Search results for: fuzzy genetic network programming
3258 In silico Comparative Analysis of Chloroplast Genome (cpDNA) and Some Individual Genes (rbcL and trnH-psbA) in Pooideae Subfamily Members
Authors: Ibrahim Ilker Ozyigit, Ertugrul Filiz, Ilhan Dogan
Abstract:
An in silico analysis of Brachypodium distachyon, Triticum aestivum, Festuca arundinacea, Lolium perenne, Hordeum vulgare subsp. vulgare of the Pooideaea was performed based on complete chloroplast genomes including rbcL coding and trnH-psbA intergenic spacer regions alone to compare phylogenetic resolving power. Neighbor-joining, Minimum Evolution, and Unweighted Pair Group Method with arithmetic mean methods were used to reconstruct phylogenies with the highest bootstrap supported the obtained data from whole chloroplast genome sequence. The highest and lowest values from nucleotide diversity (π) analysis were found to be 0.315813 and 0.043495 in rbcL coding region in chloroplast genome and complete chloroplast genome, respectively. The highest transition/transversion bias (R) value was recorded as 1.384 in complete chloroplast genomes. F. arudinacea-L. perenne clade was uncovered in all phylogenies. Sequences of rbcL and trnH-psbA regions were not able to resolve the Pooideae phylogenies due to lack of genetic variation.Keywords: chloroplast DNA, Pooideae, phylogenetic analysis, rbcL, trnH-psbA
Procedia PDF Downloads 3813257 Intrusion Detection Techniques in NaaS in the Cloud: A Review
Authors: Rashid Mahmood
Abstract:
The network as a service (NaaS) usage has been well-known from the last few years in the many applications, like mission critical applications. In the NaaS, prevention method is not adequate as the security concerned, so the detection method should be added to the security issues in NaaS. The authentication and encryption are considered the first solution of the NaaS problem whereas now these are not sufficient as NaaS use is increasing. In this paper, we are going to present the concept of intrusion detection and then survey some of major intrusion detection techniques in NaaS and aim to compare in some important fields.Keywords: IDS, cloud, naas, detection
Procedia PDF Downloads 3273256 Improving Lane Detection for Autonomous Vehicles Using Deep Transfer Learning
Authors: Richard O’Riordan, Saritha Unnikrishnan
Abstract:
Autonomous Vehicles (AVs) are incorporating an increasing number of ADAS features, including automated lane-keeping systems. In recent years, many research papers into lane detection algorithms have been published, varying from computer vision techniques to deep learning methods. The transition from lower levels of autonomy defined in the SAE framework and the progression to higher autonomy levels requires increasingly complex models and algorithms that must be highly reliable in their operation and functionality capacities. Furthermore, these algorithms have no room for error when operating at high levels of autonomy. Although the current research details existing computer vision and deep learning algorithms and their methodologies and individual results, the research also details challenges faced by the algorithms and the resources needed to operate, along with shortcomings experienced during their detection of lanes in certain weather and lighting conditions. This paper will explore these shortcomings and attempt to implement a lane detection algorithm that could be used to achieve improvements in AV lane detection systems. This paper uses a pre-trained LaneNet model to detect lane or non-lane pixels using binary segmentation as the base detection method using an existing dataset BDD100k followed by a custom dataset generated locally. The selected roads will be modern well-laid roads with up-to-date infrastructure and lane markings, while the second road network will be an older road with infrastructure and lane markings reflecting the road network's age. The performance of the proposed method will be evaluated on the custom dataset to compare its performance to the BDD100k dataset. In summary, this paper will use Transfer Learning to provide a fast and robust lane detection algorithm that can handle various road conditions and provide accurate lane detection.Keywords: ADAS, autonomous vehicles, deep learning, LaneNet, lane detection
Procedia PDF Downloads 1103255 Pharmacokinetics of First-Line Tuberculosis Drugs in South African Patients from Kwazulu-Natal: Effects of Pharmacogenetic Variation on Rifampicin and Isoniazid Concentrations
Authors: Anushka Naidoo, Veron Ramsuran, Maxwell Chirehwa, Paolo Denti, Kogieleum Naidoo, Helen McIlleron, Nonhlanhla Yende-Zuma, Ravesh Singh, Sinaye Ngcapu, Nesri Padayatachi
Abstract:
Background: Despite efforts to introduce new drugs and shorter drug regimens for drug-susceptible tuberculosis (TB), the standard first-line treatment has not changed in over 50 years. Rifampicin, isoniazid, and pyrazinamide are critical components of the current standard treatment regimens. Some studies suggest that microbiologic failure and acquired drug resistance are primarily driven by low drug concentrations that result from pharmacokinetic (PK) variability independent of adherence to treatment. Wide between-patient pharmacokinetic variability for rifampin, isoniazid, and pyrazinamide has been reported in prior studies. There may be several reasons for this variability. However, genetic variability in genes coding for drug metabolizing and transporter enzymes have been shown to be a contributing factor for variable tuberculosis drug exposures. Objective: We describe the pharmacokinetics of first-line TB drugs rifampicin, isoniazid, and pyrazinamide and assess the effect of genetic variability in relevant selected drug metabolizing and transporter enzymes on pharmacokinetic parameters of isoniazid and rifampicin. Methods: We conducted the randomized-controlled Improving retreatment success TB trial in Durban, South Africa. The drug regimen included rifampicin, isoniazid, and pyrazinamide. Drug concentrations were measured in plasma, and concentration-time data were analysed using nonlinear-mixed-effects models to quantify the effects of relevant covariates and single nucleotide polymorphisms (SNP’s) of drug metabolizing and transporter genes on rifampicin, isoniazid and pyrazinamide exposure. A total of 25 SNP’s: four NAT2 (used to determine acetylator status), four SLCO1B1, three Pregnane X receptor (NR1), six ABCB1 and eight UGT1A, were selected for analysis in this study. Genotypes were determined for each of the SNP’s using a TaqMan® Genotyping OpenArray™. Results: Among fifty-eight patients studied; 41 (70.7%) were male, 97% black African, 42 (72.4%) HIV co-infected and 40 (95%) on efavirenz-based ART. Median weight, fat-free mass (FFM), and age at baseline were 56.9 kg (interquartile range, IQR: 51.1-65.2), 46.8 kg (IQR: 42.5-50.3) and 37 years (IQR: 31-42), respectively. The pharmacokinetics of rifampicin and pyrazinamide was best described using one-compartment models with first-order absorption and elimination, while for isoniazid two-compartment disposition was used. The median (interquartile range: IQR) AUC (h·mg/L) and Cmax (mg/L) for rifampicin, isoniazid, and pyrazinamide were; 25.62 (23.01-28.53) and 4.85 (4.36-5.40), 10.62 (9.20-12.25) and 2.79 (2.61-2.97), 345.74 (312.03-383.10) and 28.06 (25.01-31.52), respectively. Eighteen percent of patients were classified as rapid acetylators, and 34% and 43% as slow and intermediate acetylators, respectively. Rapid and intermediate acetylator status based on NAT 2 genotype resulted in 2.3 and 1.6 times higher isoniazid clearance than slow acetylators. We found no effects of the SLCO1B1 genotypes on rifampicin pharmacokinetics. Conclusion: Plasma concentrations of rifampicin, isoniazid, and pyrazinamide were low overall in our patients. Isoniazid clearance was high overall and as expected higher in rapid and intermediate acetylators resulting in lower drug exposures. In contrast to reports from previous South African or Ugandan studies, we did not find any effects of the SLCO1B1 or other genotypes tested on rifampicin PK. However, our findings are in keeping with more recent studies from Malawi and India emphasizing the need for geographically diverse and adequately powered studies. The clinical relevance of the low tuberculosis drug concentrations warrants further investigation.Keywords: rifampicin, isoniazid pharmacokinetics, genetics, NAT2, SLCO1B1, tuberculosis
Procedia PDF Downloads 1893254 Identifying Autism Spectrum Disorder Using Optimization-Based Clustering
Authors: Sharifah Mousli, Sona Taheri, Jiayuan He
Abstract:
Autism spectrum disorder (ASD) is a complex developmental condition involving persistent difficulties with social communication, restricted interests, and repetitive behavior. The challenges associated with ASD can interfere with an affected individual’s ability to function in social, academic, and employment settings. Although there is no effective medication known to treat ASD, to our best knowledge, early intervention can significantly improve an affected individual’s overall development. Hence, an accurate diagnosis of ASD at an early phase is essential. The use of machine learning approaches improves and speeds up the diagnosis of ASD. In this paper, we focus on the application of unsupervised clustering methods in ASD as a large volume of ASD data generated through hospitals, therapy centers, and mobile applications has no pre-existing labels. We conduct a comparative analysis using seven clustering approaches such as K-means, agglomerative hierarchical, model-based, fuzzy-C-means, affinity propagation, self organizing maps, linear vector quantisation – as well as the recently developed optimization-based clustering (COMSEP-Clust) approach. We evaluate the performances of the clustering methods extensively on real-world ASD datasets encompassing different age groups: toddlers, children, adolescents, and adults. Our experimental results suggest that the COMSEP-Clust approach outperforms the other seven methods in recognizing ASD with well-separated clusters.Keywords: autism spectrum disorder, clustering, optimization, unsupervised machine learning
Procedia PDF Downloads 1213253 Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence
Authors: Getaneh Berie Tarekegn
Abstract:
A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 763252 Remote Sensing and GIS Based Methodology for Identification of Low Crop Productivity in Gautam Buddha Nagar District
Authors: Shivangi Somvanshi
Abstract:
Poor crop productivity in salt-affected environment in the country is due to insufficient and untimely canal supply to agricultural land and inefficient field water management practices. This could further degrade due to inadequate maintenance of canal network, ongoing secondary soil salinization and waterlogging, worsening of groundwater quality. Large patches of low productivity in irrigation commands are occurring due to waterlogging and salt-affected soil, particularly in the scarcity rainfall year. Satellite remote sensing has been used for mapping of areas of low crop productivity, waterlogging and salt in irrigation commands. The spatial results obtained for these problems so far are less reliable for further use due to rapid change in soil quality parameters over the years. The existing spatial databases of canal network and flow data, groundwater quality and salt-affected soil were obtained from the central and state line departments/agencies and were integrated with GIS. Therefore, an integrated methodology based on remote sensing and GIS has been developed in ArcGIS environment on the basis of canal supply status, groundwater quality, salt-affected soils, and satellite-derived vegetation index (NDVI), salinity index (NDSI) and waterlogging index (NSWI). This methodology was tested for identification and delineation of area of low productivity in the Gautam Buddha Nagar district (Uttar Pradesh). It was found that the area affected by this problem lies mainly in Dankaur and Jewar blocks of the district. The problem area was verified with ground data and was found to be approximately 78% accurate. The methodology has potential to be used in other irrigation commands in the country to obtain reliable spatial data on low crop productivity.Keywords: remote sensing, GIS, salt affected soil, crop productivity, Gautam Buddha Nagar
Procedia PDF Downloads 2893251 Green Crypto Mining: A Quantitative Analysis of the Profitability of Bitcoin Mining Using Excess Wind Energy
Authors: John Dorrell, Matthew Ambrosia, Abilash
Abstract:
This paper employs econometric analysis to quantify the potential profit wind farms can receive by allocating excess wind energy to power bitcoin mining machines. Cryptocurrency mining consumes a substantial amount of electricity worldwide, and wind energy produces a significant amount of energy that is lost because of the intermittent nature of the resource. Supply does not always match consumer demand. By combining the weaknesses of these two technologies, we can improve efficiency and a sustainable path to mine cryptocurrencies. This paper uses historical wind energy from the ERCOT network in Texas and cryptocurrency data from 2000-2021, to create 4-year return on investment projections. Our research model incorporates the price of bitcoin, the price of the miner, the hash rate of the miner relative to the network hash rate, the block reward, the bitcoin transaction fees awarded to the miners, the mining pool fees, the cost of the electricity and the percentage of time the miner will be running to demonstrate that wind farms generate enough excess energy to mine bitcoin profitably. Excess wind energy can be used as a financial battery, which can utilize wasted electricity by changing it into economic energy. The findings of our research determine that wind energy producers can earn profit while not taking away much if any, electricity from the grid. According to our results, Bitcoin mining could give as much as 1347% and 805% return on investment with the starting dates of November 1, 2021, and November 1, 2022, respectively, using wind farm curtailment. This paper is helpful to policymakers and investors in determining efficient and sustainable ways to power our economic future. This paper proposes a practical solution for the problem of crypto mining energy consumption and creates a more sustainable energy future for Bitcoin.Keywords: bitcoin, mining, economics, energy
Procedia PDF Downloads 403250 Undersea Communications Infrastructure: Risks, Opportunities, and Geopolitical Considerations
Authors: Lori W. Gordon, Karen A. Jones
Abstract:
Today’s high-speed data connectivity depends on a vast global network of infrastructure across space, air, land, and sea, with undersea cable infrastructure (UCI) serving as the primary means for intercontinental and ‘long-haul’ communications. The UCI landscape is changing and includes an increasing variety of state actors, such as the growing economies of Brazil, Russia, India, China, and South Africa. Non-state commercial actors, such as hyper-scale content providers including Google, Facebook, Microsoft, and Amazon, are also seeking to control their data and networks through significant investments in submarine cables. Active investments by both state and non-state actors will invariably influence the growth, geopolitics, and security of this sector. Beyond these hyper-scale content providers, there are new commercial satellite communication providers. These new players include traditional geosynchronous (GEO) satellites that offer broad coverage, high throughput GEO satellites offering high capacity with spot beam technology, low earth orbit (LEO) ‘mega constellations’ – global broadband services. And potential new entrants such as High Altitude Platforms (HAPS) offer low latency connectivity, LEO constellations offer high-speed optical mesh networks, i.e., ‘fiber in the sky.’ This paper focuses on understanding the role of submarine cables within the larger context of the global data commons, spanning space, terrestrial, air, and sea networks, including an analysis of national security policy and geopolitical implications. As network operators and commercial and government stakeholders plan for emerging technologies and architectures, hedging risks for future connectivity will ensure that our data backbone will be secure for years to come.Keywords: communications, global, infrastructure, technology
Procedia PDF Downloads 913249 Vehicle Routing Problem with Mixed Fleet of Conventional and Heterogenous Electric Vehicles and Time Dependent Charging Costs
Authors: Ons Sassi, Wahiba Ramdane Cherif-Khettaf, Ammar Oulamara
Abstract:
In this paper, we consider a new real-life Heterogenous Electric Vehicle Routing Problem with Time Dependant Charging Costs and a Mixed Fleet (HEVRP-TDMF), in which a set of geographically scattered customers have to be served by a mixed fleet of vehicles composed of a heterogenous fleet of Electric Vehicles (EVs), having different battery capacities and operating costs, and Conventional Vehicles (CVs). We include the possibility of charging EVs in the available charging stations during the routes in order to serve all customers. Each charging station offers charging service with a known technology of chargers and time-dependent charging costs. Charging stations are also subject to operating time windows constraints. EVs are not necessarily compatible with all available charging technologies and a partial charging is allowed. Intermittent charging at the depot is also allowed provided that constraints related to the electricity grid are satisfied. The objective is to minimize the number of employed vehicles and then minimize the total travel and charging costs. In this study, we present a Mixed Integer Programming Model and develop a Charging Routing Heuristic and a Local Search Heuristic based on the Inject-Eject routine with three different insertion strategies. All heuristics are tested on real data instances.Keywords: charging problem, electric vehicle, heuristics, local search, optimization, routing problem
Procedia PDF Downloads 4653248 Management and Conservation of Crop Biodiversity in Karnali Mountains of Nepal
Authors: Chhabi Paudel
Abstract:
The food and nutrition security of the people of the mountain of Karnali province of Nepal is dependent on traditional crop biodiversity. The altitude range of the study area is 1800 meters to 2700 meters above sea level. The climate is temperate to alpine. Farmers are adopting subsistent oriented diversified farming systems and selected crop species, cultivars, and local production systems by their own long adaptation mechanism. The major crop species are finger millet, proso millet, foxtail millet, potato, barley, wheat, mountain rice, buckwheat, Amaranths, medicinal plants, and many vegetable species. The genetic and varietal diversity of those underutilized indigenous crops is also very high, which has sustained farming even in uneven climatic events. Biodiversity provides production synergy, inputs, and other agro-ecological services for self-sustainability. But increase in human population and urban accessibility are seen as threats to biodiversity conservation. So integrated conservation measures are suggested, including agro-tourism and other monetary benefits to the farmers who conserve the local biodiversity.Keywords: crop biodiversity, climate change, in-situ conservation, resilience, sustainability, agrotourism
Procedia PDF Downloads 1053247 Patient Scheduling Improvement in a Cancer Treatment Clinic Using Optimization Techniques
Authors: Maryam Haghi, Ivan Contreras, Nadia Bhuiyan
Abstract:
Chemotherapy is one of the most popular and effective cancer treatments offered to patients in outpatient oncology centers. In such clinics, patients first consult with an oncologist and the oncologist may prescribe a chemotherapy treatment plan for the patient based on the blood test results and the examination of the health status. Then, when the plan is determined, a set of chemotherapy and consultation appointments should be scheduled for the patient. In this work, a comprehensive mathematical formulation for planning and scheduling different types of chemotherapy patients over a planning horizon considering blood test, consultation, pharmacy and treatment stages has been proposed. To be more realistic and to provide an applicable model, this study is focused on a case study related to a major outpatient cancer treatment clinic in Montreal, Canada. Comparing the results of the proposed model with the current practice of the clinic under study shows significant improvements regarding different performance measures. These major improvements in the patients’ schedules reveal that using optimization techniques in planning and scheduling of patients in such highly demanded cancer treatment clinics is an essential step to provide a good coordination between different involved stages which ultimately increases the efficiency of the entire system and promotes the staff and patients' satisfaction.Keywords: chemotherapy patients scheduling, integer programming, integrated scheduling, staff balancing
Procedia PDF Downloads 1783246 BIM-Based Tool for Sustainability Assessment and Certification Documents Provision
Authors: Taki Eddine Seghier, Mohd Hamdan Ahmad, Yaik-Wah Lim, Samuel Opeyemi Williams
Abstract:
The assessment of building sustainability to achieve a specific green benchmark and the preparation of the required documents in order to receive a green building certification, both are considered as major challenging tasks for green building design team. However, this labor and time-consuming process can take advantage of the available Building Information Modeling (BIM) features such as material take-off and scheduling. Furthermore, the workflow can be automated in order to track potentially achievable credit points and provide rating feedback for several design options by using integrated Visual Programing (VP) to handle the stored parameters within the BIM model. Hence, this study proposes a BIM-based tool that uses Green Building Index (GBI) rating system requirements as a unique input case to evaluate the building sustainability in the design stage of the building project life cycle. The tool covers two key models for data extraction, firstly, a model for data extraction, calculation and the classification of achievable credit points in a green template, secondly, a model for the generation of the required documents for green building certification. The tool was validated on a BIM model of residential building and it serves as proof of concept that building sustainability assessment of GBI certification can be automatically evaluated and documented through BIM.Keywords: green building rating system, GBRS, building information modeling, BIM, visual programming, VP, sustainability assessment
Procedia PDF Downloads 3293245 Constructing a Probabilistic Ontology from a DBLP Data
Authors: Emna Hlel, Salma Jamousi, Abdelmajid Ben Hamadou
Abstract:
Every model for knowledge representation to model real-world applications must be able to cope with the effects of uncertain phenomena. One of main defects of classical ontology is its inability to represent and reason with uncertainty. To remedy this defect, we try to propose a method to construct probabilistic ontology for integrating uncertain information in an ontology modeling a set of basic publications DBLP (Digital Bibliography & Library Project) using a probabilistic model.Keywords: classical ontology, probabilistic ontology, uncertainty, Bayesian network
Procedia PDF Downloads 3503244 Bioinformatic Prediction of Hub Genes by Analysis of Signaling Pathways, Transcriptional Regulatory Networks and DNA Methylation Pattern in Colon Cancer
Authors: Ankan Roy, Niharika, Samir Kumar Patra
Abstract:
Anomalous nexus of complex topological assemblies and spatiotemporal epigenetic choreography at chromosomal territory may forms the most sophisticated regulatory layer of gene expression in cancer. Colon cancer is one of the leading malignant neoplasms of the lower gastrointestinal tract worldwide. There is still a paucity of information about the complex molecular mechanisms of colonic cancerogenesis. Bioinformatics prediction and analysis helps to identify essential genes and significant pathways for monitoring and conquering this deadly disease. The present study investigates and explores potential hub genes as biomarkers and effective therapeutic targets for colon cancer treatment. Colon cancer patient sample containing gene expression profile datasets, such as GSE44076, GSE20916, and GSE37364 were downloaded from Gene Expression Omnibus (GEO) database and thoroughly screened using the GEO2R tool and Funrich software to find out common 2 differentially expressed genes (DEGs). Other approaches, including Gene Ontology (GO) and KEGG pathway analysis, Protein-Protein Interaction (PPI) network construction and hub gene investigation, Overall Survival (OS) analysis, gene correlation analysis, methylation pattern analysis, and hub gene-Transcription factors regulatory network construction, were performed and validated using various bioinformatics tool. Initially, we identified 166 DEGs, including 68 up-regulated and 98 down-regulated genes. Up-regulated genes are mainly associated with the Cytokine-cytokine receptor interaction, IL17 signaling pathway, ECM-receptor interaction, Focal adhesion and PI3K-Akt pathway. Downregulated genes are enriched in metabolic pathways, retinol metabolism, Steroid hormone biosynthesis, and bile secretion. From the protein-protein interaction network, thirty hub genes with high connectivity are selected using the MCODE and cytoHubba plugin. Survival analysis, expression validation, correlation analysis, and methylation pattern analysis were further verified using TCGA data. Finally, we predicted COL1A1, COL1A2, COL4A1, SPP1, SPARC, and THBS2 as potential master regulators in colonic cancerogenesis. Moreover, our experimental data highlights that disruption of lipid raft and RAS/MAPK signaling cascade affects this gene hub at mRNA level. We identified COL1A1, COL1A2, COL4A1, SPP1, SPARC, and THBS2 as determinant hub genes in colon cancer progression. They can be considered as biomarkers for diagnosis and promising therapeutic targets in colon cancer treatment. Additionally, our experimental data advertise that signaling pathway act as connecting link between membrane hub and gene hub.Keywords: hub genes, colon cancer, DNA methylation, epigenetic engineering, bioinformatic predictions
Procedia PDF Downloads 1353243 Mechanism of Formation, Mineralogy and Geochemistry of Iron Mineralization in M'Taguinarou North Tebessa, Algeria
Authors: Fakher Eddine Messaoudi
Abstract:
The M'Taguinarou North iron occurrence contains Iron and polymetallic mineralization (Fe-Zn-Cu), hosted in Turonian limestone. It manifests in metric clusters of goethite and hematite and in centimetre veins of smithsonite, malachite, and azurite. The genesis of this mineralization is clearly polyphased and results from the supergene processes superposed on hydrothermal phases where the Triassic diapirs probably generated the circulation of hydrothermal fluids through the sedimentary series, and the alteration of the Turonian limestone gave the formation of the hydrothermal primary ore composed of iron carbonates (siderite). Several uplift episodes affected the mineralization and the host rocks, generating the genesis of a polymetallic supergene assembly (goethite, malachite, azurite, quartz, and calcite). In M’taguinarou North, iron oxy-hydroxides are mainly observed in the form of fibrous stalactites, stalagmites, and Botroydale structures, where hematite precipitated first, followed immediately by goethite, limonite, and smithsonite. Siderite is completely absent. Subsequently, malachite, azurite, and calcite formed in the form of small veins intersecting the surrounding limestone.Keywords: mineralization, genetic model, hydrothermal iron, supergene, Tebessa, Algeria
Procedia PDF Downloads 2183242 An Inventory Management Model to Manage the Stock Level for Irregular Demand Items
Authors: Riccardo Patriarca, Giulio Di Gravio, Francesco Costantino, Massimo Tronci
Abstract:
An accurate inventory management policy acquires a crucial role in the several high-availability sectors. In these sectors, due to the high-cost of spares and backorders, an (S-1, S) replenishment policy is necessary for high-availability items. The policy enables the shipment of a substitute efficient item anytime the inventory size decreases by one. This policy can be modelled following the Multi-Echelon Technique for Recoverable Item Control (METRIC). The METRIC is a system-based technique that allows defining the optimum stock level in a multi-echelon network, adopting measures in line with the decision-maker’s perspective. The METRIC defines an availability-cost function with inventory costs and required service levels, using as inputs data about the demand trend, the supplying and maintenance characteristics of the network and the budget/availability constraints. The traditional METRIC relies on the hypothesis that a Poisson distribution well represents the demand distribution in case of items with a low failure rate. However, in this research, we will explore the effects of using a Poisson distribution to model the demand of low failure rate items characterized by an irregular demand trend. This characteristic of a demand is not included in the traditional METRIC formulation leading to the need of revising its traditional formulation. Using the CV (Coefficient of Variation) and ADI (Average inter-Demand Interval) classification, we will define the inherent flaws of Poisson-based METRIC for irregular demand items, defining an innovative ad hoc distribution which can better fit the irregular demands. This distribution will allow defining proper stock levels to reduce stocking and backorder costs due to the high irregularities in the demand trend. A case study in the aviation domain will clarify the benefits of this innovative METRIC approach.Keywords: METRIC, inventory management, irregular demand, spare parts
Procedia PDF Downloads 3513241 Genetic Improvement of Centella asiatica (Linn.) Urban. For Therapeutically Active Compounds
Authors: Dalave S. C., S. G. Auti, B. J. Apparao
Abstract:
Centella asiatica (L) Urban, commonly known as Brahmi and Mandookaparni is a valuable medicinal plant highly valued for its asiaticoside and madecassoside. It is widely used in Ayurveda and Unani systems of medicine. Attempts are made in the present investigation to improve the genotype of Centella plant that can yield higher amount of the therapeutically active compounds viz., asiaticosides and madecassosides, employing techniques of polyploidy breeding. Young developing shoots of Centella were treated with different concentrations of colchicine for varying time intervals. 0.4 % colchicine for 6 hours duration at room temperature was effective in inducing autopolyploidy in this plant. The colchicine treated plants were allowed to reproduce vegetatively for several generations in a polyhouse. The colchicine treated plants showed significant increase in plant size, fresh & dry weights, vigorous growth, broad leaves and double the number of chromosomes. HPTLC analysis of dried leaves of control and polyploid plants, even after 9th generations, revealed that the tetraploids synthesized at two times more asiaticoside and madecassoside, as compared to control, untreated diploid plants.Keywords: Centella asiatica, polyploidy, asiaticosides, madecassoside, HPTLC
Procedia PDF Downloads 2473240 Lactation Curve at Holstein Cows in Romania and Influencing Factors
Authors: Enea Danut Nicolae, Osman (Defta) Aurelia, Vidu Livia, Marginean Gheorghe, Defta Nicoleta, Moise Andrada
Abstract:
Today, as a result of population growth, there is an increase in demand for animal products; milk and dairy products are an important part of this category. Maintaining production at maximum levels for as long as possible is one of the main objectives of dairy farmers. Over the course of lactation, a cow's milk production is not uniform. During the initial stage of lactation, the cow's milk production follows an upward slope, a plateau, and then a downward slope, which is a reflection of the lactation curve. The evolution of the lactation curve is influenced by numerous factors, which are genetic, exploitation, physiological, environmental and technological. The aim of this study was to observe the lactation curve of Holstein cows in Romania and determine the extent to which they conform to the expected pattern. In addition, there has been an analysis of the factors which have an influence on this curve and the extent of this influence. In order to be able to carry out the present study, data were collected from three farms located in three different geographical areas. To highlight the findings, the data collected was then statistically processed and graphically interpreted. All the farms have only Holstein cows, which are kept in free stalls.Keywords: lactation curve, Holstein, milk production, influencing factors
Procedia PDF Downloads 643239 Using Machine-Learning Methods for Allergen Amino Acid Sequence's Permutations
Authors: Kuei-Ling Sun, Emily Chia-Yu Su
Abstract:
Allergy is a hypersensitive overreaction of the immune system to environmental stimuli, and a major health problem. These overreactions include rashes, sneezing, fever, food allergies, anaphylaxis, asthmatic, shock, or other abnormal conditions. Allergies can be caused by food, insect stings, pollen, animal wool, and other allergens. Their development of allergies is due to both genetic and environmental factors. Allergies involve immunoglobulin E antibodies, a part of the body’s immune system. Immunoglobulin E antibodies will bind to an allergen and then transfer to a receptor on mast cells or basophils triggering the release of inflammatory chemicals such as histamine. Based on the increasingly serious problem of environmental change, changes in lifestyle, air pollution problem, and other factors, in this study, we both collect allergens and non-allergens from several databases and use several machine learning methods for classification, including logistic regression (LR), stepwise regression, decision tree (DT) and neural networks (NN) to do the model comparison and determine the permutations of allergen amino acid’s sequence.Keywords: allergy, classification, decision tree, logistic regression, machine learning
Procedia PDF Downloads 3103238 Thidiazuron's Role in Murraya paniculata and Fortunella hindsii's in vitro Flowering
Authors: Hasan Basri Jumin, Mardaleni
Abstract:
Fortunella hindsii and Muraya paniculata are family members of Rutaceae and have potentially improved genetic diversity. Isolated protoplasts were cultured with media supplemented with 2.0 % glucose and 0.0, 0.001, 0.01, 0.1 or 1.0. 10.0 mg/1 thidiazuron (TDZ) and, thickened with 0.9% gelrite, and maintained under 16 h photoperiod at 52.9 μmol/m²/s light intensity. The media supplemented with 0.00 mg/l TDZ yielded the maximum plating efficiency, while 0.001 mg/l TDZ produced the highest percentage of shoot formation, approximately 80%. After being cultured on the same TDZ concentration for 12 days, the protoplasts that survived developed cell walls. Ninety days following the culture of protoplasts, Fortunella hindsii and Murraya paniculata underwent somatic embryogenesis to grow into plantlets. Thidiazuron has demonstrated efficacy in forming flower buds that grow normally. Fortunella hindsii and Murraya paniculata shoots that emerged from branch internodes flowered in vitro on half-strength MT basal media containing 0.001 to 0.01 mg/l TDZ and 2-3% sucrose after two months of culture, and they eventually went on to flower. Seventy five percent of the plants displayed flowering on medium supplemented with 0.001 mg/l TDZ. Among the segments of Fortunella hindsii and Murraya paniculata generated from branch internodes, a possible precocious and floral gradient was found.Keywords: Fortunella-hindsii, in-vitro flowering, Murraya-paniculata, protoplast, thidiazuron
Procedia PDF Downloads 553237 Prototype of an Interactive Toy from Lego Robotics Kits for Children with Autism
Authors: Ricardo A. Martins, Matheus S. da Silva, Gabriel H. F. Iarossi, Helen C. M. Senefonte, Cinthyan R. S. C. de Barbosa
Abstract:
This paper is the development of a concept of the man/robot interaction. More accurately in developing of an autistic child that have more troubles with interaction, here offers an efficient solution, even though simple; however, less studied for this public. This concept is based on code applied thought out the Lego NXT kit, built for the interpretation of the robot, thereby can create this interaction in a constructive way for children suffering with Autism.Keywords: lego NXT, interaction, BricX, autismo, ANN (Artificial Neural Network), MLP back propagation, hidden layers
Procedia PDF Downloads 5733236 Planning for Location and Distribution of Regional Facilities Using Central Place Theory and Location-Allocation Model
Authors: Danjuma Bawa
Abstract:
This paper aimed at exploring the capabilities of Location-Allocation model in complementing the strides of the existing physical planning models in the location and distribution of facilities for regional consumption. The paper was designed to provide a blueprint to the Nigerian government and other donor agencies especially the Fertilizer Distribution Initiative (FDI) by the federal government for the revitalization of the terrorism ravaged regions. Theoretical underpinnings of central place theory related to spatial distribution, interrelationships, and threshold prerequisites were reviewed. The study showcased how Location-Allocation Model (L-AM) alongside Central Place Theory (CPT) was applied in Geographic Information System (GIS) environment to; map and analyze the spatial distribution of settlements; exploit their physical and economic interrelationships, and to explore their hierarchical and opportunistic influences. The study was purely spatial qualitative research which largely used secondary data such as; spatial location and distribution of settlements, population figures of settlements, network of roads linking them and other landform features. These were sourced from government ministries and open source consortium. GIS was used as a tool for processing and analyzing such spatial features within the dictum of CPT and L-AM to produce a comprehensive spatial digital plan for equitable and judicious location and distribution of fertilizer deports in the study area in an optimal way. Population threshold was used as yardstick for selecting suitable settlements that could stand as service centers to other hinterlands; this was accomplished using the query syntax in ArcMapTM. ArcGISTM’ network analyst was used in conducting location-allocation analysis for apportioning of groups of settlements around such service centers within a given threshold distance. Most of the techniques and models ever used by utility planners have been centered on straight distance to settlements using Euclidean distances. Such models neglect impedance cutoffs and the routing capabilities of networks. CPT and L-AM take into consideration both the influential characteristics of settlements and their routing connectivity. The study was undertaken in two terrorism ravaged Local Government Areas of Adamawa state. Four (4) existing depots in the study area were identified. 20 more depots in 20 villages were proposed using suitability analysis. Out of the 300 settlements mapped in the study area about 280 of such settlements where optimally grouped and allocated to the selected service centers respectfully within 2km impedance cutoff. This study complements the giant strides by the federal government of Nigeria by providing a blueprint for ensuring proper distribution of these public goods in the spirit of bringing succor to these terrorism ravaged populace. This will ardently at the same time help in boosting agricultural activities thereby lowering food shortage and raising per capita income as espoused by the government.Keywords: central place theory, GIS, location-allocation, network analysis, urban and regional planning, welfare economics
Procedia PDF Downloads 1503235 GAILoc: Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence
Authors: Getaneh Berie Tarekegn
Abstract:
A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 803234 Efficient Callus Induction and Plant Regeneration from Mature Embryo Culture of Barley (Hordeum vulgare L.) Genotypes
Authors: Münüre Tanur Erkoyuncu, Mustafa Yorgancılar
Abstract:
Crop improvement through genetic engineering depends on effective and reproducible plant regeneration systems. Immature embryos are the most widely used explant source for in vitro regeneration in barley (Hordeum vulgare L.). However, immature embryos require the continuous growth of donor plants and the suitable stage for their culture is also certainly limited. On the other hand, mature embryos can be procured and stored easily; they can be studied throughout the year. In this study, an effective callus induction and plant regeneration were aimed to develop from mature embryos of different barley genotypes. The effect of medium (MS1 and MS2), auxin type (2,4-D, dicamba, picloram and 2,4,5-T) and concentrations (2, 4, 6 mg/l) on callus formation and effect of cytokinin type (TDZ, BAP) and concentrations (0.2, 0.5, 1.0 mg/l) on green plant regeneration were evaluated in mature embryo culture of barley. Callus and shoot formation was successful for all genotypes. By depending on genotype, MS1 is the best medium, 4 mg/l dicamba is the best growth regulator in the callus induction and MS1 is the best medium, 1 mg/l BAP is the best growth regulator in the shoot formation were determined.Keywords: barley, callus, embryo culture, mature embryo
Procedia PDF Downloads 3313233 Fuzzy Nail Cream Formula Treatment with Basic Iranian Traditional Medicine
Authors: Elahe Najafizade, Ahmad Mohammad Alkhateeb, Seyed Ali Hossein Zahraei, Iman Dianat
Abstract:
Introduction: Hangnails are short, torn, down parts of the skin surrounding the nails. At times they are very painful. The usual treatment advised is cutting the excess skin with clippers or scissors. To provide instant relief to the patients, we describe a simpler and more effective way to use surgical glue to paste them back into their original position. Method: The cream should not be on the heat; it is on the bain-marie. To achieve the desired emulsifier, 1 gram of borax was mixed in 10 grams of distilled water in a bain-marie until it melted, then stirred oserin, beeswax, and oil in the bain-marie until it melted. After that, 32 grams of distilled water was added little by little. We add and stir and gradually add the borax dissolved in 10 grams of distilled water. The bowl of cream was placed in a bowl of cold water and stirred until the cream was smooth. After that, we add gasoline, alcohol, or methylparaben preservatives. It should be noted that this amount of ingredients is enough for a 350-gram can (when we prepare the cream, we also add the extract). Result: The patient was a 40-year-old female with a hangnail problem that had been used several different creams and Vaseline, but the treatment was not useful, but after this cream was applied for treatment; the hangnail started to cure within one week, and complete treatment achieved after two weeks. Conclusion: Traditional methods with modification without using chemical substances somehow work better and safer, so research programs on them will be useful for less risky treatment procedures.Keywords: nail, cream, formula, traditional medicine
Procedia PDF Downloads 1183232 Intrusion Detection in SCADA Systems
Authors: Leandros A. Maglaras, Jianmin Jiang
Abstract:
The protection of the national infrastructures from cyberattacks is one of the main issues for national and international security. The funded European Framework-7 (FP7) research project CockpitCI introduces intelligent intrusion detection, analysis and protection techniques for Critical Infrastructures (CI). The paradox is that CIs massively rely on the newest interconnected and vulnerable Information and Communication Technology (ICT), whilst the control equipment, legacy software/hardware, is typically old. Such a combination of factors may lead to very dangerous situations, exposing systems to a wide variety of attacks. To overcome such threats, the CockpitCI project combines machine learning techniques with ICT technologies to produce advanced intrusion detection, analysis and reaction tools to provide intelligence to field equipment. This will allow the field equipment to perform local decisions in order to self-identify and self-react to abnormal situations introduced by cyberattacks. In this paper, an intrusion detection module capable of detecting malicious network traffic in a Supervisory Control and Data Acquisition (SCADA) system is presented. Malicious data in a SCADA system disrupt its correct functioning and tamper with its normal operation. OCSVM is an intrusion detection mechanism that does not need any labeled data for training or any information about the kind of anomaly is expecting for the detection process. This feature makes it ideal for processing SCADA environment data and automates SCADA performance monitoring. The OCSVM module developed is trained by network traces off line and detects anomalies in the system real time. The module is part of an IDS (intrusion detection system) developed under CockpitCI project and communicates with the other parts of the system by the exchange of IDMEF messages that carry information about the source of the incident, the time and a classification of the alarm.Keywords: cyber-security, SCADA systems, OCSVM, intrusion detection
Procedia PDF Downloads 5593231 Study of Radioactivity of Oil and Gas
Authors: Harish Aryal, Thalia Balderas, Alondra Rodriguez
Abstract:
Radioactivity present in nature possess a major challenge to public health and occupational concerns. Even at low doses, NORM can cause radiation-induced cancers, heritable diseases, genetic defects, etc. There have not been enough radiological studies and consequently, there is a lack of supportive data. In addition, there is no universal medical surveillance program for low-level doses and there is a need for NORM management guidelines for appropriate control. Naturally Occurring Radioactive Material (NORM) is present everywhere during oil/gas exploration. Currently, there is limited data available to quantify radioactivity. This research presents the study of radioactivity in different areas in the United States to be encouraged to be used for further study in Texas or similar areas within the oil and gas industry. Many materials that are found in the oil and gas industry are NORM (Naturally Occurring Radioactive Materials). The NORM is made of various types of materials, including Radium 226, Radium 228, and Radon 222. Efforts to characterize the geographic distribution of NORM have been limited by poor statistical representation in this area of study. In addition, the fate of NORM in the environment has not been fully defined, and few human health risk assessments have been conducted. To further comprehend how to measure radioactivity in oil and gas, it will be essential to understand the amount and type of radioactivity that is wasted on the water and soil of the industry.Keywords: NORM, radium 226, radon 222, radionuclides, geological formations
Procedia PDF Downloads 1003230 Advantages of Neural Network Based Air Data Estimation for Unmanned Aerial Vehicles
Authors: Angelo Lerro, Manuela Battipede, Piero Gili, Alberto Brandl
Abstract:
Redundancy requirements for UAV (Unmanned Aerial Vehicle) are hardly faced due to the generally restricted amount of available space and allowable weight for the aircraft systems, limiting their exploitation. Essential equipment as the Air Data, Attitude and Heading Reference Systems (ADAHRS) require several external probes to measure significant data as the Angle of Attack or the Sideslip Angle. Previous research focused on the analysis of a patented technology named Smart-ADAHRS (Smart Air Data, Attitude and Heading Reference System) as an alternative method to obtain reliable and accurate estimates of the aerodynamic angles. This solution is based on an innovative sensor fusion algorithm implementing soft computing techniques and it allows to obtain a simplified inertial and air data system reducing external devices. In fact, only one external source of dynamic and static pressures is needed. This paper focuses on the benefits which would be gained by the implementation of this system in UAV applications. A simplification of the entire ADAHRS architecture will bring to reduce the overall cost together with improved safety performance. Smart-ADAHRS has currently reached Technology Readiness Level (TRL) 6. Real flight tests took place on ultralight aircraft equipped with a suitable Flight Test Instrumentation (FTI). The output of the algorithm using the flight test measurements demonstrates the capability for this fusion algorithm to embed in a single device multiple physical and virtual sensors. Any source of dynamic and static pressure can be integrated with this system gaining a significant improvement in terms of versatility.Keywords: aerodynamic angles, air data system, flight test, neural network, unmanned aerial vehicle, virtual sensor
Procedia PDF Downloads 2243229 Flexible Communication Platform for Crisis Management
Authors: Jiří Barta, Tomáš Ludík, Jiří Urbánek
Abstract:
The topics of disaster and emergency management are highly debated among experts. Fast communication will help to deal with emergencies. Problem is with the network connection and data exchange. The paper suggests a solution, which allows possibilities and perspectives of new flexible communication platform to the protection of communication systems for crisis management. This platform is used for everyday communication and communication in crisis situations too.Keywords: crisis management, information systems, interoperability, crisis communication, security environment, communication platform
Procedia PDF Downloads 479