamline communication, focus on communication at each level of the supply chain, leverage innovative technologies to enhance process structuring and operations and reduce halal certification costs. The findings also emphasized the limitations of existing traceability solutions, such as limited cooperation and collaboration among stakeholders, high costs of implementing traceability systems without government support, lack of clarity regarding product routes, and disrupted communication channels between stakeholders. These findings contribute to a broader research program aimed at developing a stakeholder requirements framework that utilizes "business process modelling" to establish a unified model for traceable stakeholder requirements.

Keywords: supply chain, traceability system, halal food, stakeholders’ requirements

Procedia PDF Downloads 113
157 Law of the River and Indigenous Water Rights: Reassessing the International Legal Frameworks for Indigenous Rights and Water Justice

Authors: Sultana Afrin Nipa

Abstract:

Life on Earth cannot thrive or survive without water. Water is intimately tied with community, culture, spirituality, identity, socio-economic progress, security, self-determination, and livelihood. Thus, access to water is a United Nations recognized human right due to its significance in these realms. However, there is often conflict between those who consider water as the spiritual and cultural value and those who consider it an economic value thus being threatened by economic development, corporate exploitation, government regulation, and increased privatization, highlighting the complex relationship between water and culture. The Colorado River basin is home to over 29 federally recognized tribal nations. To these tribes, it holds cultural, economic, and spiritual significance and often extends to deep human-to-non-human connections frequently precluded by the Westphalian regulations and settler laws. Despite the recognition of access to rivers as a fundamental human right by the United Nations, tribal communities and their water rights have been historically disregarded through inter alia, colonization, and dispossession of their resources. Law of the River such as ‘Winter’s Doctrine’, ‘Bureau of Reclamation (BOR)’ and ‘Colorado River Compact’ have shaped the water governance among the shareholders. However, tribal communities have been systematically excluded from these key agreements. While the Winter’s Doctrine acknowledged that tribes have the right to withdraw water from the rivers that pass through their reservations for self-sufficiency, the establishment of the BOR led to the construction of dams without tribal consultation, denying the ‘Winters’ regulation and violating these rights. The Colorado River Compact, which granted only 20% of the water to the tribes, diminishes the significance of international legal frameworks that prioritize indigenous self-determination and free pursuit of socio-economic and cultural development. Denial of this basic water right is the denial of the ‘recognition’ of their sovereignty and self-determination that questions the effectiveness of the international law. This review assesses the international legal frameworks concerning indigenous rights and water justice and aims to pinpoint gaps hindering the effective recognition and protection of Indigenous water rights in Colorado River Basin. This study draws on a combination of historical and qualitative data sets. The historical data encompasses the case settlements provided by the Bureau of Reclamation (BOR) respectively the notable cases of Native American water rights settlements on lower Colorado basin related to Arizona from 1979-2008. This material serves to substantiate the context of promises made to the Indigenous people and establishes connections between existing entities. The qualitative data consists of the observation of recorded meetings of the Central Arizona Project (CAP) to evaluate how the previously made promises are reflected now. The study finds a significant inconsistency in participation in the decision-making process and the lack of representation of Native American tribes in water resource management discussions. It highlights the ongoing challenges faced by the indigenous people to achieve their self-determination goal despite the legal arrangements.

Keywords: colorado river, indigenous rights, law of the river, water governance, water justice

Procedia PDF Downloads 32
156 Population Growth as the Elephant in the Room: Teachers' Perspectives and Willingness to Incorporate a Controversial Environmental Sustainability Issue in their Teaching

Authors: Iris Alkaher, Nurit Carmi

Abstract:

It is widely agreed among scientists that population growth (PG) is a major factor that drives the global environmental crisis. Many researchers recognize that explicitly addressing the impact of PG on the environment and human quality of life through education systems worldwide could play a significant role in improving understanding regarding the links between rapid PG and environmental degradation and changing perceptions, attitudes, and behaviors concerning the necessity to reduce the fertility rate. However, the issue of PG is still rarely included in schools' curricula, mainly because of its complexity and controversiality. This study aims to explore the perspectives of teachers with an academic background in environmental and sustainability education (ESEteachers) and teachers with no such background (non-ESE teachers) regarding PG as an environmental risk. The study also explores the teachers’ willingness to include PG in their teaching and identifies what predicts their inclusion of it. In this mixed-methods research study, data were collected using questionnaires and interviews. The findings portray a complex picture concerning the debate aboutPG as a major factor that drives the global environmental crisis in the Israeli context. Consistent with other countries, we found that the deep-rooted pronatalist culture in the Israeli society, as well as a robust national pronatalist agenda and policies, have a tremendous impact on the education system. Therefore, we found that an academic background in ESE had a limited impact on teachers' perceptions concerning PG as a problem and on their willingness to include it in their teaching and discuss its controversiality. Teachers' attitudes related to PG demonstrated social, cultural, and politically oriented disavowal justification regarding the negative impacts of rapid PG, identified in the literature as population-skepticism and population-fatalism. Specifically, factors such as the ongoing Israeli-Palestinian conflict, the Jewish anxiety of destruction, and the religious command to“be fruitful and multiply”influenced the perceptions of both ESE and non-ESE teachers. While these arguments are unique to the Israeli context, pronatalist policies are international. In accordance with the pronatalist policy, we also found that the absence of PG from both school curricula and the Israeli public discourse was reported by ESE and non-ESE teachers as major reasons for their disregarding PG in their teaching. Under these circumstances, the role of the education system to bring the population question to the front stage in Israel and elsewhere is more challenging. To encourage science and social studies teachers to incorporate the controversial issue of PG in their teaching and successfully confront dominant pronatalist cultures, they need strong and ongoing scaffolding and support. In accordance with scientists' agreement regarding the role of PG as a major factor that drives the global environmental crisis, we call on stakeholders and policymakers in the education system to bring the population debate into schools' curricula, the sooner, the better. And not only as part of human efforts to mitigate environmental degradation but also to use this controversial topic as a platform for shaping critical learners and responsible and active citizens who are tolerant of different people’s opinions.

Keywords: population growth, environmental and sustainability education, controversial environmental sustainability issues, pronatalism

Procedia PDF Downloads 102
155 Metal-Semiconductor Transition in Ultra-Thin Titanium Oxynitride Films Deposited by ALD

Authors: Farzan Gity, Lida Ansari, Ian M. Povey, Roger E. Nagle, James C. Greer

Abstract:

Titanium nitride (TiN) films have been widely used in variety of fields, due to its unique electrical, chemical, physical and mechanical properties, including low electrical resistivity, chemical stability, and high thermal conductivity. In microelectronic devices, thin continuous TiN films are commonly used as diffusion barrier and metal gate material. However, as the film thickness decreases below a few nanometers, electrical properties of the film alter considerably. In this study, the physical and electrical characteristics of 1.5nm to 22nm thin films deposited by Plasma-Enhanced Atomic Layer Deposition (PE-ALD) using Tetrakis(dimethylamino)titanium(IV), (TDMAT) chemistry and Ar/N2 plasma on 80nm SiO2 capped in-situ by 2nm Al2O3 are investigated. ALD technique allows uniformly-thick films at monolayer level in a highly controlled manner. The chemistry incorporates low level of oxygen into the TiN films forming titanium oxynitride (TiON). Thickness of the films is characterized by Transmission Electron Microscopy (TEM) which confirms the uniformity of the films. Surface morphology of the films is investigated by Atomic Force Microscopy (AFM) indicating sub-nanometer surface roughness. Hall measurements are performed to determine the parameters such as carrier mobility, type and concentration, as well as resistivity. The >5nm-thick films exhibit metallic behavior; however, we have observed that thin film resistivity is modulated significantly by film thickness such that there are more than 5 orders of magnitude increment in the sheet resistance at room temperature when comparing 5nm and 1.5nm films. Scattering effects at interfaces and grain boundaries could play a role in thickness-dependent resistivity in addition to quantum confinement effect that could occur at ultra-thin films: based on our measurements the carrier concentration is decreased from 1.5E22 1/cm3 to 5.5E17 1/cm3, while the mobility is increased from < 0.1 cm2/V.s to ~4 cm2/V.s for the 5nm and 1.5nm films, respectively. Also, measurements at different temperatures indicate that the resistivity is relatively constant for the 5nm film, while for the 1.5nm film more than 2 orders of magnitude reduction has been observed over the range of 220K to 400K. The activation energy of the 2.5nm and 1.5nm films is 30meV and 125meV, respectively, indicating that the TiON ultra-thin films are exhibiting semiconducting behaviour attributing this effect to a metal-semiconductor transition. By the same token, the contact is no longer Ohmic for the thinnest film (i.e., 1.5nm-thick film); hence, a modified lift-off process was developed to selectively deposit thicker films allowing us to perform electrical measurements with low contact resistance on the raised contact regions. Our atomic scale simulations based on molecular dynamic-generated amorphous TiON structures with low oxygen content confirm our experimental observations indicating highly n-type thin films.

Keywords: activation energy, ALD, metal-semiconductor transition, resistivity, titanium oxynitride, ultra-thin film

Procedia PDF Downloads 292
154 Impact of Electric Field on the Optical Properties of Hydrophilic Quantum Dots

Authors: Valentina V. Goftman, Vladislav A. Pankratov, Alexey V. Markin, Tangi Aubert, Zeger Hens, Sarah De Saeger, Irina Yu. Goryacheva

Abstract:

The most important requirements for biochemical applicability of quantum dots (QDs) are: 1) the surface cap should render intact or improved optical properties; 2) mono-dispersion and good stability in aqueous phase in a wide range of pH and ionic strength values; 3) presence of functional groups, available for bioconjugation; 4) minimal impact from the environment on the QDs’ properties and, vice versa, minimal influence of the QDs’ components on the environment; and 5) stability against chemical/biochemical/physical influence. The latter is especially important for in vitro and in vivo applications. For example, some physical intracellular delivery strategies (e.g., electroporation) imply a rapid high-voltage electric field impulse in order to temporarily generate hydrophilic pores in the cell plasma membrane, necessary for the passive transportation of QDs into the cell. In this regard, it is interesting to investigate how different capping layers, which can provide high stability and sufficient fluorescent properties of QDs in a water solution, behave under these abnormal conditions. In this contribution, hydrophobic core-shell CdSe/CdS/CdZnS/ZnS QDs (λem=600 nm), produced by means of the Successive Ion Layer Adsorption and Reaction (SILAR) technique, were transferred to a water solution using two of the most commonly used methods: (i) encapsulation in an amphiphilic brush polymer based on poly(maleic anhydride-alt-1-octadecene) (PMAO) modified with polyethylene glycol (PEG) chains and (ii) silica covering. Polymer encapsulation preserves the initial ligands on the QDs’ surface owing to the hydrophobic attraction between the hydrophobic groups of the amphiphilic molecules and the surface hydrophobic groups of the QDs. This covering process allows maintaining the initial fluorescent properties, but it leads to a considerable increase of the QDs’ size. However, covering with a silica shell, by means of the reverse microemulsion method, allows maintaining both size and fluorescent properties of the initial QDs. The obtained water solutions of polymer covered and silica-coated QDs in three different concentrations were exposed to a low-voltage electric field for a short time and the fluorescent properties were investigated. It is shown that the PMAO-PEG polymer acquires some additional charges in the presence of the electric field, which causes repulsion between the polymer and the QDs’ surface. This process destroys the homogeneity of the whole amphiphilic shell and it dramatically decreases the fluorescent properties (dropping to 10% from its initial value) because of the direct contact of the QDs with the strongly oxidative environment (water). In contrast, a silica shell possesses dielectric properties which allow retaining 90% of its initial fluorescence intensity, even after a longer electric impact. Thus, silica shells are clearly a preferable covering for bio-application of QDs, because – besides the high uniform morphology, controlled size and biocompatibility – it allows protecting QDs from oxidation, even under the influence of an electric field.

Keywords: electric field, polymer coating, quantum dots, silica covering, stability

Procedia PDF Downloads 458
153 Monitoring and Improving Performance of Soil Aquifer Treatment System and Infiltration Basins of North Gaza Emergency Sewage Treatment Plant as Case Study

Authors: Sadi Ali, Yaser Kishawi

Abstract:

As part of Palestine, Gaza Strip (365 km2 and 1.8 million habitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely covers the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is to find non-conventional water resource from treated wastewater to irrigate 1500 hectares and serves over 100,000 inhabitants. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line & 9 infiltration basins - IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme – RRS – to capture the spreading plume). Currently, phase A is functioning since Apr 2009. Since Apr 2009, a monitoring plan is conducted to monitor the infiltration rate (I.R.) of the 9 basins. Nearly 23 million m3 of partially treated wastewater were infiltrated up to Jun 2014. It is important to maintain an acceptable rate to allow the basins to handle the coming quantities (currently 10,000 m3 are pumped an infiltrated daily). The methodology applied was to review and analysis the collected data including the I.R.s, the WW quality and the drying-wetting schedule of the basins. One of the main findings is the relation between the Total Suspended Solids (TSS) at BLWWTP and the I.R. at the basins. Since April 2009, the basins scored an average I.R. of about 2.5 m/day. Since then the records showed a decreasing pattern of the average rate until it reached the lower value of 0.42 m/day in Jun 2013. This was accompanied with an increase of TSS (mg/L) concentration at the source reaching above 200 mg/L. The reducing of TSS concentration directly improved the I.R. (by cleaning the WW source ponds at Biet Lahia WWTP site). This was reflected in an improvement in I.R. in last 6 months from 0.42 m/day to 0.66 m/day then to nearly 1.0 m/day as the average of the last 3 months of 2013. The wetting-drying scheme of the basins was observed (3 days wetting and 7 days drying) besides the rainfall rates. Despite the difficulty to apply this scheme accurately a control of flow to each basin was applied to improve the I.R. The drying-wetting system affected the I.R. of individual basins, thus affected the overall system rate which was recorded and assessed. Also the ploughing activities at the infiltration basins as well were recommended at certain times to retain a certain infiltration level. This breaks the confined clogging layer which prevents the infiltration. It is recommended to maintain proper quality of WW infiltrated to ensure an acceptable performance of IBs. The continual maintenance of settling ponds at BLWWTP, continual ploughing of basins and applying soil treatment techniques at the IBs will improve the I.R.s. When the new WWTP functions a high standard effluent quality (TSS 20mg, BOD 20 mg/l, and TN 15 mg/l) will be infiltrated, thus will enhance I.R.s of IBs due to lower organic load.

Keywords: soil aquifer treatment, recovery and reuse scheme, infiltration basins, North Gaza

Procedia PDF Downloads 247
152 Bio-Functionalized Silk Nanofibers for Peripheral Nerve Regeneration

Authors: Kayla Belanger, Pascale Vigneron, Guy Schlatter, Bernard Devauchelle, Christophe Egles

Abstract:

A severe injury to a peripheral nerve leads to its degeneration and the loss of sensory and motor function. To this day, there still lacks a more effective alternative to the autograft which has long been considered the gold standard for nerve repair. In order to overcome the numerous drawbacks of the autograft, tissue engineered biomaterials may be effective alternatives. Silk fibroin is a favorable biomaterial due to its many advantageous properties such as its biocompatibility, its biodegradability, and its robust mechanical properties. In this study, bio-mimicking multi-channeled nerve guidance conduits made of aligned nanofibers achieved by electrospinning were functionalized with signaling biomolecules and were tested in vitro and in vivo for nerve regeneration support. Silk fibroin (SF) extracted directly from silkworm cocoons was put in solution at a concentration of 10wt%. Poly(ethylene oxide) (PEO) was added to the resulting SF solution to increase solution viscosity and the following three electrospinning solutions were made: (1) SF/PEO solution, (2) SF/PEO solution with nerve growth factor and ciliary neurotrophic factor, and (3) SF/PEO solution with nerve growth factor and neurotrophin-3. Each of these solutions was electrospun into a multi-layer architecture to obtain mechanically optimized aligned nanofibrous mats. For in vitro studies, aligned fibers were treated to induce β-sheet formation and thoroughly rinsed to eliminate presence of PEO. Each material was tested using rat embryo neuron cultures to evaluate neurite extension and the interaction with bio-functionalized or non-functionalized aligned fibers. For in vivo studies, the mats were rolled into 5mm long multi-, micro-channeled conduits then treated and thoroughly rinsed. The conduits were each subsequently implanted between a severed rat sciatic nerve. The effectiveness of nerve repair over a period of 8 months was extensively evaluated by cross-referencing electrophysiological, histological, and movement analysis results to comprehensively evaluate the progression of nerve repair. In vitro results show a more favorable interaction between growing neurons and bio-functionalized silk fibers compared to pure silk fibers. Neurites can also be seen having extended unidirectionally along the alignment of the nanofibers which confirms a guidance factor for the electrospun material. The in vivo study has produced positive results for the regeneration of the sciatic nerve over the length of the study, showing contrasts between the bio-functionalized material and the non-functionalized material along with comparisons to the experimental control. Nerve regeneration has been evaluated not only by histological analysis, but also by electrophysiological assessment and motion analysis of two separate natural movements. By studying these three components in parallel, the most comprehensive evaluation of nerve repair for the conduit designs can be made which can, therefore, more accurately depict their overall effectiveness. This work was supported by La Région Picardie and FEDER.

Keywords: electrospinning, nerve guidance conduit, peripheral nerve regeneration, silk fibroin

Procedia PDF Downloads 246
151 Mechanical Response Investigation of Wafer Probing Test with Vertical Cobra Probe via the Experiment and Transient Dynamic Simulation

Authors: De-Shin Liu, Po-Chun Wen, Zhen-Wei Zhuang, Hsueh-Chih Liu, Pei-Chen Huang

Abstract:

Wafer probing tests play an important role in semiconductor manufacturing procedures in accordance with the yield and reliability requirement of the wafer after the backend-of-the-line process. Accordingly, the stable physical and electrical contact between the probe and the tested wafer during wafer probing is regarded as an essential issue in identifying the known good die. The probe card can be integrated with multiple probe needles, which are classified as vertical, cantilever and micro-electro-mechanical systems type probe selections. Among all potential probe types, the vertical probe has several advantages as compared with other probe types, including maintainability, high probe density and feasibility for high-speed wafer testing. In the present study, the mechanical response of the wafer probing test with the vertical cobra probe on 720 μm thick silicon (Si) substrate with a 1.4 μm thick aluminum (Al) pad is investigated by the experiment and transient dynamic simulation approach. Because the deformation mechanism of the vertical cobra probe is determined by both bending and buckling mechanisms, the stable correlation between contact forces and overdrive (OD) length must be carefully verified. Moreover, the decent OD length with corresponding contact force contributed to piercing the native oxide layer of the Al pad and preventing the probing test-induced damage on the interconnect system. Accordingly, the scratch depth of the Al pad under various OD lengths is estimated by the atomic force microscope (AFM) and simulation work. In the wafer probing test configuration, the contact phenomenon between the probe needle and the tested object introduced large deformation and twisting of mesh gridding, causing the subsequent numerical divergence issue. For this reason, the arbitrary Lagrangian-Eulerian method is utilized in the present simulation work to conquer the aforementioned issue. The analytic results revealed a slight difference when the OD is considered as 40 μm, and the simulated is almost identical to the measured scratch depths of the Al pad under higher OD lengths up to 70 μm. This phenomenon can be attributed to the unstable contact of the probe at low OD length with the scratch depth below 30% of Al pad thickness, and the contact status will be being stable when the scratch depth over 30% of pad thickness. The splash of the Al pad is observed by the AFM, and the splashed Al debris accumulates on a specific side; this phenomenon is successfully simulated in the transient dynamic simulation. Thus, the preferred testing OD lengths are found as 45 μm to 70 μm, and the corresponding scratch depths on the Al pad are represented as 31.4% and 47.1% of Al pad thickness, respectively. The investigation approach demonstrated in this study contributed to analyzing the mechanical response of wafer probing test configuration under large strain conditions and assessed the geometric designs and material selections of probe needles to meet the requirement of high resolution and high-speed wafer-level probing test for thinned wafer application.

Keywords: wafer probing test, vertical probe, probe mark, mechanical response, FEA simulation

Procedia PDF Downloads 57
150 Varieties of Capitalism and Small Business CSR: A Comparative Overview

Authors: Stéphanie Looser, Walter Wehrmeyer

Abstract:

Given the limited research on Small and Mediumsized Enterprises’ (SMEs) contribution to Corporate Social Responsibility (CSR) and even scarcer research on Swiss SMEs, this paper helps to fill these gaps by enabling the identification of supranational SME parameters and to make a contribution to the evolving field of these topics. Thus, the paper investigates the current state of SME practices in Switzerland and across 15 other countries. Combining the degree to which SMEs demonstrate an explicit (or business case) approach or see CSR as an implicit moral activity with the assessment of their attributes for “variety of capitalism” defines the framework of this comparative analysis. According to previous studies, liberal market economies, e.g. in the United States (US) or United Kingdom (UK), are aligned with extrinsic CSR, while coordinated market systems (in Central European or Asian countries) evolve implicit CSR agendas. To outline Swiss small business CSR patterns in particular, 40 SME owner-managers were interviewed. The transcribed interviews were coded utilising MAXQDA for qualitative content analysis. A secondary data analysis of results from different countries (i.e., Australia, Austria, Chile, Cameroon, Catalonia (notably a part of Spain that seeks autonomy), China, Finland, Germany, Hong Kong (a special administrative region of China), Italy, Netherlands, Singapore, Spain, Taiwan, UK, US) lays groundwork for this comparative study on small business CSR. Applying the same coding categories (in MAXQDA) for the interview analysis as well as for the secondary data research while following grounded theory rules to refine and keep track of ideas generated testable hypotheses and comparative power on implicit (and the lower likelihood of explicit) CSR in SMEs retrospectively. The paper identifies Swiss small business CSR as deep, profound, “soul”, and an implicit part of the day-to-day business. Similar to most Central European, Mediterranean, Nordic, and Asian countries, explicit CSR is still very rare in Swiss SMEs. Astonishingly, also UK and US SMEs follow this pattern in spite of their strong and distinct liberal market economies. Though other findings show that nationality matters this research concludes that SME culture and its informal CSR agenda are strongly formative and superseding even forces of market economies, nationally cultural patterns, and language. In a world of “big business”, explicit “business case” CSR, and the mantra that “CSR must pay”, this study points to a distinctly implicit small business CSR model built on trust, physical closeness, and virtues that is largely detached from the bottom line. This pattern holds for different cultural contexts and it is concluded that SME culture is stronger than nationality leading to a supra-national, monolithic SME CSR approach. Hence, classifications of countries by their market system or capitalism, as found in the comparative capitalism literature, do not match the CSR practices in SMEs as they do not mirror the peculiarities of their business. This raises questions on the universality and generalisability of management concepts.

Keywords: CSR, comparative study, cultures of capitalism, small, medium-sized enterprises

Procedia PDF Downloads 433
149 Tectonics of Out-of-Sequence Thrusting in NW Himachal Himalaya, India

Authors: Rajkumar Ghosh

Abstract:

Jhakri Thrust (JT), Sarahan Thrust (ST), and Chaura Thrust (CT) are the three OOST along Jakhri-Chaura segment along the Sutlej river valley in Himachal Pradesh. CT is deciphered only by Apatite Fission Track dating. Such geochronological information is not currently accessible for the Jhakri and Sarahan thrusts. JT was additionally validated as OOST without any dating. The described rock types include ductile sheared gneisses and upper greenschist-amphibolite facies metamorphosed schists. Locally, the Munsiari (Jutogh) Thrust is referred to as the JT. Brittle shear, the JT, borders the research area's southern and ductile shear, the CT, and its northern margins. The JT has a 50° western dip and is south-westward verging. It is 15–17 km deep. A progressive rise in strain towards the JT zone based on microstructural tests was observed by previous researchers. The high-temperature ranges of the MCT root zone are cited in the current work as supportive evidence for the ductile nature of the OOST. In Himachal Pradesh, the lithological boundaries for OOST are not set. In contrast, the Sarahan thrust is NW-SE striking and 50-80 m wide. ST and CT are probably equivalent and marked by a sheared biotite-chlorite matrix with a top-to-SE kinematic indicator. It is inferred from cross-section balancing that the CT is folded with this anticlinorium. These thrust systems consist of several branches, some of which are still active. The thrust system exhibits complex internal geometry consisting of box folds, boudins, scar folds, crenulation cleavages, kink folds, and tension gashes. Box folds are observed on the hanging wall of the Chaura thrust. The ductile signature of CT represents steepen downward of the thrust. After the STDSU stopped deformation, out-of-sequence thrust was initiated in some sections of the Higher Himalaya. A part of GHC and part of the LH is thrust southwestward along the Jutogh Thrust/Munsiari Thrust/JT as also the Jutogh Nappe. The CT is concealed beneath Jutogh Thrust sheet hence the basal part of GHC is unexposed to the surface in Sutlej River section. Fieldwork and micro-structural studies of the Greater Himalayan Crystalline (GHC) along the Sutlej section reveal (a) initial top-to-SW sense of ductile shearing (CT); (b) brittle-ductile extension (ST); and (c) uniform top-to-SW sense of brittle shearing (JT). A group of samples of schistose rock from Jutogh Group of Greater Himalayan Crystalline and Quartzite from Rampur Group of Lesser Himalayan Crystalline were analyzed. No such physiographic transition in that area is to determine a break in the landscape due to OOST. OOSTs from GHC are interpreted mainly from geochronological studies to date, but proper field evidence is missing. Apart from minimal documentation in geological mapping for OOST, there exists a lack of suitable exposure of rock to generalize the features of OOST in the field in NW Higher Himalaya. Multiple sets of thrust planes may be activated within this zone or a zone along which OOST is engaged.

Keywords: out-of-sequence thrust, main central thrust, grain boundary migration, South Tibetan detachment system, Jakhri Thrust, Sarahan Thrust, Chaura Thrust, higher Himalaya, greater Himalayan crystalline

Procedia PDF Downloads 71
148 Long-Term Exposure Assessments for Cooking Workers Exposed to Polycyclic Aromatic Hydrocarbons and Aldehydes Containing in Cooking Fumes

Authors: Chun-Yu Chen, Kua-Rong Wu, Yu-Cheng Chen, Perng-Jy Tsai

Abstract:

Cooking fumes are known containing polycyclic aromatic hydrocarbons (PAHs) and aldehydes, and some of them have been proven carcinogenic or possibly carcinogenic to humans. Considering their chronic health effects, long-term exposure data is required for assessing cooking workers’ lifetime health risks. Previous exposure assessment studies, due to both time and cost constraints, mostly were based on the cross-sectional data. Therefore, establishing a long-term exposure data has become an important issue for conducting health risk assessment for cooking workers. An approach was proposed in this study. Here, the generation rates of both PAHs and aldehydes from a cooking process were determined by placing a sampling train exactly under the under the exhaust fan under the both the total enclosure condition and normal operating condition, respectively. Subtracting the concentration collected by the former (representing the total emitted concentration) from that of the latter (representing the hood collected concentration), the fugitive emitted concentration was determined. The above data was further converted to determine the generation rates based on the flow rates specified for the exhaust fan. The determinations of the above generation rates were conducted in a testing chamber with a selected cooking process (deep-frying chicken nuggets under 3 L peanut oil at 200°C). The sampling train installed under the exhaust fan consisted respectively an IOM inhalable sampler with a glass fiber filter for collecting particle-phase PAHs, followed by a XAD-2 tube for gas-phase PAHs. The above was also used to sample aldehydes, however, installed with a filter pre-coated with DNPH, and followed by a 2,4-DNPH-cartridge for collecting particle-phase and gas-phase aldehydes, respectively. PAHs and aldehydes samples were analyzed by GC/MS-MS (Agilent 7890B), and HPLC-UV (HITACHI L-7100), respectively. The obtained generation rates of both PAHs and aldehydes were applied to the near-field/ far-field exposure model to estimate the exposures of cooks (the estimated near-field concentration), and helpers (the estimated far-field concentration). For validating purposes, both PAHs and aldehydes samplings were conducted simultaneously using the same sampling train at both near-field and far-field sites of the testing chamber. The sampling results, together with the use of the mixed-effect model, were used to calibrate the estimated near-field/ far-field exposures. In the present study, the obtained emission rates were further converted to emission factor of both PAHs and aldehydes according to the amount of food oil consumed. Applying the long-term food oil consumption records, the emission rates for both PAHs and aldehydes were determined, and the long-term exposure databanks for cooks (the estimated near-field concentration), and helpers (the estimated far-field concentration) were then determined. Results show that the proposed approach was adequate to determine the generation rates of both PAHs and aldehydes under various fan exhaust flow rate conditions. The estimated near-field/ far-field exposures, though were significantly different from that obtained from the field, can be calibrated using the mixed effect model. Finally, the established long-term data bank could provide a useful basis for conducting long-term exposure assessments for cooking workers exposed to PAHs and aldehydes.

Keywords: aldehydes, cooking oil fumes, long-term exposure assessment, modeling, polycyclic aromatic hydrocarbons (PAHs)

Procedia PDF Downloads 142
147 Contemporary Paradoxical Expectations of the Nursing Profession and Revisiting the ‘Nurses’ Disciplinary Boundaries: India’s Historical and Gendered Perspective

Authors: Neha Adsul, Rohit Shah

Abstract:

Background: The global history of nursing is exclusively a history of deep contradictions as it seeks to negotiate inclusion in an already gendered world. Although a powerful 'clinical gaze exists, nurses have toiled to re-negotiate and subvert the 'medical gaze' by practicing the 'therapeutic gaze' to tether back 'care into nursing practice.' This helps address the duality of the 'body' and 'mind' wherein the patient is not just limited to being an object of medical inquiry. Nevertheless, there has been a consistent effort to fit 'nursing' into being an art or an emerging science over the years. Especially with advances in hospital-based techno-centric medical practices, the boundaries between technology and nursing practices are becoming more blurred as the technical process becomes synonymous with nursing, eroding the essence of nursing care. Aim: This paper examines the history of nursing and offers insights into how gendered relations and the ideological belief of 'nursing as gendered work' have propagated to the subjugation of the nursing profession. It further aims to provide insights into the patriarchally imbibed techno-centrism that negates the gendered caregiving which lies at the crux of a nurse's work. Method: A literature search was carried out using Google Scholar, Web of Science and PubMed databases. Search words included: technology and nursing, medical technology and nursing, history of nursing, sociology and nursing and nursing care. The history of nursing is presented in a discussion that weaves together the historical events of the 'Birth of the Clinic' and the shift from 'bed-side medicine' to 'hospital-based medicine' that legitimizes exploitation of the bodies of patients to the 'medical gaze while the emergence of nursing as acquiescent to instrumental, technical, positivist and dominant views of medicine. The resultant power asymmetries, wherein in contemporary nursing, the constant struggle of nurses to juggle between being the physicians "operational right arm" to harboring that subjective understanding of the patients to refrain from de-humanizing nursing-care. Findings: The nursing profession suffers from being rendered invisible due to gendered relations having patrifocal societal roots. This perpetuates a notion rooted in the idea that emphasizes empiricism and has resulted in theoretical and epistemological fragmentation of the understanding of body and mind as separate entities. Nurses operate within this structure while constantly being at the brink of being pushed beyond the legitimate professional boundaries while being labeled as being 'unscientific' as the work does not always corroborate and align with the existing dominant positivist lines of inquiries. Conclusion: When understood in this broader context of how nursing as a practice has evolved over the years, it provides a particularly crucial testbed for understanding contemporary gender relations. Not because nurses like to live in a gendered work trap but because the gendered relations at work are written in a covert narcissistic patriarchal milieu that fails to recognize the value of intangible yet utmost necessary 'caring work in nursing. This research urges and calls for preserving and revering the humane aspect of nursing care alongside the emerging tech-savvy expectations from nursing work.

Keywords: nursing history, technocentric, power relations, scientific duality

Procedia PDF Downloads 145
146 Stuck Spaces as Moments of Learning: Uncovering Threshold Concepts in Teacher Candidate Experiences of Teaching in Inclusive Classrooms

Authors: Joy Chadwick

Abstract:

There is no doubt that classrooms of today are more complex and diverse than ever before. Preparing teacher candidates to meet these challenges is essential to ensure the retention of teachers within the profession and to ensure that graduates begin their teaching careers with the knowledge and understanding of how to effectively meet the diversity of students they will encounter. Creating inclusive classrooms requires teachers to have a repertoire of effective instructional skills and strategies. Teachers must also have the mindset to embrace diversity and value the uniqueness of individual students in their care. This qualitative study analyzed teacher candidates' experiences as they completed a fourteen-week teaching practicum while simultaneously completing a university course focused on inclusive pedagogy. The research investigated the challenges and successes teacher candidates had in navigating the translation of theory related to inclusive pedagogy into their teaching practice. Applying threshold concept theory as a framework, the research explored the troublesome concepts, liminal spaces, and transformative experiences as connected to inclusive practices. Threshold concept theory suggests that within all disciplinary fields, there exists particular threshold concepts that serve as gateways or portals into previously inaccessible ways of thinking and practicing. It is in these liminal spaces that conceptual shifts in thinking and understanding and deep learning can occur. The threshold concept framework provided a lens to examine teacher candidate struggles and successes with the inclusive education course content and the application of this content to their practicum experiences. A qualitative research approach was used, which included analyzing twenty-nine course reflective journals and six follow up one-to-one semi structured interviews. The journals and interview transcripts were coded and themed using NVivo software. Threshold concept theory was then applied to the data to uncover the liminal or stuck spaces of learning and the ways in which the teacher candidates navigated those challenging places of teaching. The research also sought to uncover potential transformative shifts in teacher candidate understanding as connected to teaching in an inclusive classroom. The findings suggested that teacher candidates experienced difficulties when they did not feel they had the knowledge, skill, or time to meet the needs of the students in the way they envisioned they should. To navigate the frustration of this thwarted vision, they relied on present and previous course content and experiences, collaborative work with other teacher candidates and their mentor teachers, and a proactive approach to planning for students. Transformational shifts were most evident in their ability to reframe their perceptions of children from a deficit or disability lens to a strength-based belief in the potential of students. It was evident that through their course work and practicum experiences, their beliefs regarding struggling students shifted as they saw the value of embracing neurodiversity, the importance of relationships, and planning for and teaching through a strength-based approach. Research findings have implications for teacher education programs and for understanding threshold concepts theory as connected to practice-based learning experiences.

Keywords: inclusion, inclusive education, liminal space, teacher education, threshold concepts, troublesome knowledge

Procedia PDF Downloads 79
145 A Qualitative Investigation into Street Art in an Indonesian City

Authors: Michelle Mansfield

Abstract:

Introduction: This paper uses the work of Deleuze and Guattari to consider the street art practice of youth in the Indonesian city of Yogyakarta, a hub of arts and culture in Central Java. Around the world young people have taken to city streets to populate the new informal exhibition spaces outside the galleries of official art institutions. However, rarely is the focus outside the urban metropolis of the ‘Global North.' This paper looks at these practices in a ‘Global South’ Asian context. Space and place are concepts central to understanding youth cultural expression as it emerges on the streets. Deleuze and Guattari’s notion of assemblage enriches understanding of this complex spatial and creative relationship. Yogyakarta street art combines global patterns and motifs with local meanings, symbolism, and language to express local youth voices that convey a unique sense of place on the world stage. Street art has developed as a global urban youth art movement and is theorised as a way in which marginalised young people reclaim urban space for themselves. Methodologies: This study utilised a variety of qualitative methodologies to collect and analyse data. This project took a multi-method approach to data collection, incorporating the qualitative social research methods of ethnography, nongkrong (deep hanging out), participatory action research, online research, in-depth interviews and focus group discussions. Both interviews and focus groups employed photo-elicitation methodology to stimulate rich data gathering. To analyse collected data, rhizoanalytic approaches incorporating discourse analysis and visual analysis were utilised. Street art practice is a fluid and shifting phenomenon, adding to the complexity of inquiry sites. A qualitative approach to data collection and analysis was the most appropriate way to map the components of the street art assemblage and to draw out complexities of this youth cultural practice in Yogyakarta. Major Findings: The rhizoanalytic approach devised for this study proved a useful way of examining in the street art assemblage. It illustrated the ways in which the street art assemblage is constructed. Especially the interaction of inspiration, materials, creative techniques, audiences, and spaces operate in the creations of artworks. The study also exposed the generational tensions between the senior arts practitioners, the established art world, and the young artists. Conclusion: In summary, within the spatial processes of the city, street art is inextricably linked with its audience, its striving artistic community and everyday life in the smooth rather than the striated worlds of the state and the official art world. In this way, the anarchic rhizomatic art practice of nomadic urban street crews can be described not only as ‘becoming-artist’ but as constituting ‘nomos’, a way of arranging elements which are not dependent on a structured, hierarchical organisation practice. The site, streets, crews, neighbourhood and the passers by can all be examined with the concept of assemblage. The assemblage effectively brings into focus the complexity, dynamism, and flows of desire that is a feature of street art practice by young people in Yogyakarta.

Keywords: assemblage, Indonesia, street art, youth

Procedia PDF Downloads 182
144 Analytical and Numerical Modeling of Strongly Rotating Rarefied Gas Flows

Authors: S. Pradhan, V. Kumaran

Abstract:

Centrifugal gas separation processes effect separation by utilizing the difference in the mole fraction in a high speed rotating cylinder caused by the difference in molecular mass, and consequently the centrifugal force density. These have been widely used in isotope separation because chemical separation methods cannot be used to separate isotopes of the same chemical species. More recently, centrifugal separation has also been explored for the separation of gases such as carbon dioxide and methane. The efficiency of separation is critically dependent on the secondary flow generated due to temperature gradients at the cylinder wall or due to inserts, and it is important to formulate accurate models for this secondary flow. The widely used Onsager model for secondary flow is restricted to very long cylinders where the length is large compared to the diameter, the limit of high stratification parameter, where the gas is restricted to a thin layer near the wall of the cylinder, and it assumes that there is no mass difference in the two species while calculating the secondary flow. There are two objectives of the present analysis of the rarefied gas flow in a rotating cylinder. The first is to remove the restriction of high stratification parameter, and to generalize the solutions to low rotation speeds where the stratification parameter may be O (1), and to apply for dissimilar gases considering the difference in molecular mass of the two species. Secondly, we would like to compare the predictions with molecular simulations based on the direct simulation Monte Carlo (DSMC) method for rarefied gas flows, in order to quantify the errors resulting from the approximations at different aspect ratios, Reynolds number and stratification parameter. In this study, we have obtained analytical and numerical solutions for the secondary flows generated at the cylinder curved surface and at the end-caps due to linear wall temperature gradient and external gas inflow/outflow at the axis of the cylinder. The effect of sources of mass, momentum and energy within the flow domain are also analyzed. The results of the analytical solutions are compared with the results of DSMC simulations for three types of forcing, a wall temperature gradient, inflow/outflow of gas along the axis, and mass/momentum input due to inserts within the flow. The comparison reveals that the boundary conditions in the simulations and analysis have to be matched with care. The commonly used diffuse reflection boundary conditions at solid walls in DSMC simulations result in a non-zero slip velocity as well as a temperature slip (gas temperature at the wall is different from wall temperature). These have to be incorporated in the analysis in order to make quantitative predictions. In the case of mass/momentum/energy sources within the flow, it is necessary to ensure that the homogeneous boundary conditions are accurately satisfied in the simulations. When these precautions are taken, there is excellent agreement between analysis and simulations, to within 10 %, even when the stratification parameter is as low as 0.707, the Reynolds number is as low as 100 and the aspect ratio (length/diameter) of the cylinder is as low as 2, and the secondary flow velocity is as high as 0.2 times the maximum base flow velocity.

Keywords: rotating flows, generalized onsager and carrier-Maslen model, DSMC simulations, rarefied gas flow

Procedia PDF Downloads 398
143 Creative Mapping Landuse and Human Activities: From the Inventories of Factories to the History of the City and Citizens

Authors: R. Tamborrino, F. Rinaudo

Abstract:

Digital technologies offer possibilities to effectively convert historical archives into instruments of knowledge able to provide a guide for the interpretation of historical phenomena. Digital conversion and management of those documents allow the possibility to add other sources in a unique and coherent model that permits the intersection of different data able to open new interpretations and understandings. Urban history uses, among other sources, the inventories that register human activities in a specific space (e.g. cadastres, censuses, etc.). The geographic localisation of that information inside cartographic supports allows for the comprehension and visualisation of specific relationships between different historical realities registering both the urban space and the peoples living there. These links that merge the different nature of data and documentation through a new organisation of the information can suggest a new interpretation of other related events. In all these kinds of analysis, the use of GIS platforms today represents the most appropriate answer. The design of the related databases is the key to realise the ad-hoc instrument to facilitate the analysis and the intersection of data of different origins. Moreover, GIS has become the digital platform where it is possible to add other kinds of data visualisation. This research deals with the industrial development of Turin at the beginning of the 20th century. A census of factories realized just prior to WWI provides the opportunity to test the potentialities of GIS platforms for the analysis of urban landscape modifications during the first industrial development of the town. The inventory includes data about location, activities, and people. GIS is shaped in a creative way linking different sources and digital systems aiming to create a new type of platform conceived as an interface integrating different kinds of data visualisation. The data processing allows linking this information to an urban space, and also visualising the growth of the city at that time. The sources, related to the urban landscape development in that period, are of a different nature. The emerging necessity to build, enlarge, modify and join different buildings to boost the industrial activities, according to their fast development, is recorded by different official permissions delivered by the municipality and now stored in the Historical Archive of the Municipality of Turin. Those documents, which are reports and drawings, contain numerous data on the buildings themselves, including the block where the plot is located, the district, and the people involved such as the owner, the investor, and the engineer or architect designing the industrial building. All these collected data offer the possibility to firstly re-build the process of change of the urban landscape by using GIS and 3D modelling technologies thanks to the access to the drawings (2D plans, sections and elevations) that show the previous and the planned situation. Furthermore, they access information for different queries of the linked dataset that could be useful for different research and targets such as economics, biographical, architectural, or demographical. By superimposing a layer of the present city, the past meets to the present-industrial heritage, and people meet urban history.

Keywords: digital urban history, census, digitalisation, GIS, modelling, digital humanities

Procedia PDF Downloads 191
142 A Community Solution to Address Extensive Nitrate Contamination in the Lower Yakima Valley Aquifer

Authors: Melanie Redding

Abstract:

Historic widespread nitrate contamination of the Lower Yakima Valley aquifer in Washington State initiated a community-based effort to reduce nitrate concentrations to below-drinking water standards. This group commissioned studies on characterizing local nitrogen sources, deep soil assessments, drinking water, and assessing nitrate concentrations at the water table. Nitrate is the most prevalent groundwater contaminant with common sources from animal and human waste, fertilizers, plants and precipitation. It is challenging to address groundwater contamination when common sources, such as agriculture, on-site sewage systems, and animal production, are widespread. Remediation is not possible, so mitigation is essential. The Lower Yakima Valley is located over 175,000 acres, with a population of 56,000 residents. Approximately 25% of the population do not have access to safe, clean drinking water, and 20% of the population is at or below the poverty level. Agriculture is the primary economic land-use activity. Irrigated agriculture and livestock production make up the largest percentage of acreage and nitrogen load. Commodities include apples, grapes, hops, dairy, silage corn, triticale, alfalfa and cherries. These commodities are important to the economic viability of the residents of the Lower Yakima Valley, as well as Washington State. Mitigation of nitrate in groundwater is challenging. The goal is to ensure everyone has safe drinking water. There are no easy remedies due to the extensive and pervasiveness of the contamination. Monitoring at the water table indicates that 45% of the 30 spatially distributed monitoring wells exceeded the drinking water standard. This indicates that there are multiple sources that are impacting water quality. Washington State has several areas which have extensive groundwater nitrate contamination. The groundwater in these areas continues to degrade over time. However, the Lower Yakima Valley is being successful in addressing this health issue because of the following reasons: the community is engaged and committed; there is one common goal; there has been extensive public education and outreach to citizens; and generating credible data using sound scientific methods. Work in this area is continuing as an ambient groundwater monitoring network is established to assess the condition of the aquifer over time. Nitrate samples are being collected from 170 wells, spatially distributed across the aquifer. This research entails quarterly sampling for two years to characterize seasonal variability and then continue annually afterward. This assessment will provide the data to statistically determine trends in nitrate concentrations across the aquifer, over time. Thirty-three of these wells are monitoring wells that are screened across the aquifer. The water quality from these wells are indicative of activities at the land surface. Additional work is being conducted to identify land use management practices that are effective in limiting nitrate migration through the soil column. Tracking nitrate in the soil column every season is an important component of bridging land-use practices with the fate and transport of nitrate through the subsurface. Patience, tenacity, and the ability to think outside the box are essential for dealing with widespread nitrate contamination of groundwater.

Keywords: community, groundwater, monitoring, nitrate

Procedia PDF Downloads 177
141 Strontium and Selenium Doped Bioceramic Incorporated Hydrogel for Faster Apatite Growth and Bone Regeneration Applications

Authors: Nonita Sarin, K.J.Singh, Anuj Kumar, Davinder Singh

Abstract:

Polymeric 3D hydrogels have pivotal role in bone tissue regeneration applications. Hydrogels behave similar to the living tissues because they have large water imbibing capacity in swollen state and adjust their shape according to the tissues during tissue formation after implantation. On the other hand, hydrogels are very soft, fragile and lack mechanical strength. Incorporation of bioceramics can improve mechanical strength. Furthermore, bioceramics synthesized by sol gel technique may enhance the apatite formation and degradation rates which can lead to the increase in faster rates for new bone and tissue regeneration. Simulated body fluid (SBF) induces the poly-condensation of silanol groups which leads to formation of silica matrix and provide active sites for the precipitation of Ca2+ and PO43- ions to form apatite layer which is similar to mineral form of bone. Therefore, authors have synthesized bioceramic incorporated Polyacrylamide-carboxymethylcellulose hydrogels by free radical polymerization and bioceramic compositions of xSrO-(36-x)CaO-45SiO2-ySeO3-(12-y)P2O5-7MgO (where x=0,4 and y=0,2 mol%) were synthesized by sol gel technique. Bioceramics incorporated in polymer matrix induces quicker apatite formation during immersion in SBF by raising the pH with the release of alkaline ions during ion exchange process and the apatite formation takes place in alkaline medium. The behavior of samples PABC-0 (without bioceramics) and PABC-20 (with 20 wt% bioceramics) were evaluated by X-Ray Diffraction and FTIR. In term of bioactivity, it was observed that PABC-20 has shown hydroxyapatite (HA) formation on 1st day of immersion whereas, PABC-0 was shown apatite formation on 7th day of immersion in SBF. The rapid rate of HA growth on 1st day of immersion in SBF signifies easy regeneration of damaged bone tissues. Degradation studies have been undertaken in Phosphate Buffer Saline and PABC-20 exhibited slower degradation rate up to 9%as compared to PABC-0 up to 18%. Slower degradation rate is suitable for new tissue regeneration and cell attachment. Also, Zeta potential studies have been employed to check the surface charge and it has been observed that samples carry negative charge when immersed in SBF. In addition, the swelling test of the samples have been performed and relative swelling ratio % observed for PABC-0 is 607% and PABC-20 is 305%. This indicates that the incorporation of bioceramics leads to the filling up of the voids in between the polymer matrix which in result reduces porosity and increase the mechanical strength by filling the voids. The porosity of PABC-0 is 84% and PABC-20 is 72%. PABC-20 sample demonstrates that bioceramics incorporation reduce the porosity and improves mechanical strength. Also, maximum in vitro cell viability up to 98% with MG63 cell line has been observed which indicate that the bioceramic incorporated hydrogel(PABC-20) provide the alkaline medium which is suitable environment for cell growth.

Keywords: hydrogels, hydroxyapatite, MG63 cell line, zeta potential

Procedia PDF Downloads 140
140 Quick off the Mark with Achilles Tendon Rupture

Authors: Emily Moore, Andrew Gaukroger, Matthew Solan, Lucy Bailey, Alexandra Boxall, Andrew Carne, Chintu Gadamsetty, Charlotte Morley, Katy Western, Iwona Kolodziejczyk

Abstract:

Introduction: Rupture of the Achilles tendon is common and has a long recovery period. Most cases are managed non-operatively. Foot and Ankle Surgeons advise an ultrasound scan to check the gap between the torn ends. A large gap (with the ankle in equinus) is a relative indication for surgery. The definitive decision regarding surgical versus non-operative management can only be made once an ultrasound scan is undertaken and the patient is subsequently reviewed by a Foot and Ankle surgeon. To get to this point, the patient journey involves several hospital departments. In nearby trusts, patients reattend for a scan and go to the plaster room both before and after the ultrasound for removal and re-application of the cast. At a third visit to the hospital, the surgeon and patient discuss options for definitive treatment. It may take 2-3 weeks from the initial Emergency Department visit before the final treatment decision is made. This “wasted time” is ultimately added to the recovery period for the patient. In this hospital, Achilles rupture patients are seen in a weekly multidisciplinary OneStop Heel Pain clinic. This pathway was already efficient but subject to occasional frustrating delays if a key staff member was absent. A new pathway was introduced with the goal to reduce delays to a definitive treatment plan. Method: A retrospective series of Achilles tendon ruptures managed according to the 2019 protocol was identified. Time taken from the Emergency Department to have both an ultrasound scan and specialist Foot and Ankle surgical review were calculated. 30 consecutive patients were treated with our new pathway and prospectively followed. The time taken for a scan and for specialist review were compared to the 30 consecutive cases from the 2019 (pre-COVID) cohort. The new pathway includes 1. A new contoured splint applied to the front of the injured limb held with a bandage. This can be removed and replaced (unlike a plaster cast) in the ultrasound department, removing the need for plaster room visits. 2. Urgent triage to a Foot and Ankle specialist. 3. Ultrasound scan for assessment of rupture gap and deep vein thrombosis check. 4. Early decision regarding surgery. Transfer to weight bearing in a prosthetic boot in equinuswithout waiting for the once-a-week clinic. 5. Extended oral VTE prophylaxis. Results: The time taken for a patient to have both an ultrasound scan and specialist review fell > 50%. All patients in the new pathway reached a definitive treatment decision within one week. There were no significant differences in patient demographics or rates of surgical vs non-operative treatment. The mean time from Emergency Department visit to specialist review and ultrasound scan fell from 8.7 days (old protocol) to 2.9 days (new pathway). The maximum time for this fell from 23 days (old protocol) to 6 days (new pathway). Conclusion: Teamwork and innovation have improved the experience for patients with an Achilles tendon rupture. The new pathway brings many advantages - reduced time in the Emergency Department, fewer hospital visits, less time using crutches and reduced overall recovery time.

Keywords: orthopaedics, achilles rupture, ultrasound, innovation

Procedia PDF Downloads 123
139 Active Learning Methods in Mathematics

Authors: Daniela Velichová

Abstract:

Plenty of ideas on how to adopt active learning methods in education are available nowadays. Mathematics is a subject where the active involvement of students is required in particular in order to achieve desirable results regarding sustainable knowledge and deep understanding. The present article is based on the outcomes of an Erasmus+ project DrIVE-MATH, that was aimed at developing a novel and integrated framework to teach maths classes in engineering courses at the university level. It is fundamental for students from the early years of their academic life to have agile minds. They must be prepared to adapt to their future working environments, where enterprises’ views are always evolving, where all collaborate in teams, and relations between peers are thought for the well-being of the whole - workers and company profit. This reality imposes new requirements on higher education in terms of adaptation of different pedagogical methods, such as project-based and active-learning methods used within the course curricula. Active learning methodologies are regarded as an effective way to prepare students to meet the challenges posed by enterprises and to help them in building critical thinking, analytic reasoning, and insight to the solved complex problems from different perspectives. Fostering learning-by-doing activities in the pedagogical process can help students to achieve learning independence, as they could acquire deeper conceptual understanding by experimenting with the abstract concept in a more interesting, useful, and meaningful way. Clear information about learning outcomes and goals might help students to take more responsibility for their learning results. Active learning methods implemented by the project team members in their teaching practice, eduScrum and Jigsaw in particular, proved to provide better scientific and soft skills support to students than classical teaching methods. EduScrum method enables teachers to generate a working environment that stimulates students' working habits and self-initiative as they become aware of their responsibilities within the team, their own acquired knowledge, and their abilities to solve problems independently, though in collaboration with other team members. This method enhances collaborative learning, as students are working in teams towards a common goal - knowledge acquisition, while they are interacting with each other and evaluated individually. Teams consisting of 4-5 students work together on a list of problems - sprint; each member is responsible for solving one of them, while the group leader – a master, is responsible for the whole team. A similar principle is behind the Jigsaw technique, where the classroom activity makes students dependent on each other to succeed. Students are divided into groups, and assignments are split into pieces, which need to be assembled by the whole group to complete the (Jigsaw) puzzle. In this paper, analysis of students’ perceptions concerning the achievement of deeper conceptual understanding in mathematics and the development of soft skills, such as self-motivation, critical thinking, flexibility, leadership, responsibility, teamwork, negotiation, and conflict management, is presented. Some new challenges are discussed as brought by introducing active learning methods in the basic mathematics courses. A few examples of sprints developed and used in teaching basic maths courses at technical universities are presented in addition.

Keywords: active learning methods, collaborative learning, conceptual understanding, eduScrum, Jigsaw, soft skills

Procedia PDF Downloads 54
138 The Beauty of Islamic Etiquette: How an Elegant Muslim Woman Represents Her Culture in a Multicultural Society

Authors: Julia A. Ermakova

Abstract:

As a member of a multicultural society, it is imperative that individuals demonstrate the highest level of decorum in order to exemplify the beauty of their culture. Adab, the practice of praiseworthy words and deeds, as well as possessing good manners and pursuing that which is considered good, is a fundamental concept that guards against all types of mistakes. In Islam, etiquette for every situation in life is taught, and it constitutes the way of life for a Muslim. In light of this, the personality of an elegant Muslim woman can be described as one who embodies the following qualities: Firstly, cultural speech and erudition are essential components. Improving one's intellect, learning new things, reading diverse literature, expanding one's vocabulary, working on articulation, and avoiding obscene speech and verbosity are crucial. Additionally, listening more than speaking and being willing to discuss one's culture when asked are commendable qualities. Conversely, it is important to avoid discussing foolish matters with foolish people and to be able to respond appropriately and change the subject if someone attempts to hurt or manipulate. Secondly, the style of speech is also of paramount importance. It is recommended to speak in a measured tone with a quiet voice and deep breathing. Avoiding rushing and shortness of breath is also recommended. Thirdly, awareness of how to greet others is essential. Combining Shariah and small talk etiquette, such as making a gesture of respect by putting one's hand to the chest and smiling slightly when a man offers a handshake, is recommended. Understanding the rules of small talk, taboo topics, and self-presentation is also important. Fourthly, knowing how to give and receive compliments without devaluing them is imperative. Knowledge of the rules of good manners and etiquette, both secular and Shariah, is also essential. Fifthly, avoiding arguments and responding elegantly to rudeness and tactlessness is a sign of an elegant Muslim woman. Treating everyone with respect and avoiding prejudices, taboo topics, inappropriate questions, and bad habits are all aspects of politeness. Sixthly, a neat appearance appropriate to Shariah and the local community, as well as a well-put-together outfit with a touch of elegance and style, are crucial. Posture, graceful movement, and a pleasant gaze are also important. Finally, good spirits and inner calm are key to projecting a harmonious image, which encourages people to listen attentively. Giving thanks to Allah in every situation in life is the key to maintaining good spirits. In conclusion, an elegant Muslim woman in a multicultural society is characterized by her high moral qualities and adherence to Islamic etiquette. These qualities, such as cultural speech and erudition, style of speech, awareness of how to greet, knowledge of good manners and etiquette, avoiding arguments, politeness, a neat appearance, and good spirits, all contribute to projecting an image of elegance and respectability. By exemplifying these qualities, Muslim women can serve as positive ambassadors for their culture and religion in diverse societies.

Keywords: adab, elegance, muslim woman, multicultural societies, good manners, etiquette

Procedia PDF Downloads 69
137 A Vision-Based Early Warning System to Prevent Elephant-Train Collisions

Authors: Shanaka Gunasekara, Maleen Jayasuriya, Nalin Harischandra, Lilantha Samaranayake, Gamini Dissanayake

Abstract:

One serious facet of the worsening Human-Elephant conflict (HEC) in nations such as Sri Lanka involves elephant-train collisions. Endangered Asian elephants are maimed or killed during such accidents, which also often result in orphaned or disabled elephants, contributing to the phenomenon of lone elephants. These lone elephants are found to be more likely to attack villages and showcase aggressive behaviour, which further exacerbates the overall HEC. Furthermore, Railway Services incur significant financial losses and disruptions to services annually due to such accidents. Most elephant-train collisions occur due to a lack of adequate reaction time. This is due to the significant stopping distance requirements of trains, as the full braking force needs to be avoided to minimise the risk of derailment. Thus, poor driver visibility at sharp turns, nighttime operation, and poor weather conditions are often contributing factors to this problem. Initial investigations also indicate that most collisions occur in localised “hotspots” where elephant pathways/corridors intersect with railway tracks that border grazing land and watering holes. Taking these factors into consideration, this work proposes the leveraging of recent developments in Convolutional Neural Network (CNN) technology to detect elephants using an RGB/infrared capable camera around known hotspots along the railway track. The CNN was trained using a curated dataset of elephants collected on field visits to elephant sanctuaries and wildlife parks in Sri Lanka. With this vision-based detection system at its core, a prototype unit of an early warning system was designed and tested. This weatherised and waterproofed unit consists of a Reolink security camera which provides a wide field of view and range, an Nvidia Jetson Xavier computing unit, a rechargeable battery, and a solar panel for self-sufficient functioning. The prototype unit was designed to be a low-cost, low-power and small footprint device that can be mounted on infrastructures such as poles or trees. If an elephant is detected, an early warning message is communicated to the train driver using the GSM network. A mobile app for this purpose was also designed to ensure that the warning is clearly communicated. A centralized control station manages and communicates all information through the train station network to ensure coordination among important stakeholders. Initial results indicate that detection accuracy is sufficient under varying lighting situations, provided comprehensive training datasets that represent a wide range of challenging conditions are available. The overall hardware prototype was shown to be robust and reliable. We envision a network of such units may help contribute to reducing the problem of elephant-train collisions and has the potential to act as an important surveillance mechanism in dealing with the broader issue of human-elephant conflicts.

Keywords: computer vision, deep learning, human-elephant conflict, wildlife early warning technology

Procedia PDF Downloads 226
136 Improved Soil and Snow Treatment with the Rapid Update Cycle Land-Surface Model for Regional and Global Weather Predictions

Authors: Tatiana G. Smirnova, Stan G. Benjamin

Abstract:

Rapid Update Cycle (RUC) land surface model (LSM) was a land-surface component in several generations of operational weather prediction models at the National Center for Environment Prediction (NCEP) at the National Oceanic and Atmospheric Administration (NOAA). It was designed for short-range weather predictions with an emphasis on severe weather and originally was intentionally simple to avoid uncertainties from poorly known parameters. Nevertheless, the RUC LSM, when coupled with the hourly-assimilating atmospheric model, can produce a realistic evolution of time-varying soil moisture and temperature, as well as the evolution of snow cover on the ground surface. This result is possible only if the soil/vegetation/snow component of the coupled weather prediction model has sufficient skill to avoid long-term drift. RUC LSM was first implemented in the operational NCEP Rapid Update Cycle (RUC) weather model in 1998 and later in the Weather Research Forecasting Model (WRF)-based Rapid Refresh (RAP) and High-resolution Rapid Refresh (HRRR). Being available to the international WRF community, it was implemented in operational weather models in Austria, New Zealand, and Switzerland. Based on the feedback from the US weather service offices and the international WRF community and also based on our own validation, RUC LSM has matured over the years. Also, a sea-ice module was added to RUC LSM for surface predictions over the Arctic sea-ice. Other modifications include refinements to the snow model and a more accurate specification of albedo, roughness length, and other surface properties. At present, RUC LSM is being tested in the regional application of the Unified Forecast System (UFS). The next generation UFS-based regional Rapid Refresh FV3 Standalone (RRFS) model will replace operational RAP and HRRR at NCEP. Over time, RUC LSM participated in several international model intercomparison projects to verify its skill using observed atmospheric forcing. The ESM-SnowMIP was the last of these experiments focused on the verification of snow models for open and forested regions. The simulations were performed for ten sites located in different climatic zones of the world forced with observed atmospheric conditions. While most of the 26 participating models have more sophisticated snow parameterizations than in RUC, RUC LSM got a high ranking in simulations of both snow water equivalent and surface temperature. However, ESM-SnowMIP experiment also revealed some issues in the RUC snow model, which will be addressed in this paper. One of them is the treatment of grid cells partially covered with snow. RUC snow module computes energy and moisture budgets of snow-covered and snow-free areas separately by aggregating the solutions at the end of each time step. Such treatment elevates the importance of computing in the model snow cover fraction. Improvements to the original simplistic threshold-based approach have been implemented and tested both offline and in the coupled weather model. The detailed description of changes to the snow cover fraction and other modifications to RUC soil and snow parameterizations will be described in this paper.

Keywords: land-surface models, weather prediction, hydrology, boundary-layer processes

Procedia PDF Downloads 88
135 Automatic Content Curation of Visual Heritage

Authors: Delphine Ribes Lemay, Valentine Bernasconi, André Andrade, Lara DéFayes, Mathieu Salzmann, FréDéRic Kaplan, Nicolas Henchoz

Abstract:

Digitization and preservation of large heritage induce high maintenance costs to keep up with the technical standards and ensure sustainable access. Creating impactful usage is instrumental to justify the resources for long-term preservation. The Museum für Gestaltung of Zurich holds one of the biggest poster collections of the world from which 52’000 were digitised. In the process of building a digital installation to valorize the collection, one objective was to develop an algorithm capable of predicting the next poster to show according to the ones already displayed. The work presented here describes the steps to build an algorithm able to automatically create sequences of posters reflecting associations performed by curator and professional designers. The exposed challenge finds similarities with the domain of song playlist algorithms. Recently, artificial intelligence techniques and more specifically, deep-learning algorithms have been used to facilitate their generations. Promising results were found thanks to Recurrent Neural Networks (RNN) trained on manually generated playlist and paired with clusters of extracted features from songs. We used the same principles to create the proposed algorithm but applied to a challenging medium, posters. First, a convolutional autoencoder was trained to extract features of the posters. The 52’000 digital posters were used as a training set. Poster features were then clustered. Next, an RNN learned to predict the next cluster according to the previous ones. RNN training set was composed of poster sequences extracted from a collection of books from the Gestaltung Museum of Zurich dedicated to displaying posters. Finally, within the predicted cluster, the poster with the best proximity compared to the previous poster is selected. The mean square distance between features of posters was used to compute the proximity. To validate the predictive model, we compared sequences of 15 posters produced by our model to randomly and manually generated sequences. Manual sequences were created by a professional graphic designer. We asked 21 participants working as professional graphic designers to sort the sequences from the one with the strongest graphic line to the one with the weakest and to motivate their answer with a short description. The sequences produced by the designer were ranked first 60%, second 25% and third 15% of the time. The sequences produced by our predictive model were ranked first 25%, second 45% and third 30% of the time. The sequences produced randomly were ranked first 15%, second 29%, and third 55% of the time. Compared to designer sequences, and as reported by participants, model and random sequences lacked thematic continuity. According to the results, the proposed model is able to generate better poster sequencing compared to random sampling. Eventually, our algorithm is sometimes able to outperform a professional designer. As a next step, the proposed algorithm should include a possibility to create sequences according to a selected theme. To conclude, this work shows the potentiality of artificial intelligence techniques to learn from existing content and provide a tool to curate large sets of data, with a permanent renewal of the presented content.

Keywords: Artificial Intelligence, Digital Humanities, serendipity, design research

Procedia PDF Downloads 184
134 Integrative Omics-Portrayal Disentangles Molecular Heterogeneity and Progression Mechanisms of Cancer

Authors: Binder Hans

Abstract:

Cancer is no longer seen as solely a genetic disease where genetic defects such as mutations and copy number variations affect gene regulation and eventually lead to aberrant cell functioning which can be monitored by transcriptome analysis. It has become obvious that epigenetic alterations represent a further important layer of (de-)regulation of gene activity. For example, aberrant DNA methylation is a hallmark of many cancer types, and methylation patterns were successfully used to subtype cancer heterogeneity. Hence, unraveling the interplay between different omics levels such as genome, transcriptome and epigenome is inevitable for a mechanistic understanding of molecular deregulation causing complex diseases such as cancer. This objective requires powerful downstream integrative bioinformatics methods as an essential prerequisite to discover the whole genome mutational, transcriptome and epigenome landscapes of cancer specimen and to discover cancer genesis, progression and heterogeneity. Basic challenges and tasks arise ‘beyond sequencing’ because of the big size of the data, their complexity, the need to search for hidden structures in the data, for knowledge mining to discover biological function and also systems biology conceptual models to deduce developmental interrelations between different cancer states. These tasks are tightly related to cancer biology as an (epi-)genetic disease giving rise to aberrant genomic regulation under micro-environmental control and clonal evolution which leads to heterogeneous cellular states. Machine learning algorithms such as self organizing maps (SOM) represent one interesting option to tackle these bioinformatics tasks. The SOMmethod enables recognizing complex patterns in large-scale data generated by highthroughput omics technologies. It portrays molecular phenotypes by generating individualized, easy to interpret images of the data landscape in combination with comprehensive analysis options. Our image-based, reductionist machine learning methods provide one interesting perspective how to deal with massive data in the discovery of complex diseases, gliomas, melanomas and colon cancer on molecular level. As an important new challenge, we address the combined portrayal of different omics data such as genome-wide genomic, transcriptomic and methylomic ones. The integrative-omics portrayal approach is based on the joint training of the data and it provides separate personalized data portraits for each patient and data type which can be analyzed by visual inspection as one option. The new method enables an integrative genome-wide view on the omics data types and the underlying regulatory modes. It is applied to high and low-grade gliomas and to melanomas where it disentangles transversal and longitudinal molecular heterogeneity in terms of distinct molecular subtypes and progression paths with prognostic impact.

Keywords: integrative bioinformatics, machine learning, molecular mechanisms of cancer, gliomas and melanomas

Procedia PDF Downloads 148
133 Living by the Maramataka: Mahi Maramataka, Indigenous Environmental Knowledge Systems and Wellbeing

Authors: Ayla Hoeta

Abstract:

The focus of this research is mahi Maramataka, ‘the practices of Maramataka’ as a traditional and evolving knowledge system and its connection to whaanau oranga (wellbeing) and healing. Centering kaupapa Maaori methods and knowledge this research will explore how Maramataka can be used as a tool for oranga and healing for whaanau to engage with different environments aligned with Maramataka flow and optimal time based on the environment. Maramataka is an ancestral lunar environmental knowledge system rooted within korero tuku iho, Maaori creation stories, dating back to the beginning of time. The significance of Maramataka is the ancient environmental knowledge and the connecting energy flow of mauri (life force) between whenua (land), moana (ocean) and rangi (sky). The lunar component of the Maramataka is widely understood and highlights the different phases of the moon. Each moon phase is named with references to puurakau stories and environmental and ecological information. Marama, meaning moon and taka, meaning cycle, is used as a lunar and environmental calendar. There are lunar phases that are optimal for specific activities, such as the Tangaroa phase, a time of abundance and productivity and ocean-based activities like fishing. Other periods in the Maramataka, such as Rakaunui (full moon), connect the highest tides and highest energy of the lunar cycle, ideal for social, physical activity and particularly planting. Other phases like Tamatea are unpredictable whereas Whiro (new moon/s) is reflective, deep and cautious during the darkest nights. Whaanau, particularly in urban settings have become increasingly disconnected from the natural environment, the Maramataka has become a tool that they can connect to which offers an alternative to dominant perspectives of health and is an approach that is uniquely Maaori. In doing so, this research will raise awareness of oranga or lack of oranga, and lived experience of whaanau in Tamaki Makaurau - Aotearoa, on a journey to revival of Maramataka and healing. The research engages Hautu Waka as a methodology using the methods of ancient kaupapa Māori practises based on wayfinding and attunement with the natural environment. Using ancient ways of being, knowing, seeing and doing the Hautu Waka will centre kaupapa Maaori perspectives to process design, reflection and evaluation. The methods of Hautu Waka consists of five interweaving phases, 1) Te Rapunga (the search) in infinite potential, 2) Te Kitenga (the seeing), observations of and attunement to tohu 3) te whainga (the pursuit) and deeply exploring key tohu 4) te whiwhinga (the acquiring), of knowledge and clearer ideas, 5) Te Rawenga (the celebration), reflection and acknowledgement of the journey and achievements. This research is an expansion from my creative practices across whaanau-centred inquiry, to understand the benefits of Maramataka and how it can be embodied and practised in a modern-day context to support oranga and healing. Thus, the goal is to work with kaupapa Maaori methodologies to authenticate as a Maaori practitioner and researcher and allow an authentic indigenous approach to the exploration of Maramataka and through a kaupapa Maaori lens.

Keywords: maramataka (Maaori calendar), tangata (people), taiao (environment), whenua (land), whaanau (family), hautu waka (navigation framework)

Procedia PDF Downloads 72
132 Socio-Psychological Significance of Vandalism in the Urban Environment: Destruction, Modernization, Communication

Authors: Olga Kruzhkova, Irina Vorobyeva, Roman Porozov

Abstract:

Vandalism is a common phenomenon, but its definition is still not clearly defined. In the public sense, vandalism is the blatant cases of pogroms in cemeteries, destruction of public places (regardless of whether these actions are authorized), damage to significant objects of culture and history (monuments, religious buildings). From a legal point of view, only such an act can be called vandalism, which is aimed at 'desecrating buildings or other structures, damaging property on public transport or in other public places'. The key here is the notion of public property that is being damaged. In addition, the principal is the semantics of messages, expressed in a kind of sign system (drawing, inscription, symbol), which initially threatens public order, the calmness of citizens, public morality. Because of this, the legal qualification of vandalism doesn’t include a sufficiently wide layer of environmental destructions that are common in modern urban space (graffiti and other damage to private property, broken shop windows, damage to entrances and elevator cabins), which in ordinary consciousness are seen as obvious facts of vandalism. At the same time, the understanding of vandalism from the position of psychology implies an appeal to the question of the limits of the activity of the subject of vandalism and his motivational basis. Also recently, the discourse on the positive meaning of some forms of vandalism (graffiti, street-art, etc.) has been activated. But there is no discussion of the role and significance of vandalism in public and individual life, although, like any socio-cultural and socio-psychological phenomenon, vandalism is not groundless and meaningless. Our aim of the study was to identify and describe the functions of vandalism as a socio-cultural and socio-psychological phenomenon of the life of the urban community, as well as personal determinants of its manifestations. The study was conducted in the spatial environment of the Russian megalopolis (Ekaterinburg) by photographing visual results of vandal acts (6217 photos) with subsequent trace-assessment and image content analysis, as well as diagnostics of personal characteristics and motivational basis of vandal activity of possible subjects of vandalism among youth. The results of the study allowed to identify the functions of vandalism at the socio-environmental and individual-subjective levels. The socio-environmental functions of vandalism include the signaling function, the function of preparing of social changes, the constructing function, and the function of managing public moods. The demonstrative-protest function, the response function, the refund function, and the self-expression function are assigned to the individual-subjective functions of vandalism. A two-dimensional model of vandal functions has been formed, where functions are distributed in the spaces 'construction reconstruction', 'emotional regulation/moral regulation'. It is noted that any function of vandal activity at the individual level becomes a kind of marker of 'points of tension' at the social and environmental level. Acknowledgment: The research was supported financially by Russian Science Foundation, (Project No. 17-18-01278).

Keywords: destruction, urban environment, vandal behavior, vandalism, vandalism functions

Procedia PDF Downloads 200
131 Silver-Doped Magnetite Titanium Oxide Nanoparticles for Photocatalytic Degradation of Organic Pollutants

Authors: Hanna Abbo, Siyasanga Noganta, Salam Titinchi

Abstract:

The global lack of clean water for human sanitation and other purposes has become an emerging dilemma for human beings. The presence of organic pollutants in wastewater produced by textile industries, leather manufacturing and chemical industries is an alarming matter for a safe environment and human health. For the last decades, conventional methods have been applied for the purification of water but due to industrialization these methods fall short. Advanced oxidation processes and their reliable application in degradation of many contaminants have been reported as a potential method to reduce and/or alleviate this problem. Lately it has been assumed that incorporation of some metal nanoparticles such as magnetite nanoparticles as photocatalyst for Fenton reaction which could improve the degradation efficiency of contaminants. Core/shell nanoparticles, are extensively studied because of their wide applications in the biomedical, drug delivery, electronics fields and water treatment. The current study is centred on the synthesis of silver-doped Fe3O4/SiO2/TiO2 photocatalyst. Magnetically separable Fe3O4@SiO2@TiO2 composite with core–shell structure were synthesized by the deposition of uniform anatase TiO2 NPs on Fe3O4@SiO2 by using titanium butoxide (TBOT) as titanium source. Then, the silver is doped on SiO2 layer by hydrothermal method. Integration of magnetic nanoparticles was suggested to avoid the post separation difficulties associated with the powder form of the TiO2 catalyst, increase of the surface area and adsorption properties. The morphology, structure, composition, and magnetism of the resulting composites were characterized and their photocatalytic activities were also evaluated. The results demonstrate that TiO2 NPs were uniformly deposited on the Fe3O4@SiO2 surface. The silver nanoparticles were also uniformly distributed on the surface of TiO2 nanoparticles. The aim of this work is to study the suitability of photocatalysis for the treatment of aqueous streams containing organic pollutants such as methylene blue which is selected as a model compound to represent one of the pollutants existing in wastewaters. Various factors such as initial pollutant concentration, photocatalyst dose and wastewater matrix were studied for their effect on the photocatalytic degradation of the organic model pollutants using the as synthesized catalysts and compared with the commercial titanium dioxide (Aeroxide P25). Photocatalysis was found to be a potential purification method for the studied pollutant also in an industrial wastewater matrix with the removal percentages of over 81 % within 15 minutes. Methylene blue was removed most efficiently and its removal consumed the least of energy in terms of the specific applied energy. The magnetic Ag/SiO2/TiO2 composites show high photocatalytic performance and can be recycled three times by magnetic separation without major loss of activity, which meant that they can be used as efficient and conveniently renewable photocatalyst.

Keywords: Magnetite nanoparticles, Titanium, Photocatalyst, Organic pollutant, Water treatment

Procedia PDF Downloads 267
130 Carbon-Foam Supported Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells

Authors: Albert Mufundirwa, Satoru Yoshioka, K. Ogi, Takeharu Sugiyama, George F. Harrington, Bretislav Smid, Benjamin Cunning, Kazunari Sasaki, Akari Hayashi, Stephen M. Lyth

Abstract:

Polymer electrolyte membrane fuel cells (PEMFCs) are electrochemical energy conversion devices used for portable, residential and vehicular applications due to their low emissions, high efficiency, and quick start-up characteristics. However, PEMFCs generally use expensive, Pt-based electrocatalysts as electrode catalysts. Due to the high cost and limited availability of platinum, research and development to either drastically reduce platinum loading, or replace platinum with alternative catalysts is of paramount importance. A combination of high surface area supports and nano-structured active sites is essential for effective operation of catalysts. We synthesize carbon foam supports by thermal decomposition of sodium ethoxide, using a template-free, gram scale, cheap, and scalable pyrolysis method. This carbon foam has a high surface area, highly porous, three-dimensional framework which is ideal for electrochemical applications. These carbon foams can have surface area larger than 2500 m²/g, and electron microscopy reveals that they have micron-scale cells, separated by few-layer graphene-like carbon walls. We applied this carbon foam as a platinum catalyst support, resulting in the improved electrochemical surface area and mass activity for the oxygen reduction reaction (ORR), compared to carbon black. Similarly, silver-decorated carbon foams showed higher activity and efficiency for electrochemical carbon dioxide conversion than silver-decorated carbon black. A promising alternative to Pt-catalysts for the ORR is iron-impregnated nitrogen-doped carbon catalysts (Fe-N-C). Doping carbon with nitrogen alters the chemical structure and modulates the electronic properties, allowing a degree of control over the catalytic properties. We have adapted our synthesis method to produce nitrogen-doped carbon foams with large surface area, using triethanolamine as a nitrogen feedstock, in a novel bottom-up protocol. These foams are then infiltrated with iron acetate (FeAc) and pyrolysed to form Fe-N-C foams. The resulting Fe-N-C foam catalysts have high initial activity (half-wave potential of 0.68 VRHE), comparable to that of commercially available Pt-free catalysts (e.g., NPC-2000, Pajarito Powder) in acid solution. In alkaline solution, the Fe-N-C carbon foam catalysts have a half-wave potential of 0.89 VRHE, which is higher than that of NPC-2000 by almost 10 mVRHE, and far out-performing platinum. However, the durability is still a problem at present. The lessons learned from X-ray absorption spectroscopy (XAS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements will be used to carefully design Fe-N-C catalysts for higher performance PEMFCs.

Keywords: carbon-foam, polymer electrolyte membrane fuel cells, platinum, Pt-free, Fe-N-C, ORR

Procedia PDF Downloads 180
129 Spatial Organization of Cells over the Process of Pellicle Formation by Pseudomonas alkylphenolica KL28

Authors: Kyoung Lee

Abstract:

Numerous aerobic bacteria have the ability to form multicellular communities on the surface layer of the air-liquid (A-L) interface as a biofilm called a pellicle. Pellicles occupied at the A-L interface will benefit from the utilization of oxygen from air and nutrient from liquid. Buoyancy of cells can be obtained by high surface tension at the A-L interface. Thus, formation of pellicles is an adaptive advantage in utilization of excess nutrients in the standing culture where oxygen depletion is easily set up due to rapid cell growth. In natural environments, pellicles are commonly observed on the surface of lake or pond contaminated with pollutants. Previously, we have shown that when cultured in standing LB media an alkylphenol-degrading bacteria Pseudomonas alkylphenolia KL28 forms pellicles in a diameter of 0.3-0.5 mm with a thickness of ca 40 µm. The pellicles have unique features for possessing flatness and unusual rigidity. In this study, the biogenesis of the circular pellicles has been investigated by observing the cell organization at early stages of pellicle formation and cell arrangements in pellicle, providing a clue for highly organized cellular arrangement to be adapted to the air-liquid niche. Here, we first monitored developmental patterns of pellicle from monolayer to multicellular organization. Pellicles were shaped by controlled growth of constituent cells which accumulate extracellular polymeric substance. The initial two-dimensional growth was transited to multilayers by a constraint force of accumulated self-produced extracellular polymeric substance. Experiments showed that pellicles are formed by clonal growth and even with knock-out of genes for flagella and pilus formation. In contrast, the mutants in the epm gene cluster for alginate-like polymer biosynthesis were incompetent in cell alignment for initial two-dimensional growth of pellicles. Electron microscopic and confocal laser scanning microscopic studies showed that the fully matured structures are highly packed by matrix-encased cells which have special arrangements. The cells on the surface of the pellicle lie relatively flat and inside longitudinally cross packed. HPLC analysis of the extrapolysaccharide (EPS) hydrolysate from the colonies from LB agar showed a composition with L-fucose, L-rhamnose, D-galactosamine, D-glucosamine, D-galactose, D-glucose, D-mannose. However, that from pellicles showed similar neutral and amino sugar profile but missing galactose. Furthermore, uronic acid analysis of EPS hydrolysates by HPLC showed that mannuronic acid was detected from pellicles not from colonies, indicating the epm-derived polymer is critical for pellicle formation as proved by the epm mutants. This study verified that for the circular pellicle architecture P. alkylphenolica KL28 cells utilized EPS building blocks different from that used for colony construction. These results indicate that P. alkylphenolica KL28 is a clever architect that dictates unique cell arrangements with selected EPS matrix material to construct sophisticated building, circular biofilm pellicles.

Keywords: biofilm, matrix, pellicle, pseudomonas

Procedia PDF Downloads 152