Search results for: statistical machine translation
2883 Material and Parameter Analysis of the PolyJet Process for Mold Making Using Design of Experiments
Authors: A. Kampker, K. Kreisköther, C. Reinders
Abstract:
Since additive manufacturing technologies constantly advance, the use of this technology in mold making seems reasonable. Many manufacturers of additive manufacturing machines, however, do not offer any suggestions on how to parameterize the machine to achieve optimal results for mold making. The purpose of this research is to determine the interdependencies of different materials and parameters within the PolyJet process by using design of experiments (DoE), to additively manufacture molds, e.g. for thermoforming and injection molding applications. Therefore, the general requirements of thermoforming molds, such as heat resistance, surface quality and hardness, have been identified. Then, different materials and parameters of the PolyJet process, such as the orientation of the printed part, the layer thickness, the printing mode (matte or glossy), the distance between printed parts and the scaling of parts, have been examined. The multifactorial analysis covers the following properties of the printed samples: Tensile strength, tensile modulus, bending strength, elongation at break, surface quality, heat deflection temperature and surface hardness. The key objective of this research is that by joining the results from the DoE with the requirements of the mold making, optimal and tailored molds can be additively manufactured with the PolyJet process. These additively manufactured molds can then be used in prototyping processes, in process testing and in small to medium batch production.Keywords: additive manufacturing, design of experiments, mold making, PolyJet, 3D-Printing
Procedia PDF Downloads 2552882 Screening of Four Malaysian Isolated Endophytes with Candesartan in a Microtiter Plate
Authors: Rasha Saad, Jean Frederic Weber, Fatimah Bebe, Sadia Sultan
Abstract:
The goal of study was to screen the effects of candesartan and four endophytic fungi for their potential in microbial biotransformation. In this experiment, four types of unidentified fungi with the codes of TH2L1, TH2R10, TH1P35 and TH1S46 were used in screening process by MECFUS (Microtiter plate, Elicitors, Combination, Freeze-drying, UHPLC, Statistical analysis) protocol. The experiment was carried out by using 96-well microtiter plate (MTP) with different media and elicitors. Various media with two concentrations of Potato Dextrose Broth (PDB) and elicitors used were to induce the production of secondary metabolites from the fungi as well as the biotransformation of the drug compound. After incubation, cultures were extracted by freeze drying method and finally analyzed by ultra-High performance Liquid Chromatography (uHPLC). The extracts analyzed by uHPLC followed by LC/Ms, demonstrated the presence of biotransformation products from the drug compound and elicitation of the secondary metabolism from the fungi by the occurrence of the additional peaks. From the four fungi, TH1S46 showed highly potential produced secondary metabolites as well as the biotransformation of candesartan. For other fungi, they responded when candesartan was introduced. Moreover, the additional peaks produced in uHPLC need to be further investigation by using LC-MS or NMR.Keywords: biotransformation, candesartan, endophytes, secondary metabolites
Procedia PDF Downloads 2632881 Assessment Power and Oscillation Damping Using the POD Controller and Proposed FOD Controller
Authors: Tohid Rahimi, Yahya Naderi, Babak Yousefi, Seyed Hossein Hoseini
Abstract:
Today’s modern interconnected power system is highly complex in nature. In this, one of the most important requirements during the operation of the electric power system is the reliability and security. Power and frequency oscillation damping mechanism improve the reliability. Because of power system stabilizer (PSS) low speed response against of major fault such as three phase short circuit, FACTs devise that can control the network condition in very fast time, are becoming popular. However, FACTs capability can be seen in a major fault present when nonlinear models of FACTs devise and power system equipment are applied. To realize this aim, the model of multi-machine power system with FACTs controller is developed in MATLAB/SIMULINK using Sim Power System (SPS) blockiest. Among the FACTs device, Static synchronous series compensator (SSSC) due to high speed changes its reactance characteristic inductive to capacitive, is effective power flow controller. Tuning process of controller parameter can be performed using different method. However, Genetic Algorithm (GA) ability tends to use it in controller parameter tuning process. In this paper, firstly POD controller is used to power oscillation damping. But in this station, frequency oscillation dos not has proper damping situation. Therefore, FOD controller that is tuned using GA is using that cause to damp out frequency oscillation properly and power oscillation damping has suitable situation.Keywords: power oscillation damping (POD), frequency oscillation damping (FOD), Static synchronous series compensator (SSSC), Genetic Algorithm (GA)
Procedia PDF Downloads 4762880 In-Context Meta Learning for Automatic Designing Pretext Tasks for Self-Supervised Image Analysis
Authors: Toktam Khatibi
Abstract:
Self-supervised learning (SSL) includes machine learning models that are trained on one aspect and/or one part of the input to learn other aspects and/or part of it. SSL models are divided into two different categories, including pre-text task-based models and contrastive learning ones. Pre-text tasks are some auxiliary tasks learning pseudo-labels, and the trained models are further fine-tuned for downstream tasks. However, one important disadvantage of SSL using pre-text task solving is defining an appropriate pre-text task for each image dataset with a variety of image modalities. Therefore, it is required to design an appropriate pretext task automatically for each dataset and each downstream task. To the best of our knowledge, the automatic designing of pretext tasks for image analysis has not been considered yet. In this paper, we present a framework based on In-context learning that describes each task based on its input and output data using a pre-trained image transformer. Our proposed method combines the input image and its learned description for optimizing the pre-text task design and its hyper-parameters using Meta-learning models. The representations learned from the pre-text tasks are fine-tuned for solving the downstream tasks. We demonstrate that our proposed framework outperforms the compared ones on unseen tasks and image modalities in addition to its superior performance for previously known tasks and datasets.Keywords: in-context learning (ICL), meta learning, self-supervised learning (SSL), vision-language domain, transformers
Procedia PDF Downloads 802879 Grey Wolf Optimization Technique for Predictive Analysis of Products in E-Commerce: An Adaptive Approach
Authors: Shital Suresh Borse, Vijayalaxmi Kadroli
Abstract:
E-commerce industries nowadays implement the latest AI, ML Techniques to improve their own performance and prediction accuracy. This helps to gain a huge profit from the online market. Ant Colony Optimization, Genetic algorithm, Particle Swarm Optimization, Neural Network & GWO help many e-commerce industries for up-gradation of their predictive performance. These algorithms are providing optimum results in various applications, such as stock price prediction, prediction of drug-target interaction & user ratings of similar products in e-commerce sites, etc. In this study, customer reviews will play an important role in prediction analysis. People showing much interest in buying a lot of services& products suggested by other customers. This ultimately increases net profit. In this work, a convolution neural network (CNN) is proposed which further is useful to optimize the prediction accuracy of an e-commerce website. This method shows that CNN is used to optimize hyperparameters of GWO algorithm using an appropriate coding scheme. Accurate model results are verified by comparing them to PSO results whose hyperparameters have been optimized by CNN in Amazon's customer review dataset. Here, experimental outcome proves that this proposed system using the GWO algorithm achieves superior execution in terms of accuracy, precision, recovery, etc. in prediction analysis compared to the existing systems.Keywords: prediction analysis, e-commerce, machine learning, grey wolf optimization, particle swarm optimization, CNN
Procedia PDF Downloads 1132878 Dynamics of Marital Status and Information Search through Consumer Generated Media: An Exploratory Study
Authors: Shivkumar Krishnamurti, Ruchi Agarwal
Abstract:
The study examines the influence of marital status on consumers of products and services using blogs as a source of information. A pre-designed questionnaire was used to collect the primary data from the respondents (experiences). Data were collected from one hundred and eighty seven respondents residing in and around the Emirates of Sharjah and Dubai of the United Arab Emirates. The collected data was analyzed with the help of statistical tools such as averages, percentages, factor analysis, student’s t-test and structural equation modeling technique. Objectives of the study are to know the reasons how married and unmarried or single consumers of products and services are motivated to use blogs as a source of information, to know whether the consumers of products and services irrespective of their marital status share their views and experiences with other bloggers and to know the respondents’ future intentions towards blogging. The study revealed the following: Majority of the respondents have the motivation to blog because they are willing to receive comments on what they post about services, convenience of blogs to search for information about services and products, by blogging respondents share information on the symptoms of a disease/ disorder that may be experienced by someone, helps to share information about ready to cook mix products and are keen to spend more time blogging in the future.Keywords: blog, consumer, information, marital status
Procedia PDF Downloads 3852877 An Analysis of the Temporal Aspects of Visual Attention Processing Using Rapid Series Visual Processing (RSVP) Data
Authors: Shreya Borthakur, Aastha Vartak
Abstract:
This Electroencephalogram (EEG) project on Rapid Visual Serial Processing (RSVP) paradigm explores the temporal dynamics of visual attention processing in response to rapidly presented visual stimuli. The study builds upon previous research that used real-world images in RSVP tasks to understand the emergence of object representations in the human brain. The objectives of the research include investigating the differences in accuracy and reaction times between 5 Hz and 20 Hz presentation rates, as well as examining the prominent brain waves, particularly alpha and beta waves, associated with the attention task. The pre-processing and data analysis involves filtering EEG data, creating epochs for target stimuli, and conducting statistical tests using MATLAB, EEGLAB, Chronux toolboxes, and R. The results support the hypotheses, revealing higher accuracy at a slower presentation rate, faster reaction times for less complex targets, and the involvement of alpha and beta waves in attention and cognitive processing. This research sheds light on how short-term memory and cognitive control affect visual processing and could have practical implications in fields like education.Keywords: RSVP, attention, visual processing, attentional blink, EEG
Procedia PDF Downloads 692876 HPTLC Fingerprinting of steroidal glycoside of leaves and berries of Solanum nigrum L. (Inab-us-salab/makoh)
Authors: Karishma Chester, Sarvesh K. Paliwal, Sayeed Ahmad
Abstract:
Inab-us-salab also known as Solanum nigrum L. (Family: Solanaceae), is an important Indian medicinal plant and have been used in various unani traditional formulations for hepato-protection. It has been reported to contain significant amount of steroidal glycosides such as solamargine and solasonine as well as their aglycone part solasodine. Being important pharmacologically active metabolites of several members of solanaceae, these markers have been attempted various times for their extraction and quantification but separately for glycoside and aglycone part because of their opposite polarity. Here, we propose for the first time its fractionation and fingerprinting of aglycone (solasodine) and glycosides (solamargine and solasonine) in leaves and berries of S. nigrum using solvent extraction and fractionation followed by HPTLC analysis. The fingerprinting was done using silica gel 60F254 HPTLC plates as stationary phase and chloroform: methanol: acetone: 0.5% ammonia (7: 2.5: 1: 0.4 v/v/v/v) as mobile phase at 400 nm, after derivatization with antimony tri chloride reagent for identification of steroidal glycoside. The statistical data obtained can further be validated and can be used routinely for quality control of various solanaceous drugs reported for these markers as well as traditional formulations containing those plants as an ingredient.Keywords: solanum nigrum, solasodine, solamargine, solasonine, quantification
Procedia PDF Downloads 3982875 Comprehensive Expert and Social Assessment of the Urban Environment of Almaty in the Process of Training Master's and Doctoral Students on Architecture and Urban Planning
Authors: Alexey Abilov
Abstract:
The article highlights the experience of training master's and doctoral students at Satbayev University by preparing their course works for disciplines "Principles of Sustainable Architecture", "Energy Efficiency in Urban planning", "Urban planning analysis, "Social foundations of Architecture". The purpose of these works is the acquisition by students of practical skills necessary in their future professional activities, which are achieved through comprehensive assessment of individual sections of the Almaty urban environment. The methodology of student’s researches carried out under the guidance of the author of this publication is based on an expert assessment of the territory through its full-scale survey, analysis of project documents and statistical data, as well as on a social assessment of the territory based on the results of a questionnaire survey of residents. A comprehensive qualitative and quantitative assessment of the selected sites according to the criteria of the quality of the living environment also allows to formulate specific recommendations for designers who carry out a pre-project analysis of the city territory in the process of preparing draft master plans and detailed planning projects.Keywords: urban environment, expert/social assessment of the territory, questionnaire survey, comprehensive approach
Procedia PDF Downloads 732874 Perceived Role of Business School in Developing Leadership in Students
Authors: Ranala Nirmala, Rajanala Krishna Gopal
Abstract:
Business schools train management graduates to join the industry in managerial positions. Most of the managerial positions require leadership competency and while some of the business schools have leadership development as a course, many assume leadership development among students through their curriculum. While literature supports the need for leadership development among students, there are few studies which explored the role of department and leadership skills in business management students. This paper is based on an empirical study of students of a university based business school and explored the relationship between the perceived role of department, including the faculty, infrastructure, etc on the leadership skills and potential of the students. Students have been administered an instrument that captured different leadership aspects of the students and the data was reduced into fourteen dimensions including leadership skills perceived by student, role of department in developing leadership skills, leadership potential of students, etc. Anova and regression analysis are the primary statistical tools were used (using SPSS 17.0) and the results revealed that there is a significant relationship between the student perceptions of their leadership potential and the role of department, the faculty, the curriculum, etc. This study supports introducing focused courses in management curriculum to promote leadership among students.Keywords: students, management education, leadership, role of institution
Procedia PDF Downloads 4872873 Capnography for Detection of Return of Spontaneous Circulation Pseudo-Pea
Authors: Yiyuan David Hu, Alex Lindqwister, Samuel B. Klein, Karen Moodie, Norman A. Paradis
Abstract:
Introduction: Pseudo-Pulseless Electrical Activity (p-PEA) is a lifeless form of profound cardiac shock characterized by measurable cardiac mechanical activity without clinically detectable pulses. Patients in pseudo-PEA carry different prognoses than those in true PEA and may require different therapies. End-tidal carbon dioxide (ET-CO2) is a reliable indicator of the return of spontaneous circulation (ROSC) in ventricular fibrillation and true-PEA but has not been studied p-PEA. Hypothesis: ET-CO2 can be used as an independent indicator of ROSC in p-PEA resuscitation. Methods: 30kg female swine (N = 14) under intravenous anesthesia were instrumented with aortic and right atrial micromanometer pressure. ECG and ET-CO2 were measured continuously. p-PEA was induced by ventilation with 6% oxygen in 94% nitrogen and was defined as a systolic Ao less than 40 mmHg. The statistical relationships between ET-CO2 and ROSC are reported. Results: ET-CO2 during resuscitation strongly correlated with ROSC (Figure 1). Mean ET-CO2 during p-PEA was 28.4 ± 8.4, while mean ET-CO2 in ROSC for 100% O2 cohort was 42.2 ± 12.6 (p < 0.0001), mean ET-CO2 in ROSC for 100% O2 + CPR was 33.0 ± 15.4 (p < 0.0001). Analysis of slope was limited to one minute of resuscitation data to capture local linearity; assessment began 10 seconds after resuscitation started to allow the ventilator to mix 100% O2. Pigs who would recover with 100% O2 had a slope of 0.023 ± 0.001, oxygen + CPR had a slope of 0.018 ± 0.002, and oxygen + CPR + epinephrine had a slope of 0.0050 ± 0.0009. Conclusions: During resuscitation from porcine hypoxic p-PEA, a rise in ET-CO2 is indicative of ROSC.Keywords: ET-CO2, resuscitation, capnography, pseudo-PEA
Procedia PDF Downloads 1872872 A Study on the Assessment of Prosthetic Infection after Total Knee Replacement Surgery
Authors: Chun-Lang Chang, Chun-Kai Liu
Abstract:
In this study, the patients that have undergone total knee replacement surgery from the 2010 National Health Insurance database were adopted as the study participants. The important factors were screened and selected through literature collection and interviews with physicians. Through the Cross Entropy Method (CE), Genetic Algorithm Logistic Regression (GALR), and Particle Swarm Optimization (PSO), the weights of the factors were obtained. In addition, the weights of the respective algorithms, coupled with the Excel VBA were adopted to construct the Case Based Reasoning (CBR) system. The results through statistical tests show that the GALR and PSO produced no significant differences, and the accuracy of both models were above 97%. Moreover, the area under the curve of ROC for these two models also exceeded 0.87. This study shall serve as a reference for medical staff as an assistance for clinical assessment of infections in order to effectively enhance medical service quality and efficiency, avoid unnecessary medical waste, and substantially contribute to resource allocations in medical institutions.Keywords: Case Based Reasoning, Cross Entropy Method, Genetic Algorithm Logistic Regression, Particle Swarm Optimization, Total Knee Replacement Surgery
Procedia PDF Downloads 3222871 The Effect of Enamel Surface Preparation on the Self-Etch Bonding of Orthodontic Tubes: An in Vitro Study
Authors: Fernandes A. C. B. C. J., de Jesus V. C., Sepideh N., Vilela OFGG, Somarin K. K., França R., Pinheiro F. H. S. L.
Abstract:
Objective: The purpose of this study was to look at the effect of pre-treatment of enamel with pumice and/or 37% phosphoric acid on the shear bond strength (SBS) of orthodontic tubes bonded to enamel while simultaneously evaluating the efficacy of orthodontic tubes bonded by self-etch primer (SEP). Materials and Methods: 39 of the crown halves were divided into 3 groups at random. Group, I was the control group utilizing both prophy paste and the conventional double etching pre-treatment method. Group II excluded the use of prophy paste prior to double etching. Group III excluded the use of both prophy paste and double etching and only utilized SEP. Bond strength of the orthodontic tubes was measured by SBS. One way ANOVA and Tukey’s HSD test were used to compare SBS values between the three groups. The statistical significance was set to p<0.05. Results: The difference in SBS values of groups I (36.672 ± 9.315 Mpa), II (34.242 ± 9.986 Mpa), and III (39.055 ± 5.565) were not statistically significant (P<0.05). Conclusion: This study suggested that the use of prophy paste or pre-acid etch of the enamel surface did not provide a statistically significant difference in SBS between the three groups.Keywords: shear bond strength, orthodontic bracket, self-etch primer, pumice, prophy
Procedia PDF Downloads 1782870 An Evaluation of Neural Network Efficacies for Image Recognition on Edge-AI Computer Vision Platform
Abstract:
Image recognition, as one of the most critical technologies in computer vision, works to help machine-like robotics understand a scene, that is, if deployed appropriately, will trigger the revolution in remote sensing and industry automation. With the developments of AI technologies, there are many prevailing and sophisticated neural networks as technologies developed for image recognition. However, computer vision platforms as hardware, supporting neural networks for image recognition, as crucial as the neural network technologies, need to be more congruently addressed as the research subjects. In contrast, different computer vision platforms are deterministic to leverage the performance of different neural networks for recognition. In this paper, three different computer vision platforms – Jetson Nano(with 4GB), a standalone laptop(with RTX 3000s, using CUDA), and Google Colab (web-based, using GPU) are explored and four prominent neural network architectures (including AlexNet, VGG(16/19), GoogleNet, and ResNet(18/34/50)), are investigated. In the context of pairwise usage between different computer vision platforms and distinctive neural networks, with the merits of recognition accuracy and time efficiency, the performances are evaluated. In the case study using public imageNets, our findings provide a nuanced perspective on optimizing image recognition tasks across Edge-AI platforms, offering guidance on selecting appropriate neural network structures to maximize performance under hardware constraints.Keywords: alexNet, VGG, googleNet, resNet, Jetson nano, CUDA, COCO-NET, cifar10, imageNet large scale visual recognition challenge (ILSVRC), google colab
Procedia PDF Downloads 902869 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring
Authors: A. Degale Desta, Cheng Jian
Abstract:
Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning
Procedia PDF Downloads 1612868 Defining a Reference Architecture for Predictive Maintenance Systems: A Case Study Using the Microsoft Azure IoT-Cloud Components
Authors: Walter Bernhofer, Peter Haber, Tobias Mayer, Manfred Mayr, Markus Ziegler
Abstract:
Current preventive maintenance measures are cost intensive and not efficient. With the available sensor data of state of the art internet of things devices new possibilities of automated data processing emerge. Current advances in data science and in machine learning enable new, so called predictive maintenance technologies, which empower data scientists to forecast possible system failures. The goal of this approach is to cut expenses in preventive maintenance by automating the detection of possible failures and to improve efficiency and quality of maintenance measures. Additionally, a centralization of the sensor data monitoring can be achieved by using this approach. This paper describes the approach of three students to define a reference architecture for a predictive maintenance solution in the internet of things domain with a connected smartphone app for service technicians. The reference architecture is validated by a case study. The case study is implemented with current Microsoft Azure cloud technologies. The results of the case study show that the reference architecture is valid and can be used to achieve a system for predictive maintenance execution with the cloud components of Microsoft Azure. The used concepts are technology platform agnostic and can be reused in many different cloud platforms. The reference architecture is valid and can be used in many use cases, like gas station maintenance, elevator maintenance and many more.Keywords: case study, internet of things, predictive maintenance, reference architecture
Procedia PDF Downloads 2512867 Determining Fire Resistance of Wooden Construction Elements through Experimental Studies and Artificial Neural Network
Authors: Sakir Tasdemir, Mustafa Altin, Gamze Fahriye Pehlivan, Sadiye Didem Boztepe Erkis, Ismail Saritas, Selma Tasdemir
Abstract:
Artificial intelligence applications are commonly used in industry in many fields in parallel with the developments in the computer technology. In this study, a fire room was prepared for the resistance of wooden construction elements and with the mechanism here, the experiments of polished materials were carried out. By utilizing from the experimental data, an artificial neural network (ANN) was modeled in order to evaluate the final cross sections of the wooden samples remaining from the fire. In modelling, experimental data obtained from the fire room were used. In the system developed, the first weight of samples (ws-gr), preliminary cross-section (pcs-mm2), fire time (ft-minute), fire temperature (t-oC) as input parameters and final cross-section (fcs-mm2) as output parameter were taken. When the results obtained from ANN and experimental data are compared after making statistical analyses, the data of two groups are determined to be coherent and seen to have no meaning difference between them. As a result, it is seen that ANN can be safely used in determining cross sections of wooden materials after fire and it prevents many disadvantages.Keywords: artificial neural network, final cross-section, fire retardant polishes, fire safety, wood resistance.
Procedia PDF Downloads 3852866 Bioremediation of Polychlorinated Biphenyl (PCBS) Contaminated Soils: A Case Study from Rietvlei Farm at Borehole No. 11, Limpopo Province, South Africa
Authors: D. Sengani, N. Potgieter, P. E. L. Mojapelo
Abstract:
Three bacteria species which comprise of Gram negative and Gram positive microorganisms were isolated and identified on the basis of morpho-cultural study, catalase tests, oxidase tests and biochemical characteristics were found belonging to different genera including Burkholderia cepacia, Pasteurella pneumotropica and Enterococcus faecalis. The main objective of this study was to isolate and identify PCB degrading bacteria from PCB contaminated soils and test them for their degradation ability of PCBs in natural habitat conditions. The results indicated an overall decrease of PCB concentration level with the gradient average ranging from 1.5 to 1.8 respectively. Enterococcus faecalis removed as much as 32% of PCBs in the contaminated soil samples. Whereas Pasteurella pneumotropica could remove 24% of PCBs, Burkholderia cepacia 21% of PCBs and the mixed culture removed 23%. Data showed that the three bacterial strains could tolerate high concentration of PCBs. The results provided the evidence that naturally occurring bacteria in soil contaminated with PCBs have the potential to degrade PCBs. Statistical analysis showed that there was a significant positive correlation between bacteria growth and treatment with a coefficient of (r) =0.1459 and p value < 0.001.Keywords: bacteria, bioaccumulation, biodegradation, bioremediation, polychlorinated biphenyls
Procedia PDF Downloads 2402865 Fast Detection of Local Fiber Shifts by X-Ray Scattering
Authors: Peter Modregger, Özgül Öztürk
Abstract:
Glass fabric reinforced thermoplastic (GFRT) are composite materials, which combine low weight and resilient mechanical properties rendering them especially suitable for automobile construction. However, defects in the glass fabric as well as in the polymer matrix can occur during manufacturing, which may compromise component lifetime or even safety. One type of these defects is local fiber shifts, which can be difficult to detect. Recently, we have experimentally demonstrated the reliable detection of local fiber shifts by X-ray scattering based on the edge-illumination (EI) principle. EI constitutes a novel X-ray imaging technique that utilizes two slit masks, one in front of the sample and one in front of the detector, in order to simultaneously provide absorption, phase, and scattering contrast. The principle of contrast formation is as follows. The incident X-ray beam is split into smaller beamlets by the sample mask, resulting in small beamlets. These are distorted by the interaction with the sample, and the distortions are scaled up by the detector masks, rendering them visible to a pixelated detector. In the experiment, the sample mask is laterally scanned, resulting in Gaussian-like intensity distributions in each pixel. The area under the curves represents absorption, the peak offset refraction, and the width of the curve represents the scattering occurring in the sample. Here, scattering is caused by the numerous glass fiber/polymer matrix interfaces. In our recent publication, we have shown that the standard deviation of the absorption and scattering values over a selected field of view can be used to distinguish between intact samples and samples with local fiber shift defects. The quantification of defect detection performance was done by using p-values (p=0.002 for absorption and p=0.009 for scattering) and contrast-to-noise ratios (CNR=3.0 for absorption and CNR=2.1 for scattering) between the two groups of samples. This was further improved for the scattering contrast to p=0.0004 and CNR=4.2 by utilizing a harmonic decomposition analysis of the images. Thus, we concluded that local fiber shifts can be reliably detected by the X-ray scattering contrasts provided by EI. However, a potential application in, for example, production monitoring requires fast data acquisition times. For the results above, the scanning of the sample masks was performed over 50 individual steps, which resulted in long total scan times. In this paper, we will demonstrate that reliable detection of local fiber shift defects is also possible by using single images, which implies a speed up of total scan time by a factor of 50. Additional performance improvements will also be discussed, which opens the possibility for real-time acquisition. This contributes a vital step for the translation of EI to industrial applications for a wide variety of materials consisting of numerous interfaces on the micrometer scale.Keywords: defects in composites, X-ray scattering, local fiber shifts, X-ray edge Illumination
Procedia PDF Downloads 632864 Effect of Kinesio Taping on Anaerobic Power and Maximum Oxygen Consumption after Eccentric Exercise
Authors: Disaphon Boobpachat, Nuttaset Manimmanakorn, Apiwan Manimmanakorn, Worrawut Thuwakum, Michael J. Hamlin
Abstract:
Objectives: To evaluate effect of kinesio tape compared to placebo tape and static stretching on recovery of anaerobic power and maximal oxygen uptake (Vo₂max) after intensive exercise. Methods: Thirty nine untrained healthy volunteers were randomized to 3 groups for each intervention: elastic tape, placebo tape and stretching. The participants performed intensive exercise on the dominant quadriceps by using isokinetic dynamometry machine. The recovery process was evaluated by creatine kinase (CK), pressure pain threshold (PPT), muscle soreness scale (MSS), maximum voluntary contraction (MVC), jump height, anaerobic power and Vo₂max at baseline, immediately post-exercise and post-exercise day 1, 2, 3 and 7. Results: The kinesio tape, placebo tape and stretching groups had significant changes of PPT, MVC, jump height at immediately post-exercise compared to baseline (p < 0.05), and changes of MSS, CK, anaerobic power and Vo₂max at day 1 post-exercise compared to baseline (p < 0.05). There was no significant difference of those outcomes among three groups. Additionally, all experimental groups had little effects on anaerobic power and Vo₂max compared to baseline and compared among three groups (p > 0.05). Conclusion: Kinesio tape and stretching did not improve recovery of anaerobic power and Vo₂max after eccentric exercise compared to placebo tape.Keywords: stretching, eccentric exercise, Wingate test, muscle soreness
Procedia PDF Downloads 1302863 COVID in Pregnancy: Evaluating Maternal and Neonatal Complications
Authors: Alexa L. Walsh, Christine Hartl, Juliette Ferdschneider, Lezode Kipoliongo, Eleonora Feketeova
Abstract:
The investigation of COVID-19 and its effects has been at the forefront of clinical research since its emergence in the United States in 2020. Although the possibility of severe infection in immunocompromised individuals has been documented, within the general population of pregnant individuals, there remains to be vaccine hesitancy and uncertainty regarding how the virus may affect the individual and fetus. To combat this hesitancy, this study aims to evaluate the effects of COVID-19 infection on maternal and neonatal complication rates. This retrospective study was conducted by manual chart review of women who were diagnosed with COVID-19 during pregnancy (n = 78) and women who were not diagnosed with COVID-19 during pregnancy (n = 1,124) that gave birth at Garnet Health Medical Centers between 1/1/2019-1/1/2021. Both the COVID+ and COVID- groups exhibited similar median ages, BMI, and parity. The rates of complications were compared between the groups and statistical significance was determined using Chi-squared analysis. Results demonstrated a statistically higher rate of PROM, polyhydramnios, oligohydramnios, GDM, DVT/PE, preterm birth, and the overall incidence of any birth complication in the population that was infected with COVID-19 during their pregnancy. With this information, obstetrical providers can be better prepared for the management of COVID-19+ pregnancies and continue to educate their patients on the benefits of vaccination.Keywords: complications, COVID-19, Gynecology, Obstetrics
Procedia PDF Downloads 782862 Governance vs Diaspora Remittances for Sustainable Development: A Case of Rwanda and Kenya
Authors: Albert Maake, Ifunanya Isama
Abstract:
International remittances to developing countries reached US$ 485 billion in 2018. By 2015, the East African region had surpassed US$3.5 mark. Considering this, there is no argument as to the contribution of Diaspora remittances as an alternative source of funds in the development process of the developing countries. Nevertheless, this paper seeks to argue that good governance in areas such as policy design, implementation and monitoring play a critical role in the sustainable development process of a nation as opposed to Diaspora remittances in general. Therefore this study intends at analyzing the contribution of Governance as opposed to that of Diaspora remittances for nation development. Employing documentary analysis technique, the secondary data with respect to the countries under study on Diaspora remittances will be collected. Selected indicators for Governance-HDI, Debt-to-GDP Ratio and Corruption Index, will be sourced from the World Bank Data for the purpose of consistency and where applicable the Central Statistical Agencies of the Nations under study. By means of descriptive statistics and content analysis the data will be comparatively analyzed to highlight the unique experiences in Rwanda and Kenya. The findings and interpretations from the study will affirm and promote capacity building for best practices in good governance for the countries under study.Keywords: diaspora remittance, governance, Kenya, Rwanda, sustainable development
Procedia PDF Downloads 1342861 Developing a Cloud Intelligence-Based Energy Management Architecture Facilitated with Embedded Edge Analytics for Energy Conservation in Demand-Side Management
Authors: Yu-Hsiu Lin, Wen-Chun Lin, Yen-Chang Cheng, Chia-Ju Yeh, Yu-Chuan Chen, Tai-You Li
Abstract:
Demand-Side Management (DSM) has the potential to reduce electricity costs and carbon emission, which are associated with electricity used in the modern society. A home Energy Management System (EMS) commonly used by residential consumers in a down-stream sector of a smart grid to monitor, control, and optimize energy efficiency to domestic appliances is a system of computer-aided functionalities as an energy audit for residential DSM. Implementing fault detection and classification to domestic appliances monitored, controlled, and optimized is one of the most important steps to realize preventive maintenance, such as residential air conditioning and heating preventative maintenance in residential/industrial DSM. In this study, a cloud intelligence-based green EMS that comes up with an Internet of Things (IoT) technology stack for residential DSM is developed. In the EMS, Arduino MEGA Ethernet communication-based smart sockets that module a Real Time Clock chip to keep track of current time as timestamps via Network Time Protocol are designed and implemented for readings of load phenomena reflecting on voltage and current signals sensed. Also, a Network-Attached Storage providing data access to a heterogeneous group of IoT clients via Hypertext Transfer Protocol (HTTP) methods is configured to data stores of parsed sensor readings. Lastly, a desktop computer with a WAMP software bundle (the Microsoft® Windows operating system, Apache HTTP Server, MySQL relational database management system, and PHP programming language) serves as a data science analytics engine for dynamic Web APP/REpresentational State Transfer-ful web service of the residential DSM having globally-Advanced Internet of Artificial Intelligence (AI)/Computational Intelligence. Where, an abstract computing machine, Java Virtual Machine, enables the desktop computer to run Java programs, and a mash-up of Java, R language, and Python is well-suited and -configured for AI in this study. Having the ability of sending real-time push notifications to IoT clients, the desktop computer implements Google-maintained Firebase Cloud Messaging to engage IoT clients across Android/iOS devices and provide mobile notification service to residential/industrial DSM. In this study, in order to realize edge intelligence that edge devices avoiding network latency and much-needed connectivity of Internet connections for Internet of Services can support secure access to data stores and provide immediate analytical and real-time actionable insights at the edge of the network, we upgrade the designed and implemented smart sockets to be embedded AI Arduino ones (called embedded AIduino). With the realization of edge analytics by the proposed embedded AIduino for data analytics, an Arduino Ethernet shield WizNet W5100 having a micro SD card connector is conducted and used. The SD library is included for reading parsed data from and writing parsed data to an SD card. And, an Artificial Neural Network library, ArduinoANN, for Arduino MEGA is imported and used for locally-embedded AI implementation. The embedded AIduino in this study can be developed for further applications in manufacturing industry energy management and sustainable energy management, wherein in sustainable energy management rotating machinery diagnostics works to identify energy loss from gross misalignment and unbalance of rotating machines in power plants as an example.Keywords: demand-side management, edge intelligence, energy management system, fault detection and classification
Procedia PDF Downloads 2512860 Effect of Pre-Aging and Aging Parameters on Mechanical Behavior of Be-Treated 7075 Aluminum Alloys: Experimental Correlation using Minitab Software
Authors: M. Tash, S. Alkahtani
Abstract:
The present study was undertaken to investigate the effect of pre-aging and aging parameters (time and temperature) on the mechanical properties of Al-Mg-Zn (7075) alloys. Ultimate tensile strength, 0.5% offset yield strength and % elongation measurements were carried out on specimens prepared from cast and heat treated 7075 alloys. Duplex aging treatments were carried out for the as solution treated (SHT) specimens (pre-aged at different time and temperature followed by high temperature aging). A statistical design of experiments (DOE) approach using fractional factorial design was applied to determine the influence of controlling variables of pre-aging and aging treatment parameters and any interactions between them on the mechanical properties of 7075 alloys. A mathematical models are developed to relate the alloy ultimate tensile strength, yield strength and % elongation with the different pre-aging and aging parameters i.e. Pre-aging Temperature (PA T0C), Pre-aging time (PA t h), Aging temperature (AT0C), Aging time (At h), to acquire an understanding of the effects of these variables and their interactions on the mechanical properties of be-treated 7075 alloys.Keywords: aging heat Treatment, tensile properties, be-treated cast Al-Mg-Zn (7075) alloys, experimental correlation
Procedia PDF Downloads 2752859 Electroencephalography (EEG) Analysis of Alcoholic and Control Subjects Using Multiscale Permutation Entropy
Authors: Lal Hussain, Wajid Aziz, Sajjad Ahmed Nadeem, Saeed Arif Shah, Abdul Majid
Abstract:
Brain electrical activity as reflected in Electroencephalography (EEG) have been analyzed and diagnosed using various techniques. Among them, complexity measure, nonlinearity, disorder, and unpredictability play vital role due to the nonlinear interconnection between functional and anatomical subsystem emerged in brain in healthy state and during various diseases. There are many social and economical issues of alcoholic abuse as memory weakness, decision making, impairments, and concentrations etc. Alcoholism not only defect the brains but also associated with emotional, behavior, and cognitive impairments damaging the white and gray brain matters. A recently developed signal analysis method i.e. Multiscale Permutation Entropy (MPE) is proposed to estimate the complexity of long-range temporal correlation time series EEG of Alcoholic and Control subjects acquired from University of California Machine Learning repository and results are compared with MSE. Using MPE, coarsed grained series is first generated and the PE is computed for each coarsed grained time series against the electrodes O1, O2, C3, C4, F2, F3, F4, F7, F8, Fp1, Fp2, P3, P4, T7, and T8. The results computed against each electrode using MPE gives higher significant values as compared to MSE as well as mean rank differences accordingly. Likewise, ROC and Area under the ROC also gives higher separation against each electrode using MPE in comparison to MSE.Keywords: electroencephalogram (EEG), multiscale permutation entropy (MPE), multiscale sample entropy (MSE), permutation entropy (PE), mann whitney test (MMT), receiver operator curve (ROC), complexity measure
Procedia PDF Downloads 4952858 Investigation of Time Pressure and Instinctive Reaction in Moral Dilemmas While Driving
Authors: Jacqueline Miller, Dongyuan Y. Wang, F. Dan Richard
Abstract:
Before trying to make an ethical machine that holds a higher ethical standard than humans, a better understanding of human moral standards that could be used as a guide is crucial. How humans make decisions in dangerous driving situations like moral dilemmas can contribute to developing acceptable ethical principles for autonomous vehicles (AVs). This study uses a driving simulator to investigate whether drivers make utilitarian choices (choices that maximize lives saved and minimize harm) in unavoidable automobile accidents (moral dilemmas) with time pressure manipulated. This study also investigates how impulsiveness influences drivers’ behavior in moral dilemmas. Manipulating time pressure results in collisions that occur at varying time intervals (4 s, 5 s, 7s). Manipulating time pressure helps investigate how time pressure may influence drivers’ response behavior. Thirty-one undergraduates participated in this study using a STISM driving simulator to respond to driving moral dilemmas. The results indicated that the percentage of utilitarian choices generally increased when given more time to respond (from 4 s to 7 s). Additionally, participants in vehicle scenarios preferred responding right over responding left. Impulsiveness did not influence utilitarian choices. However, as time pressure decreased, response time increased. Findings have potential implications and applications on the regulation of driver assistance technologies and AVs.Keywords: time pressure, automobile moral dilemmas, impulsiveness, reaction time
Procedia PDF Downloads 542857 Impact of Mass Rape on HIV Incidence and Prevalence in Conflict Situations: Mathematical Analysis of the War in Tigray, Ethiopia
Authors: Abdelkadir Muzey Mohammed, Habtu Alemayehu Atsbaha, Yohannes Yirga Kefela, Woldegebriel Assefa Woldegerima, Kiros Tedla Gebrehiwot
Abstract:
The circumstances of war and conflict have long been associated with concerns about heightening HIV infection due to the use of sexual violence and rape as a weapon of war and lack of health services access to the patients with HIV as well as sexual violence and rape victims. This paper examines the impact of war related mass rape on HIV incidence and prevalence in the war ravaged Tigray, Ethiopia. Risk equation model and uncertainty analyses with sampled ranges of parameters were employed using data from WHO, Ethiopian Public Health Institute and Ethiopian Central Statistical Agency was used. Our analysis indicated that the mass rape committed in Tigray could cause an increase of incidence and prevalence by a median of 63.01% and 1.14% respectively. The significant increase in HIV incidence and prevalence due to mass rape demands a special attention including region wide improved surveillance and tracing of rape survivors. Furthermore, HIV prevention and treatment strategies such as delivery of emergency health service, providing pre and post exposure treatments on the basis of human rights should priority of governmental and nongovernmental organizations in a conflict situation.Keywords: conflict situation, mass rape, HIV, mathematical model, uncertainty analysis
Procedia PDF Downloads 122856 Precise Identification of Clustered Regularly Interspaced Short Palindromic Repeats-Induced Mutations via Hidden Markov Model-Based Sequence Alignment
Authors: Jingyuan Hu, Zhandong Liu
Abstract:
CRISPR genome editing technology has transformed molecular biology by accurately targeting and altering an organism’s DNA. Despite the state-of-art precision of CRISPR genome editing, the imprecise mutation outcome and off-target effects present considerable risk, potentially leading to unintended genetic changes. Targeted deep sequencing, combined with bioinformatics sequence alignment, can detect such unwanted mutations. Nevertheless, the classical method, Needleman-Wunsch (NW) algorithm may produce false alignment outcomes, resulting in inaccurate mutation identification. The key to precisely identifying CRISPR-induced mutations lies in determining optimal parameters for the sequence alignment algorithm. Hidden Markov models (HMM) are ideally suited for this task, offering flexibility across CRISPR systems by leveraging forward-backward algorithms for parameter estimation. In this study, we introduce CRISPR-HMM, a statistical software to precisely call CRISPR-induced mutations. We demonstrate that the software significantly improves precision in identifying CRISPR-induced mutations compared to NW-based alignment, thereby enhancing the overall understanding of the CRISPR gene-editing process.Keywords: CRISPR, HMM, sequence alignment, gene editing
Procedia PDF Downloads 522855 A Study of Some Selected Anthropometric and Physical Fitness Variables of Junior Free Style Wrestlers
Authors: Parwinder Singh, Ashok Kumar
Abstract:
Aim: The aim of the study was to investigate the relationship between selected Anthropometric and physical fitness variables of Junior Free Style Wrestlers. Method: one hundred fifty (N = 150) male Junior Free Style Wrestlers were selected as subjects, and they were categorized into five groups according to their weight categories; each group was comprised of 30 wrestlers. Body Mass Index can be considered according to the World Health Organization. Body fat percentage was assessed by using Durnin and Womersley equation, and Bodyweight was checked with a weighing machine. Cardiovascular endurance was checked by the Havard Step test of junior freestyle wrestlers. Results: A statistically positive significant correlation was found between Body Weight and Body Mass Index, skinfold thickness, and Percentage Body Fat. Fitness index was observed as negatively significant relationship related with Body Weight, Percent Body Fat, and Body Mass Index. Conclusion: It is concluded that freestyle wrestling is a weight classified sport and physical fitness is the most important factor in freestyle wrestling; therefore, the correlation of the fitness index of the wrestlers with body composition is important. The results of the present study also demonstrated the effect of Age, Body Height, Body Weight, Body Mass Index, and percentage body fat of the aerobic fitness of junior freestyle wrestlers.Keywords: aerobic fitness, anthropometry, fat percentage, free style wrestling, skinfold, strength
Procedia PDF Downloads 2082854 An Observational Study of Vitamin B12 Levels and Peripheral Neuropathy Profile in Patients of Diabetes Mellitus on Metformin Therapy
Authors: Kamesh Gupta, Nitin Jain, Anurag Rohatgi
Abstract:
Objective: To study Vitamin B12 levels and presence of peripheral neuropathy among diabetes mellitus patients on metformin therapy. Method: The observational study was conducted from November 2014 to March 2015. Patients were selected from the Lady Hardinge Medical College, Delhi, India. Exhaustive history regarding dietary habits and metformin usage was taken. Lab tests including HbA1c levels and Vit B12 assays were done, on the basis of which patients were classified into subgroups. Peripheral neuropathy was detected by both clinical scoring and electrophysiological studies. Appropriate Statistical analysis for observational studies was done to evaluate the data. Results: The average duration of metformin usage was higher in patients with definite B12 deficiency (9.4y) than patients with normal B12 levels (5.6 y). Patients in the definite B12 deficiency group had much higher incidence of neuropathy (89%) than patients with no deficiency (27%). The incidence of neuropathy was higher in cases with longer metformin usage (100% with 18-22y of use and 83% with 14-17y of use) than shorter periods (29% with 2-5y of use and 75% with 6-9y of use). Conclusion: Thus patients on long-term metformin therapy are at a high risk for Vitamin B12 deficiency. Definite and possible Vitamin B12 deficiency on metformin had an earlier onset of neuropathy than the subgroup with normal Vitamin B12 levels.Keywords: diabetic neuroptahy, cobalamine deficiency, metformin, nerve conduction studies
Procedia PDF Downloads 365