Search results for: Lewis number
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10144

Search results for: Lewis number

5854 Retrospective Analysis of the Damage of Agricultural Crops from Hail in Eastern Georgia

Authors: Valerian Omsarashvili, Nino Jamrishvili

Abstract:

Georgia is one of the hail-dangerous countries of world. The work on action on hail processes in Georgia was conducted in 1960-1989 (East Georgia) over the total area of approximately 1.2 million hectares with average positive economic effect near 75 %. In 2015 in East Georgia, the anti-hail service was restored. Therefore, for the estimation of the effectiveness of action on the hail processes at present, arose the need for the detailed analysis of damage from the hail in the past. The work presents the analysis of the data about the number of days with the hail, the areas of damage of agricultural crops (general and to 100 %), and also the economic damage from the hail, of the caused loss to agricultural crops on the territories land of 123 separate populated areas of into 1982 and 1984-1989. In particular, on the average to one populated area, the total area of agricultural crops damaged from the hail was approximately 140 hectares, to 100% damage - 60 hectares, economic damage - 120 thousand US dollars. The corresponding maps of the distribution of the damaged areas on the investigated territory with the use of GIS-technologies are obtained.

Keywords: damage to agricultural crops, hail, Georgia, economic damage

Procedia PDF Downloads 246
5853 Inferring Human Mobility in India Using Machine Learning

Authors: Asra Yousuf, Ajaykumar Tannirkulum

Abstract:

Inferring rural-urban migration trends can help design effective policies that promote better urban planning and rural development. In this paper, we describe how machine learning algorithms can be applied to predict internal migration decisions of people. We consider data collected from household surveys in Tamil Nadu to train our model. To measure the performance of the model, we use data on past migration from National Sample Survey Organisation of India. The factors for training the model include socioeconomic characteristic of each individual like age, gender, place of residence, outstanding loans, strength of the household, etc. and his past migration history. We perform a comparative analysis of the performance of a number of machine learning algorithm to determine their prediction accuracy. Our results show that machine learning algorithms provide a stronger prediction accuracy as compared to statistical models. Our goal through this research is to propose the use of data science techniques in understanding human decisions and behaviour in developing countries.

Keywords: development, migration, internal migration, machine learning, prediction

Procedia PDF Downloads 274
5852 Professional Ambitions of Students of Faculty of Chemistry, Adam Mickiewicz University in the Context of Teaching Profession

Authors: Malgorzata Bartoszewicz, Grzegorz Krzysko

Abstract:

Chemistry students plan a career path based on their interests, predispositions, and preferences. This study aims to determine what percentage of all chemistry students selected teaching as a career. There is a lack of science teachers (especially physics and chemistry) in Poland, and there is limited research on students' choices and professional preferences. At the Faculty of Chemistry of the Adam Mickiewicz University in the academic year 2019/2020, changes were introduced to the study program resulting from legal regulations and as part of the funds raised from the project "Teacher - competent practitioner, supervisor, expert", No. POWR.03.01.00-00-KN40/18. The aim of the study was to determine how many first-cycle and second-cycle studies students declare the teaching profession as a career. In the case of first-cycle studies students, 9.5% of respondents choose the teaching profession and 9.2% of second-cycle studies students. It was found that the number of students who chose the teacher preparation programme at Faculty of Chemistry of the Adam Mickiewicz University has decreased since 5 years.

Keywords: faculty of chemistry, Adam Mickiewicz University, professional ambitions, students, teacher

Procedia PDF Downloads 149
5851 Influence of the Local External Pressure on Measured Parameters of Cutaneous Microcirculation

Authors: Irina Mizeva, Elena Potapova, Viktor Dremin, Mikhail Mezentsev, Valeri Shupletsov

Abstract:

The local tissue perfusion is regulated by the microvascular tone which is under the control of a number of physiological mechanisms. Laser Doppler flowmetry (LDF) together with wavelet analyses is the most commonly used technique to study the regulatory mechanisms of cutaneous microcirculation. External factors such as temperature, local pressure of the probe on the skin, etc. influence on the blood flow characteristics and are used as physiological tests to evaluate microvascular regulatory mechanisms. Local probe pressure influences on the microcirculation parameters measured by optical methods: diffuse reflectance spectroscopy, fluorescence spectroscopy, and LDF. Therefore, further study of probe pressure effects can be useful to improve the reliability of optical measurement. During pressure tests variation of the mean perfusion measured by means of LDF usually is estimated. An additional information concerning the physiological mechanisms of the vascular tone regulation system in response to local pressure can be obtained using spectral analyses of LDF samples. The aim of the present work was to develop protocol and algorithm of data processing appropriate for study physiological response to the local pressure test. Involving 6 subjects (20±2 years) and providing 5 measurements for every subject we estimated intersubject and-inter group variability of response of both averaged and oscillating parts of the LDF sample on external surface pressure. The final purpose of the work was to find special features which further can be used in wider clinic studies. The cutaneous perfusion measurements were carried out by LAKK-02 (SPE LAZMA Ltd., Russia), the skin loading was provided by the originally designed device which allows one to distribute the pressure around the LDF probe. The probe was installed on the dorsal part of the distal finger of the index figure. We collected measurements continuously for one hour and varied loading from 0 to 180mmHg stepwise with a step duration of 10 minutes. Further, we post-processed the samples using the wavelet transform and traced the energy of oscillations in five frequency bands over time. Weak loading leads to pressure-induced vasodilation, so one should take into account that the perfusion measured under pressure conditions will be overestimated. On the other hand, we revealed a decrease in endothelial associated fluctuations. Further loading (88 mmHg) induces amplification of pulsations in all frequency bands. We assume that such loading leads to a higher number of closed capillaries, higher input of arterioles in the LDF signal and as a consequence more vivid oscillations which mainly are formed in arterioles. External pressure higher than 144 mmHg leads to the decrease of oscillating components, after removing the loading very rapid restore of the tissue perfusion takes place. In this work, we have demonstrated that local skin loading influence on the microcirculation parameters measured by optic technique; this should be taken into account while developing portable electronic devices. The proposed protocol of local loading allows one to evaluate PIV as far as to trace dynamic of blood flow oscillations. This study was supported by the Russian Science Foundation under project N 18-15-00201.

Keywords: blood microcirculation, laser Doppler flowmetry, pressure-induced vasodilation, wavelet analyses blood

Procedia PDF Downloads 154
5850 Investigation of Tribological Behavior of Electrodeposited Cr, Co-Cr and Co-Cr/Tio2 Nano-Composite Coatings

Authors: S. Mahdavi, S.R. Allahkaram

Abstract:

Electrodeposition is a simple and economic technique for precision coating of different shaped substrates with pure metal, alloy or composite films. Dc electrodeposition was used to produce Cr, Co-Cr and Co-Cr/TiO2 nano-composite coatings from Cr(III) based electrolytes onto 316L SS substrates. The effects of TiO2 nano-particles concentration on co-deposition of these particles along with Cr content and microhardness of the coatings were investigated. Morphology of the Cr, Co-Cr and Co-Cr/TiO2 coatings besides their tribological behavior were studied. The results showed that increment of TiO2 nano-particles concentration from 0 to 30 g L-1 in the bath increased their co-deposition and Cr content of the coatings from 0 to 3.5 wt.% and from 23.7 to 31.2 wt.%, respectively. Microhardness of Cr coating was about 920 Hv which was higher than Co-Cr and even Co-Cr/TiO2 films. Microhardness of Co-Cr and Co-Cr/TiO2 coatings were improved by increasing their Cr and TiO2 content. All the coatings had nodular morphology and contained microcracks. Nodules sizes and the number of microcracks in the alloy and composite coatings were lower than the Cr film. Wear results revealed that the Co-Cr/TiO2 coating had the lowest wear loss between all the samples, while the Cr film had the worst wear resistance.

Keywords: Co-Cr alloy, electrodeposition, nano-composite, tribological behavior, trivalent chromium

Procedia PDF Downloads 494
5849 High-Quality Flavor of Black Belly Pork under Lightning Corona Discharge Using Tesla Coil for High Voltage Education

Authors: Kyung-Hoon Jang, Jae-Hyo Park, Kwang-Yeop Jang, Dongjin Kim

Abstract:

The Tesla coil is an electrical resonant transformer circuit designed by inventor Nikola Tesla in 1891. It is used to produce high voltage, low current and high frequency alternating current electricity. Tesla experimented with a number of different configurations consisting of two or sometimes three coupled resonant electric circuits. This paper focuses on development and high voltage education to apply a Tesla coil to cuisine for high quality flavor and taste conditioning as well as high voltage education under 50 kV corona discharge. The result revealed that the velocity of roasted black belly pork by Tesla coil is faster than that of conventional methods such as hot grill and steel plate etc. depending on applied voltage level and applied voltage time. Besides, carbohydrate and crude protein increased, whereas natrium and saccharides significantly decreased after lightning surge by Tesla coil. This idea will be useful in high voltage education and high voltage application.

Keywords: corona discharge, Tesla coil, high voltage application, high voltage education

Procedia PDF Downloads 332
5848 Solving Weighted Number of Operation Plus Processing Time Due-Date Assignment, Weighted Scheduling and Process Planning Integration Problem Using Genetic and Simulated Annealing Search Methods

Authors: Halil Ibrahim Demir, Caner Erden, Mumtaz Ipek, Ozer Uygun

Abstract:

Traditionally, the three important manufacturing functions, which are process planning, scheduling and due-date assignment, are performed separately and sequentially. For couple of decades, hundreds of studies are done on integrated process planning and scheduling problems and numerous researches are performed on scheduling with due date assignment problem, but unfortunately the integration of these three important functions are not adequately addressed. Here, the integration of these three important functions is studied by using genetic, random-genetic hybrid, simulated annealing, random-simulated annealing hybrid and random search techniques. As well, the importance of the integration of these three functions and the power of meta-heuristics and of hybrid heuristics are studied.

Keywords: process planning, weighted scheduling, weighted due-date assignment, genetic search, simulated annealing, hybrid meta-heuristics

Procedia PDF Downloads 472
5847 Predictive Analytics for Theory Building

Authors: Ho-Won Jung, Donghun Lee, Hyung-Jin Kim

Abstract:

Predictive analytics (data analysis) uses a subset of measurements (the features, predictor, or independent variable) to predict another measurement (the outcome, target, or dependent variable) on a single person or unit. It applies empirical methods in statistics, operations research, and machine learning to predict the future, or otherwise unknown events or outcome on a single or person or unit, based on patterns in data. Most analyses of metabolic syndrome are not predictive analytics but statistical explanatory studies that build a proposed model (theory building) and then validate metabolic syndrome predictors hypothesized (theory testing). A proposed theoretical model forms with causal hypotheses that specify how and why certain empirical phenomena occur. Predictive analytics and explanatory modeling have their own territories in analysis. However, predictive analytics can perform vital roles in explanatory studies, i.e., scientific activities such as theory building, theory testing, and relevance assessment. In the context, this study is to demonstrate how to use our predictive analytics to support theory building (i.e., hypothesis generation). For the purpose, this study utilized a big data predictive analytics platform TM based on a co-occurrence graph. The co-occurrence graph is depicted with nodes (e.g., items in a basket) and arcs (direct connections between two nodes), where items in a basket are fully connected. A cluster is a collection of fully connected items, where the specific group of items has co-occurred in several rows in a data set. Clusters can be ranked using importance metrics, such as node size (number of items), frequency, surprise (observed frequency vs. expected), among others. The size of a graph can be represented by the numbers of nodes and arcs. Since the size of a co-occurrence graph does not depend directly on the number of observations (transactions), huge amounts of transactions can be represented and processed efficiently. For a demonstration, a total of 13,254 metabolic syndrome training data is plugged into the analytics platform to generate rules (potential hypotheses). Each observation includes 31 predictors, for example, associated with sociodemographic, habits, and activities. Some are intentionally included to get predictive analytics insights on variable selection such as cancer examination, house type, and vaccination. The platform automatically generates plausible hypotheses (rules) without statistical modeling. Then the rules are validated with an external testing dataset including 4,090 observations. Results as a kind of inductive reasoning show potential hypotheses extracted as a set of association rules. Most statistical models generate just one estimated equation. On the other hand, a set of rules (many estimated equations from a statistical perspective) in this study may imply heterogeneity in a population (i.e., different subpopulations with unique features are aggregated). Next step of theory development, i.e., theory testing, statistically tests whether a proposed theoretical model is a plausible explanation of a phenomenon interested in. If hypotheses generated are tested statistically with several thousand observations, most of the variables will become significant as the p-values approach zero. Thus, theory validation needs statistical methods utilizing a part of observations such as bootstrap resampling with an appropriate sample size.

Keywords: explanatory modeling, metabolic syndrome, predictive analytics, theory building

Procedia PDF Downloads 283
5846 Assessment of Susceptibility of the Poultry Red Mite, Dermanyssus gallinae (Acari: Dermanyssidae) to Some Plant Preparations with Focus on Exposure Time

Authors: Shahrokh Ranjbar-Bahadori, Nima Farhadifar, Leila Mohammadyar

Abstract:

Plant preparations from thyme and garlic have been shown to be effective acaricides against the poultry red mite, Dermanyssus gallinae. In a layer house with a history of D. gallinae problem, mites were detected in the monitoring traps for the first time and number of them was counted. Then, some rows of layer house was sprayed twice using a concentration of 0.21 mg/cm2 thyme essential oil and 0.07 mg/cm2 garlic juice and a similar row was used as an untreated control group. Red mite traps made of cardboard were used to assess the mite density during days 1 and 7 after treatment and always removed after 24 h. the collected mites were counted and the efficacy against all mite stages (larvae, nymphs and adults) was calculated. Results showed that on day 1 and 7 after the administration of garlic extract efficacy rate was 92.05% and 74.62%, respectively. Moreover, efficacy rate on day 1 and 7 was 89.4% and 95.37% when treatment was done with thyme essential oil. It is concluded that using garlic juice to control of D. gallinae is more effective on short time. But thyme essential oil has a long time effect in compare to garlic preparation.

Keywords: Dermanyssus gallinae, essential oil, garlic, thyme, efficacy

Procedia PDF Downloads 444
5845 Selective Circular Dichroism Sensor Based on the Generation of Quantum Dots for Cadmium Ion Detection

Authors: Pradthana Sianglam, Wittaya Ngeontae

Abstract:

A new approach for the fabrication of cadmium ion (Cd2+) sensor is demonstrated. The detection principle is based on the in-situ generation of cadmium sulfide quantum dots (CdS QDs) in the presence of chiral thiol containing compound and detection by the circular dichroism spectroscopy (CD). Basically, the generation of CdS QDs can be done in the presence of Cd2+, sulfide ion and suitable capping compounds. In addition, the strong CD signal can be recorded if the generated QDs possess chiral property (from chiral capping molecule). Thus, the degree of CD signal change depends on the number of the generated CdS QDs which can be related to the concentration of Cd2+ (excess of other components). In this work, we use the mixture of cysteamine (Cys) and L-Penicillamine (LPA) as the capping molecules. The strong CD signal can be observed when the solution contains sodium sulfide, Cys, LPA, and Cd2+. Moreover, the CD signal is linearly related to the concentration of Cd2+. This approach shows excellence selectivity towards the detection of Cd2+ when comparing to other cation. The proposed CD sensor provides low limit detection limits around 70 µM and can be used with real water samples with satisfactory results.

Keywords: circular dichroism sensor, quantum dots, enaniomer, in-situ generation, chemical sensor, heavy metal ion

Procedia PDF Downloads 367
5844 Optimal Design of Composite Patch for a Cracked Pipe by Utilizing Genetic Algorithm and Finite Element Method

Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi

Abstract:

Composite patching is a common way for reinforcing the cracked pipes and cylinders. The effects of composite patch reinforcement on fracture parameters of a cracked pipe depend on a variety of parameters such as number of layers, angle, thickness, and material of each layer. Therefore, stacking sequence optimization of composite patch becomes crucial for the applications of cracked pipes. In this study, in order to obtain the optimal stacking sequence for a composite patch that has minimum weight and maximum resistance in propagation of cracks, a coupled Multi-Objective Genetic Algorithm (MOGA) and Finite Element Method (FEM) process is proposed. This optimization process has done for longitudinal and transverse semi-elliptical cracks and optimal stacking sequences and Pareto’s front for each kind of cracks are presented. The proposed algorithm is validated against collected results from the existing literature.

Keywords: multi objective optimization, pareto front, composite patch, cracked pipe

Procedia PDF Downloads 314
5843 By-Product Alcohol: Fusel Oil as an Alternative Fuel in Spark Ignition Engine

Authors: Omar Awad, R. Mamat, F. Yusop, M. M. Noor, I. M. Yusri

Abstract:

Fusel oil is a by-product obtained through the fermentation of some agricultural products. The fusel oil properties are closer to other alternative combustible types and the limited number of studies on the use of fusel oil as an alcohol derivative in SI engines constitutes to the base of this study. This paper experimentally examined the impacts of a by-product of alcohol, which is fusel oil by blending it with gasoline, on engine performance, combustion characteristics, and emissions in a 4-cylinder SI engine. The test was achieved at different engine speeds and a 60 % throttle valve (load). As results, brake power, BTE, and BSFC of F10 are higher at all engine speeds. Maximum engine BTE was 33.9%, at the lowest BSFC with F10. Moreover, it is worth seeing that the F10 under rich air-fuel ratio has less variation of COVIMEP compared to the F20 and gasoline. F10 represents shorter combustion duration, thereby, the engine power increased. NOx emission for F10 at 4500 rpm was lower than gasoline. The highest value of HC emission is obtained with F10 compared to gasoline and F20 with an average increase of 11% over the engine speed range. CO and CO2 emissions increased when using fusel oil blends.

Keywords: fusel oil, spark ignition engine, by-product alcohol, combustion characteristics, engine emissions, alternative fuel

Procedia PDF Downloads 476
5842 Medical Experience: Usability Testing of Displaying Computed Tomography Scans and Magnetic Resonance Imaging in Virtual and Augmented Reality for Accurate Diagnosis

Authors: Alyona Gencheva

Abstract:

The most common way to study diagnostic results is using specialized programs at a stationary workplace. Magnetic Resonance Imaging is presented in a two-dimensional (2D) format, and Computed Tomography sometimes looks like a three-dimensional (3D) model that can be interacted with. The main idea of the research is to compare ways of displaying diagnostic results in virtual reality that can help a surgeon during or before an operation in augmented reality. During the experiment, the medical staff examined liver vessels in the abdominal area and heart boundaries. The search time and detection accuracy were measured on black-and-white and coloured scans. Usability testing in virtual reality shows convenient ways of interaction like hand input, voice activation, displaying risk to the patient, and the required number of scans. The results of the experiment will be used in the new C# program based on Magic Leap technology.

Keywords: augmented reality, computed tomography, magic leap, magnetic resonance imaging, usability testing, VTE risk

Procedia PDF Downloads 117
5841 Passengers’ Behavior Analysis under the Public Transport Disruption: An Agent-Based Simulation

Authors: M. Rahimi, F. Corman

Abstract:

This paper study the travel behavior of passengers in a public transport disruption under information provision strategies. We develop a within-day approach for multi-agent simulation to evaluate the behavior of the agents, under comprehensive scenarios through various information exposure, equilibrium, and non-equilibrium scenarios. In particular, we quantify the effects of information strategies in disruption situation on passengers’ satisfaction, number of involved agents, and the caused delay. An agent-based micro-simulation model (MATSim) is applied for the city of Zürich, Switzerland, for the purpose of activity-based simulation in a multimodal network. Statistic outcome is analysed for all the agents who may be involved in the disruption. Agents’ movement in the public transport network illustrates agents’ adaptations to available information about the disruption. Agents’ delays and utility reveal that information significantly affects agents’ satisfaction and delay in public transport disruption. Besides, while the earlier availability of the information causes the fewer consequent delay for the involved agents, however, it also leads to more amount of affected agents.

Keywords: agent-based simulation, disruption management, passengers’ behavior simulation, public transport

Procedia PDF Downloads 157
5840 Delineating Subsurface Linear Features and Faults Under Sedimentary Cover in the Bahira Basin Using Integrated Gravity and Magnetic Data

Authors: M. Lghoul, N. El Goumi, M. Guernouche

Abstract:

In order to predict the structural and tectonic framework of the Bahira basin and to have a 3D geological modeling of the basin, an integrated multidisciplinary work has been conducted using gravity, magnetic and geological data. The objective of the current study is delineating the subsurfacefeatures, faults, and geological limits, using airborne magnetic and gravity data analysis of the Bahira basin. To achieve our goal, we have applied different enhanced techniques on magnetic and gravity data: power spectral analysis techniques, reduction to pole (RTP), upward continuation, analytical signal, tilt derivative, total horizontal derivative, 3D Euler deconvolutionand source parameter imagining. The major lineaments/faults trend are: NE–SW, NW-SE, ENE–WSW, and WNW–ESE. The 3D Euler deconvolution analysis highlighted a number of fault trend, mainly in the ENE-WSW, WNW-ESE directions. The depth tothe top of the basement sources in the study area ranges between 200 m, in the southern and northern part of the Bahira basin, to 5000 m located in the Eastern part of the basin.

Keywords: magnetic, gravity, structural trend, depth to basement

Procedia PDF Downloads 137
5839 Effect of Monotonically Decreasing Parameters on Margin Softmax for Deep Face Recognition

Authors: Umair Rashid

Abstract:

Normally softmax loss is used as the supervision signal in face recognition (FR) system, and it boosts the separability of features. In the last two years, a number of techniques have been proposed by reformulating the original softmax loss to enhance the discriminating power of Deep Convolutional Neural Networks (DCNNs) for FR system. To learn angularly discriminative features Cosine-Margin based softmax has been adjusted as monotonically decreasing angular function, that is the main challenge for angular based softmax. On that issue, we propose monotonically decreasing element for Cosine-Margin based softmax and also, we discussed the effect of different monotonically decreasing parameters on angular Margin softmax for FR system. We train the model on publicly available dataset CASIA- WebFace via our proposed monotonically decreasing parameters for cosine function and the tests on YouTube Faces (YTF, Labeled Face in the Wild (LFW), VGGFace1 and VGGFace2 attain the state-of-the-art performance.

Keywords: deep convolutional neural networks, cosine margin face recognition, softmax loss, monotonically decreasing parameter

Procedia PDF Downloads 107
5838 Evaluation of Illegal Hunting of Red Deer and Conservation Policy of Department of Environment in Iran

Authors: Tahere Fazilat

Abstract:

Caspian red deer or maral (Cervus elaphus maral) is the largest type of deer in iran. Maral in the past has lived in the north forests of Iran from the Caspian sea coast, Alborz mountains chain and oak forest of Zagros margin from the Azarbaijan up to fars province. However, the generation of them was completely destroyed in the north west and west of Iran. According to reports about 50 years and out of reach of humans. In the present studies, data were collected from 2004 to 2014 in the Mazandaran state Hyrcanian forest by means of guard of environment and justiciary office of department of environment of Mazandaran in this process the all arrested illegal hunting of red deer and the population census, estimation and the correlation of these data was assayed. We provide a first evaluation of how suitable these methods are by comparing the results with population estimates obtained using cohort analysis, and by analyzing the within-season variation in number of seen deer. The data gave us the future of red deer in northern forest of Iran and the results of policy of department of environment in Iran in red deer conservation.

Keywords: illegal hunting, red deer, census, concervation

Procedia PDF Downloads 555
5837 Compressible Lattice Boltzmann Method for Turbulent Jet Flow Simulations

Authors: K. Noah, F.-S. Lien

Abstract:

In Computational Fluid Dynamics (CFD), there are a variety of numerical methods, of which some depend on macroscopic model representatives. These models can be solved by finite-volume, finite-element or finite-difference methods on a microscopic description. However, the lattice Boltzmann method (LBM) is considered to be a mesoscopic particle method, with its scale lying between the macroscopic and microscopic scales. The LBM works well for solving incompressible flow problems, but certain limitations arise from solving compressible flows, particularly at high Mach numbers. An improved lattice Boltzmann model for compressible flow problems is presented in this research study. A higher-order Taylor series expansion of the Maxwell equilibrium distribution function is used to overcome limitations in LBM when solving high-Mach-number flows. Large eddy simulation (LES) is implemented in LBM to simulate turbulent jet flows. The results have been validated with available experimental data for turbulent compressible free jet flow at subsonic speeds.

Keywords: compressible lattice Boltzmann method, multiple relaxation times, large eddy simulation, turbulent jet flows

Procedia PDF Downloads 277
5836 How Does Vicia faba-rhizobia Symbiosis Improve Its Performance under Low Phosphorus Availability?

Authors: B. Makoudi, R. Ghanimi, M. Mouradi, A. Kabbadj, M. Farissi, J. J. Drevon, C. Ghoulam

Abstract:

This work focuses on the responses of Vicia fabarhizobia symbiosis to phosphorus deficiency and their contribution to tolerate this constraint. The study was carried out on four faba bean varieties, Aguadulce, Alfia, Luz Otono, and Reina Mora submitted to two phosphorus treatments, deficient and sufficient and cultivated under field and greenhouse hydroaeroponic culture. Plants were harvested at flowering stage for growth, nodulation and phosphorus content assessment. Phosphatases in nodules and rhizospheric soil were analyzed. The impact of phosphorus deficiency on yield component was assessed at maturity stage. Under field conditions, phosphorus deficiency affected negatively nodule biomass and nodule phosphorus content with Alfia and Reina Mora showing the highest biomass reduction. The phosphatase activities in nodules and rhizospheric soil were increased under phosphorus deficiency. At maturity stage, under soil low available phosphorus, the pods number and 100 seeds weight were reduced. The genotypic variation was evident for almost all tested parameters.

Keywords: faba bean, phosphorus, rhizobia, yield

Procedia PDF Downloads 456
5835 Sino-Russian Cooperation in the Arctic (Based on the Materials of the Russian Press)

Authors: Cui Long (Allen)

Abstract:

The role of the Arctic in world politics and international relations has increased significantly over the past decades. With its large natural resources, the Arctic region has important geopolitical, strategic, and economic significance. All this determines the interest in it not only of the Arctic states but also of states located far from the Arctic. One of these states is the People's Republic of China. Relations between China and Russia in recent decades have been built on the basis of strategic partnership. Joint projects in the Arctic have become the most important priority area of this partnership. These are projects in the transport and energy fields. A large number of works by Russian scientists are devoted to the Sino-Russian Arctic cooperation. Most authors consider cooperation as a guarantee of stability for China and Russia in a globalized world. However, there are authors who believe that there are separate contradictions in the relations between the Arctic and non-Arctic countries. In their opinion, China sometimes acts as a competitor, and its activities become expansionist. In general, according to the Russian authors, Sino-Russian cooperation is mutually beneficial and is under development. China and Russia have a long way to go in the issue of sustainable development of the Arctic.

Keywords: People’s Republic of China, Russian Federation, Arctic, historiography

Procedia PDF Downloads 74
5834 Analyzing the Factors Effecting Ceramic Porosity Using Integrated Taguchi-Fuzzy Method

Authors: Enes Furkan Erkan, Özer Uygun, Halil Ibrahim Demir, Zeynep Demir

Abstract:

Companies require increase in quality perception level of their products due to competitive conditions. As a result, the tendency to quality and researches to develop the quality are increasing day by day. Cost and time constraints are the biggest problems that companies face in their quality improvement efforts. In this study, factors that affect the porosity of ceramic products are determined and analyzed in a factory producing ceramic tiles. Then, Taguchi method is used in the design phase in order to decrease the number of tests to be performed by means of orthogonal sequences. The most important factors affecting the porosity of ceramic tiles are determined using Taguchi and ANOVA analysis. Based on the analyses, the most affecting factors are determined to be used in the fuzzy implementation stage. Then, the fuzzy rules were established with the factors affecting porosity by the experts’ opinion. Thus, porosity result could be obtained not only for the specified factor levels but also for intermediate values. In this way, it has been provided convenience to the factory in terms of cost and quality improvement.

Keywords: fuzzy, porosity, Taguchi Method, Taguchi-Fuzzy

Procedia PDF Downloads 443
5833 Energy-Efficient Contact Selection Method for CARD in Wireless Ad-Hoc Networks

Authors: Mehdi Assefi, Keihan Hataminezhad

Abstract:

One of the efficient architectures for exploring the resources in wireless ad-hoc networks is contact-based architecture. In this architecture, each node assigns a unique zone for itself and each node keeps all information from inside the zone, as well as some from outside the zone, which is called contact. Reducing the overlap between different zones of a node and its contacts increases its performance, therefore Edge Method (EM) is designed for this purpose. Contacts selected by EM do not have any overlap with their sources, but for choosing the contact a vast amount of information must be transmitted. In this article, we will offer a new protocol for contact selection, which is called PEM. The objective would be reducing the volume of transmitted information, using Non-Uniform Dissemination Probabilistic Protocols. Consumed energy for contact selection is a function of the size of transmitted information between nodes. Therefore, by reducing the content of contact selection message using the PEM will decrease the consumed energy. For evaluation of the PEM we applied the simulation method. Results indicated that PEM consumes less energy compared to EM, and by increasing the number of nodes (level of nodes), performance of PEM will improve in comparison with EM.

Keywords: wireless ad-hoc networks, contact selection, method for CARD, energy-efficient

Procedia PDF Downloads 294
5832 Human Machine Interface for Controlling a Robot Using Image Processing

Authors: Ambuj Kumar Gautam, V. Vasu

Abstract:

This paper introduces a head movement based Human Machine Interface (HMI) that uses the right and left movements of head to control a robot motion. Here we present an approach for making an effective technique for real-time face orientation information system, to control a robot which can be efficiently used for Electrical Powered Wheelchair (EPW). Basically this project aims at application related to HMI. The system (machine) identifies the orientation of the face movement with respect to the pixel values of image in a certain areas. Initially we take an image and divide that whole image into three parts on the basis of its number of columns. On the basis of orientation of face, maximum pixel value of approximate same range of (R, G, and B value of a pixel) lie in one of divided parts of image. This information we transfer to the microcontroller through serial communication port and control the motion of robot like forward motion, left and right turn and stop in real time by using head movements.

Keywords: electrical powered wheelchair (EPW), human machine interface (HMI), robotics, microcontroller

Procedia PDF Downloads 293
5831 Alternating Electric fields-Induced Senescence in Glioblastoma

Authors: Eun Ho Kim

Abstract:

Innovations have conjured up a mode of treating GBM cancer cells in the newly diagnosed patients in a period of 4.9 months at an improved median OS, which brings along only a few minor side effects in the phase III of the clinical trial. This mode has been termed the Alternating Electric Fields (AEF). The study at hand is aimed at determining whether the AEF treatment is beneficial in sensitizing the GBM cancer cells through the process of increasing the AEF –induced senescence. The methodology to obtain the findings for this research ranged across various components, such as obtaining and testing SA-β-gal staining, flow cytometry, Western blotting, morphology, and Positron Emission Tomography (PET) / Computed Tomography (CT), immunohistochemical staining and microarray. The number of cells that displayed a senescence-specific morphology and positive SA-ß-Gal activity gradually increased up to 5 days. These results suggest that p16, p21 and p27 are essential regulators of AEF -induced senescence via NF-κB activation. The results showed that the AEF treatment is functional in enhancing the AEF –induced senescence in the GBM cells via an apoptosis- independent mechanism. This research concludes that this mode of treatment is a trustworthy protocol that can be effectively employed to overcome the limitations of the conventional mode of treatment on GBM.

Keywords: alternating electric fields, senescence, glioblastoma, cell death

Procedia PDF Downloads 98
5830 Application of Lean Manufacturing Tools in Hot Asphalt Production

Authors: S. Bayona, J. Nunez, D. Paez, C. Diaz

Abstract:

The application of Lean manufacturing tools continues to be an effective solution for increasing productivity, reducing costs and eliminating waste in the manufacture of goods and services. This article analyzes the production process of a hot asphalt manufacturing company from an administrative and technical perspective. Three main phases were analyzed, the first phase was related to the determination of the risk priority number of the main operations in asphalt mix production process by an FMEA (Failure Mode Effects Analysis), in the second phase the Value Stream Mapping (VSM) of the production line was performed and in the third phase a SWOT (Strengths, Weaknesses Opportunities, Threats) matrix was constructed. Among the most valued failure modes were the lack training of workers in occupational safety and health issues, the lack of signaling and classification of granulated material, and the overweight of vehicles loaded. The analysis of the results in the three phases agree on the importance of training operational workers, improve communication with external actors in order to minimize delays in material orders and strengthen control suppliers.

Keywords: asphalt, lean manufacturing, productivity, process

Procedia PDF Downloads 121
5829 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent

Authors: Zhifeng Kong

Abstract:

Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.

Keywords: over-parameterization, rectified linear units ReLU, convergence, gradient descent, neural networks

Procedia PDF Downloads 146
5828 Climate Change Implications on Occupational Health and Productivity in Tropical Countries: Study Results from India

Authors: Vidhya Venugopal, Jeremiah Chinnadurai, Rebekah A. I. Lucas, Tord Kjellstrom, Bruno Lemke

Abstract:

Introduction: The effects of climate change (CC) are largely discussed across the globe in terms of impacts on the environment and the general population, but the impacts on workers remain largely unexplored. The predicted rise in temperatures and heat events in the CC scenario have health implications on millions of workers in physically exerting jobs. The current health and productivity risks associated with heat exposures are characterized, future risk estimates as temperature rises and recommendations towards developing protective and preventive occupational health and safety guidelines for India are discussed. Methodology: Cross-sectional studies were conducted in several occupational sectors with workers engaged in moderate to heavy labor (n=1580). Quantitative data on heat exposures (WBGT°C), physiological heat strain indicators viz., Core temperature (CBT), Urine specific gravity (USG), Sweat rate (SwR) and qualitative data on heat-related health symptoms and productivity losses were collected. Data were analyzed for associations between heat exposures, health and productivity outcomes related to heat stress. Findings: Heat conditions exceeded the Threshold Limit Value (TLV) for safe manual work in 66% of the workers across several sectors (Avg.WBGT of 28.7°C±3.1°C). Widespread concerns about heat-related health outcomes (86%) were prevalent among workers exposed to high TLVs, with excessive sweating, fatigue and tiredness being commonly reported by workers. The heat stress indicators, core temperature (14%), Sweat rate (8%) and USG (9%), were above normal levels in the study population. A significant association was found between rise in Core Temperatures and WBGT exposures (p=0.000179) Elevated USG and SwR in the worker population indicate moderate dehydration, with potential risks of developing heat-related illnesses. In a steel industry with high heat exposures, an alarming 9% prevalence of kidney/urogenital anomalies was observed in a young workforce. Heat exposures above TLVs were associated with significantly increased odds of various adverse health outcomes (OR=2.43, 95% CI 1.88 to 3.13, p-value = <0.0001) and productivity losses (OR=1.79, 95% CI 1.32 to 2.4, p-value = 0.0002). Rough estimates for the number of workers who would be subjected to higher than TLV levels in the various RCP scenarios are RCP2.6 =79%, RCP4.5 & RCP6 = 81% and at RCP 8.5 = 85%. Rising temperatures due to CC has the capacity to further reduce already compromised health and productivity by subjecting the workers to increased heat exposures in the RCP scenarios are of concern for the country’s occupational health and economy. Conclusion: The findings of this study clearly identify that health protection from hot weather will become increasingly necessary in the Indian subcontinent and understanding the various adaptation techniques needs urgent attention. Further research with a multi-targeted approach to develop strategies for implementing interventions to protect the millions of workers is imperative. Approaches to include health aspects of climate change within sectoral and climate change specific policies should be encouraged, via a number of mechanisms, such as the “Health in All Policies” approach to avert adverse health and productivity consequences as climate change proceeds.

Keywords: heat stress, occupational health, productivity loss, heat strain, adverse health outcomes

Procedia PDF Downloads 326
5827 Face Recognition Using Eigen Faces Algorithm

Authors: Shweta Pinjarkar, Shrutika Yawale, Mayuri Patil, Reshma Adagale

Abstract:

Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this, demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application. Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this , demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application.

Keywords: face detection, face recognition, eigen faces, algorithm

Procedia PDF Downloads 364
5826 Becoming a Shakti: An Analysis of Western Women's Experiences of Tantra Practices

Authors: Caroline Jones

Abstract:

Research over the last decade suggests that there have been distinct changes in both women’s sexual behaviour and attitudes towards female sexuality in the UK. Areas such as discussing sex, participating in sexual activity outside of traditional monogamous relationships, and engaging in boudoir photography have all been explored by researchers. Women’s participation in tantric practices, however, is a relatively unexplored area of sexuality, despite an increasing number of Tantra schools opening in the UK. Tantra is a practice in which women are considered to have a higher consciousness than men, where the sexual role of women is deemed to be very different to a traditional Western sexually passive role. This research looks at this area, and is based on in-depth, semi-structured, thematically analysed interviews with women who have participated in tantric workshops and/or retreats across the country. The interviews investigate why women engage with such practices, what they feel they gain from the experience, and how shifting notions of appropriate sexual roles for women impact on their sexuality and life generally. While Tantra is still a minority activity in the UK, the findings shed light on not only these areas but also on women’s constructions of their sexuality, their relationships with their bodies and sexualities, and ways in which they express and engage with changing notions of female sexuality.

Keywords: sexuality, Tantra, gender, Shakti

Procedia PDF Downloads 415
5825 Adaptive Kaman Filter for Fault Diagnosis of Linear Parameter-Varying Systems

Authors: Rajamani Doraiswami, Lahouari Cheded

Abstract:

Fault diagnosis of Linear Parameter-Varying (LPV) system using an adaptive Kalman filter is proposed. The LPV model is comprised of scheduling parameters, and the emulator parameters. The scheduling parameters are chosen such that they are capable of tracking variations in the system model as a result of changes in the operating regimes. The emulator parameters, on the other hand, simulate variations in the subsystems during the identification phase and have negligible effect during the operational phase. The nominal model and the influence vectors, which are the gradient of the feature vector respect to the emulator parameters, are identified off-line from a number of emulator parameter perturbed experiments. A Kalman filter is designed using the identified nominal model. As the system varies, the Kalman filter model is adapted using the scheduling variables. The residual is employed for fault diagnosis. The proposed scheme is successfully evaluated on simulated system as well as on a physical process control system.

Keywords: identification, linear parameter-varying systems, least-squares estimation, fault diagnosis, Kalman filter, emulators

Procedia PDF Downloads 504