Search results for: comprehensive CFD model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19196

Search results for: comprehensive CFD model

14966 Evaluating the Potential of a Fast Growing Indian Marine Cyanobacterium by Reconstructing and Analysis of a Genome Scale Metabolic Model

Authors: Ruchi Pathania, Ahmad Ahmad, Shireesh Srivastava

Abstract:

Cyanobacteria is a promising microbe that can capture and convert atmospheric CO₂ and light into valuable industrial bio-products like biofuels, biodegradable plastics, etc. Among their most attractive traits are faster autotrophic growth, whole year cultivation using non-arable land, high photosynthetic activity, much greater biomass and productivity and easy for genetic manipulations. Cyanobacteria store carbon in the form of glycogen which can be hydrolyzed to release glucose and fermented to form bioethanol or other valuable products. Marine cyanobacterial species are especially attractive for countries with scarcity of freshwater. We recently identified a marine native cyanobacterium Synechococcus sp. BDU 130192 which has good growth rate and high level of polyglucans accumulation compared to Synechococcus PCC 7002. In this study, firstly we sequenced the whole genome and the sequences were annotated using the RAST server. Genome scale metabolic model (GSMM) was reconstructed through COBRA toolbox. GSMM is a computational representation of the metabolic reactions and metabolites of the target strain. GSMMs construction through the application of Flux Balance Analysis (FBA), which uses external nutrient uptake rates and estimate steady state intracellular and extracellular reaction fluxes, including maximization of cell growth. The model, which we have named isyn942, includes 942 reactions and 913 metabolites having 831 metabolic, 78 transport and 33 exchange reactions. The phylogenetic tree obtained by BLAST search revealed that the strain was a close relative of Synechococcus PCC 7002. The flux balance analysis (FBA) was applied on the model iSyn942 to predict the theoretical yields (mol product produced/mol CO₂ consumed) for native and non-native products like acetone, butanol, etc. under phototrophic condition by applying metabolic engineering strategies. The reported strain can be a viable strain for biotechnological applications, and the model will be helpful to researchers interested in understanding the metabolism as well as to design metabolic engineering strategies for enhanced production of various bioproducts.

Keywords: cyanobacteria, flux balance analysis, genome scale metabolic model, metabolic engineering

Procedia PDF Downloads 161
14965 Sequential Data Assimilation with High-Frequency (HF) Radar Surface Current

Authors: Lei Ren, Michael Hartnett, Stephen Nash

Abstract:

The abundant measured surface current from HF radar system in coastal area is assimilated into model to improve the modeling forecasting ability. A simple sequential data assimilation scheme, Direct Insertion (DI), is applied to update model forecast states. The influence of Direct Insertion data assimilation over time is analyzed at one reference point. Vector maps of surface current from models are compared with HF radar measurements. Root-Mean-Squared-Error (RMSE) between modeling results and HF radar measurements is calculated during the last four days with no data assimilation.

Keywords: data assimilation, CODAR, HF radar, surface current, direct insertion

Procedia PDF Downloads 576
14964 Maneuvering Modelling of a One-Degree-of-Freedom Articulated Vehicle: Modeling and Experimental Verification

Authors: Mauricio E. Cruz, Ilse Cervantes, Manuel J. Fabela

Abstract:

The evaluation of the maneuverability of road vehicles is generally carried out through the use of specialized computer programs due to the advantages they offer compared to the experimental method. These programs are based on purely geometric considerations of the characteristics of the vehicles, such as main dimensions, the location of the axles, and points of articulation, without considering parameters such as weight distribution and magnitude, tire properties, etc. In this paper, we address the problem of maneuverability in a semi-trailer truck to navigate urban streets, maneuvering yards, and parking lots, using the Ackerman principle to propose a kinematic model that, through geometric considerations, it is possible to determine the space necessary to maneuver safely. The model was experimentally validated by conducting maneuverability tests with an articulated vehicle. The measurements were made through a GPS that allows us to know the position, trajectory, and speed of the vehicle, an inertial motion unit (IMU) that allows measuring the accelerations and angular speeds in the semi-trailer, and an instrumented steering wheel that allows measuring the angle of rotation of the flywheel, the angular velocity and the torque applied to the flywheel. To obtain the steering angle of the tires, a parameterization of the complete travel of the steering wheel and its equivalent in the tires was carried out. For the tests, 3 different angles were selected, and 3 turns were made for each angle in both directions of rotation (left and right turn). The results showed that the proposed kinematic model achieved 95% accuracy for speeds below 5 km / h. The experiments revealed that that tighter maneuvers increased significantly the space required and that the vehicle maneuverability was limited by the size of the semi-trailer. The maneuverability was also tested as a function of the vehicle load and 3 different load levels we used: light, medium, and heavy. It was found that the internal turning radii also increased with the load, probably due to the changes in the tires' adhesion to the pavement since heavier loads had larger contact wheel-road surfaces. The load was found as an important factor affecting the precision of the model (up to 30%), and therefore I should be considered. The model obtained is expected to be used to improve maneuverability through a robust control system.

Keywords: articuled vehicle, experimental validation, kinematic model, maneuverability, semi-trailer truck

Procedia PDF Downloads 119
14963 Optimisation of the Input Layer Structure for Feedforward Narx Neural Networks

Authors: Zongyan Li, Matt Best

Abstract:

This paper presents an optimization method for reducing the number of input channels and the complexity of the feed-forward NARX neural network (NN) without compromising the accuracy of the NN model. By utilizing the correlation analysis method, the most significant regressors are selected to form the input layer of the NN structure. An application of vehicle dynamic model identification is also presented in this paper to demonstrate the optimization technique and the optimal input layer structure and the optimal number of neurons for the neural network is investigated.

Keywords: correlation analysis, F-ratio, levenberg-marquardt, MSE, NARX, neural network, optimisation

Procedia PDF Downloads 375
14962 Robust Control of a Dynamic Model of an F-16 Aircraft with Improved Damping through Linear Matrix Inequalities

Authors: J. P. P. Andrade, V. A. F. Campos

Abstract:

This work presents an application of Linear Matrix Inequalities (LMI) for the robust control of an F-16 aircraft through an algorithm ensuring the damping factor to the closed loop system. The results show that the zero and gain settings are sufficient to ensure robust performance and stability with respect to various operating points. The technique used is the pole placement, which aims to put the system in closed loop poles in a specific region of the complex plane. Test results using a dynamic model of the F-16 aircraft are presented and discussed.

Keywords: F-16 aircraft, linear matrix inequalities, pole placement, robust control

Procedia PDF Downloads 310
14961 Training to Evaluate Creative Activity in a Training Context, Analysis of a Learner Evaluation Model

Authors: Massy Guillaume

Abstract:

Introduction: The implementation of creativity in educational policies or curricula raises several issues, including the evaluation of creativity and the means to do so. This doctoral research focuses on the appropriation and transposition of creativity assessment models by future teachers. Our objective is to identify the elements of the models that are most transferable to practice in order to improve their implementation in the students' curriculum while seeking to create a new model for assessing creativity in the school environment. Methods: In order to meet our objective, this preliminary quantitative exploratory study by questionnaire was conducted at two points in the participants' training: at the beginning of the training module and throughout the practical work. The population is composed of 40 people of diverse origins with an average age of 26 (s:8,623) years. In order to be as close as possible to our research objective and to test our questionnaires, we set up a pre-test phase during the spring semester of 2022. Results: The results presented focus on aspects of the OECD Creative Competencies Assessment Model. Overall, 72% of participants support the model's focus on skill levels as appropriate for the school context. More specifically, the data indicate that the separation of production and process in the rubric facilitates observation by the assessor. From the point of view of transposing the grid into teaching practice, the participants emphasised that production is easier to plan and observe in students than in the process. This difference is reinforced by a lack of knowledge about certain concepts such as innovation or risktaking in schools. Finally, the qualitative results indicate that the addition of multiple levels of competencies to the OECD rubric would allow for better implementation in the classroom. Conclusion: The identification by the students of the elements allowing the evaluation of creativity in the school environment generates an innovative approach to the training contents. These first data, from the test phase of our research, demonstrate the difficulty that exists between the implementation of an evaluation model in a training program and its potential transposition by future teachers.

Keywords: creativity, evaluation, schooling, training

Procedia PDF Downloads 97
14960 Transforming the Automotive Production: A Bibliometric Analysis on Lean-Green Management

Authors: Ayse Melissa Ergun

Abstract:

The lean management concept is a widely used and implemented production improvement solution especially in the automotive sector. However, in the recent years the need for an efficient production system became no longer sufficient for companies. The increasing importance of green production and environmental sustainability pushed companies to modify their manufacturing systems in a more environmentally conscious way. As a result, the recent improvements in the automotive sector has surpassed the lean management directives and currently are in need of a more sustainable and green transformation. At this point a comprehensive approach like Lean-Green (LG) Management, which combines lean management and green applications, gains popularity in the sector. This study conducts a bibliometric analysis between the years 2015-2023 for LG management. This study aims to identify the current standing of the literature. The most researched branches of the concept have been determined by the conducted analysis. Furthermore, this study sheds a light on the future research directions for scholars.

Keywords: LG management, sustainability, lean, green, automotive, bibliometric analysis

Procedia PDF Downloads 17
14959 A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine

Authors: Xiaodong Li, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang, Le Zheng, Chengyin Ye, Modi Liu, Minjie Xia, Changlin Fu, Bo Jin, Karl G. Sylvester, Eric Widen

Abstract:

Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.

Keywords: cancer prediction, deep learning, electronic health records, pancreatic adenocarcinoma

Procedia PDF Downloads 158
14958 Evaluating the Effects of Community Informatics on Sustainable Livelihoods: a Case Model for Rural Communities in Nigeria

Authors: Adebayo J. Julius, Oluremi N. Iluyomade

Abstract:

Livelihood in Nigeria is a paradox of poverty amidst plenty. The Country is endowed with a good climate for agriculture, naturally growing fruit trees and vegetables, and undomesticated water resources. In spite of all its endowment, Nigeria continues to live in poverty year in year out. Rural communities adopted for this study are Ido, Omi-Adio, Onigambari, Okija and Lambata, 500 questionnaires were administered to solicit information from the respondents. This study focused on comparative analysis of the utilization of community informatics for sustainable livelihoods through agriculture. The idea projected in this study is that small strategic changes in the modus operandi of social informatics can have a significant impact on the sustainability of livelihoods. This paper carefully explored the theories of community informatics and its efficacies in dealing with sustainability issues. This study identified, described and evaluates the roles of community informatics in some sectors of the economy, different analytical tools to benchmark the influence of social informatics in agriculture against what is obtainable in agricultural sectors of the economy were used. It further employed comparative analysis to build a case model for sustainable livelihood in agriculture through community informatics.

Keywords: informatics, model, rural community, livelihood, Nigeria

Procedia PDF Downloads 140
14957 Finite Element Analysis of the Anaconda Device: Efficiently Predicting the Location and Shape of a Deployed Stent

Authors: Faidon Kyriakou, William Dempster, David Nash

Abstract:

Abdominal Aortic Aneurysm (AAA) is a major life-threatening pathology for which modern approaches reduce the need for open surgery through the use of stenting. The success of stenting though is sometimes jeopardized by the final position of the stent graft inside the human artery which may result in migration, endoleaks or blood flow occlusion. Herein, a finite element (FE) model of the commercial medical device AnacondaTM (Vascutek, Terumo) has been developed and validated in order to create a numerical tool able to provide useful clinical insight before the surgical procedure takes place. The AnacondaTM device consists of a series of NiTi rings sewn onto woven polyester fabric, a structure that despite its column stiffness is flexible enough to be used in very tortuous geometries. For the purposes of this study, a FE model of the device was built in Abaqus® (version 6.13-2) with the combination of beam, shell and surface elements; the choice of these building blocks was made to keep the computational cost to a minimum. The validation of the numerical model was performed by comparing the deployed position of a full stent graft device inside a constructed AAA with a duplicate set-up in Abaqus®. Specifically, an AAA geometry was built in CAD software and included regions of both high and low tortuosity. Subsequently, the CAD model was 3D printed into a transparent aneurysm, and a stent was deployed in the lab following the steps of the clinical procedure. Images on the frontal and sagittal planes of the experiment allowed the comparison with the results of the numerical model. By overlapping the experimental and computational images, the mean and maximum distances between the rings of the two models were measured in the longitudinal, and the transverse direction and, a 5mm upper bound was set as a limit commonly used by clinicians when working with simulations. The two models showed very good agreement of their spatial positioning, especially in the less tortuous regions. As a result, and despite the inherent uncertainties of a surgical procedure, the FE model allows confidence that the final position of the stent graft, when deployed in vivo, can also be predicted with significant accuracy. Moreover, the numerical model run in just a few hours, an encouraging result for applications in the clinical routine. In conclusion, the efficient modelling of a complicated structure which combines thin scaffolding and fabric has been demonstrated to be feasible. Furthermore, the prediction capabilities of the location of each stent ring, as well as the global shape of the graft, has been shown. This can allow surgeons to better plan their procedures and medical device manufacturers to optimize their designs. The current model can further be used as a starting point for patient specific CFD analysis.

Keywords: AAA, efficiency, finite element analysis, stent deployment

Procedia PDF Downloads 196
14956 Using a Train-the-Trainer Model to Deliver Post-Partum Haemorrhage Simulation in Rural Uganda

Authors: Michael Campbell, Malaz Elsaddig, Kevin Jones

Abstract:

Background: Despite encouraging progress, global maternal mortality has remained stubbornly high since the declaration of the Millennium development goals. Sub-Saharan Africa accounts for well over half of maternal deaths with Post-Partum Haemorrhage (PPH) being the lead cause. ‘In house’ simulation training delivered by local doctors may be a sustainable approach for improving emergency obstetric care. The aim of this study was to evaluate the use of a Train-the-Trainer (TtT) model in a rural Ugandan hospital to ascertain whether it can feasibly improve practitioners’ management of PPH. Methods: Three Ugandan doctors underwent a training course to enable them to design and deliver simulation training. These doctors used MamaNatalie® models to simulate PPH scenarios for midwives, nurses and medical students. The main outcome was improvement in participants’ knowledge and confidence, assessed using self-reported scores on a 10-point scale. Results: The TtT model produced significant improvements in the confidence and knowledge scores of the ten participants. The mean confidence score rose significantly (p=0.0005) from 6.4 to 8.6 following the simulation training. There was also a significant increase in the mean knowledge score from 7.2 to 9.0 (p=0.04). Medical students demonstrated the greatest overall increase in confidence scores whilst increases in knowledge scores were largest amongst nurses. Conclusions: This study demonstrates that a TtT model can be used in a low resource setting to improve healthcare professionals’ confidence and knowledge in managing obstetric emergencies. This Train-the-Trainer model represents a sustainable approach to addressing skill deficits in low resource settings. We believe that its expansion across healthcare institutions in Sub-Saharan Africa will help to reduce the region’s high maternal mortality rate and step closer to achieving the ambitions of the Millennium development goals.

Keywords: low resource setting, post-partum haemorrhage, simulation training, train the trainer

Procedia PDF Downloads 180
14955 Stable Diffusion, Context-to-Motion Model to Augmenting Dexterity of Prosthetic Limbs

Authors: André Augusto Ceballos Melo

Abstract:

Design to facilitate the recognition of congruent prosthetic movements, context-to-motion translations guided by image, verbal prompt, users nonverbal communication such as facial expressions, gestures, paralinguistics, scene context, and object recognition contributes to this process though it can also be applied to other tasks, such as walking, Prosthetic limbs as assistive technology through gestures, sound codes, signs, facial, body expressions, and scene context The context-to-motion model is a machine learning approach that is designed to improve the control and dexterity of prosthetic limbs. It works by using sensory input from the prosthetic limb to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. This can help to improve the performance of the prosthetic limb and make it easier for the user to perform a wide range of tasks. There are several key benefits to using the context-to-motion model for prosthetic limb control. First, it can help to improve the naturalness and smoothness of prosthetic limb movements, which can make them more comfortable and easier to use for the user. Second, it can help to improve the accuracy and precision of prosthetic limb movements, which can be particularly useful for tasks that require fine motor control. Finally, the context-to-motion model can be trained using a variety of different sensory inputs, which makes it adaptable to a wide range of prosthetic limb designs and environments. Stable diffusion is a machine learning method that can be used to improve the control and stability of movements in robotic and prosthetic systems. It works by using sensory feedback to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. One key aspect of stable diffusion is that it is designed to be robust to noise and uncertainty in the sensory feedback. This means that it can continue to produce stable, smooth movements even when the sensory data is noisy or unreliable. To implement stable diffusion in a robotic or prosthetic system, it is typically necessary to first collect a dataset of examples of the desired movements. This dataset can then be used to train a machine learning model to predict the appropriate control inputs for a given set of sensory observations. Once the model has been trained, it can be used to control the robotic or prosthetic system in real-time. The model receives sensory input from the system and uses it to generate control signals that drive the motors or actuators responsible for moving the system. Overall, the use of the context-to-motion model has the potential to significantly improve the dexterity and performance of prosthetic limbs, making them more useful and effective for a wide range of users Hand Gesture Body Language Influence Communication to social interaction, offering a possibility for users to maximize their quality of life, social interaction, and gesture communication.

Keywords: stable diffusion, neural interface, smart prosthetic, augmenting

Procedia PDF Downloads 106
14954 Analysis of Structural Phase Stability of Strontium Sulphide under High Pressure

Authors: Shilpa Kapoor, Namrata Yaduvanshi, Pooja Pawar, Sadhna Singh

Abstract:

A Three Body Interaction Potential (TBIP) model is developed to study the high pressure phase transition of SrS having NaCl (B1) structure at room temperature. This model includes the long range Columbic, three body interaction forces, short range overlap forces operative up to next nearest neighbors and zero point energy effects. We have investigated the phase transition with pressure, volume collapse and second order elastic constants and found results well suited with available experimental data.

Keywords: phase transition, second order elastic constants, three body interaction forces, volume collapses

Procedia PDF Downloads 529
14953 Simulation of Antimicrobial Resistance Gene Fate in Narrow Grass Hedges

Authors: Marzieh Khedmati, Shannon L. Bartelt-Hunt

Abstract:

Vegetative Filter Strips (VFS) are used for controlling the volume of runoff and decreasing contaminant concentrations in runoff before entering water bodies. Many studies have investigated the role of VFS in sediment and nutrient removal, but little is known about their efficiency for the removal of emerging contaminants such as antimicrobial resistance genes (ARGs). Vegetative Filter Strip Modeling System (VFSMOD) was used to simulate the efficiency of VFS in this regard. Several studies demonstrated the ability of VFSMOD to predict reductions in runoff volume and sediment concentration moving through the filters. The objectives of this study were to calibrate the VFSMOD with experimental data and assess the efficiency of the model in simulating the filter behavior in removing ARGs (ermB) and tylosin. The experimental data were obtained from a prior study conducted at the University of Nebraska (UNL) Rogers Memorial Farm. Three treatment factors were tested in the experiments, including manure amendment, narrow grass hedges and rainfall events. Sediment Delivery Ratio (SDR) was defined as the filter efficiency and the related experimental and model values were compared to each other. The VFS Model generally agreed with the experimental results and as a result, the model was used for predicting filter efficiencies when the runoff data are not available. Narrow Grass Hedges (NGH) were shown to be effective in reducing tylosin and ARGs concentration. The simulation showed that the filter efficiency in removing ARGs is different for different soil types and filter lengths. There is an optimum length for the filter strip that produces minimum runoff volume. Based on the model results increasing the length of the filter by 1-meter leads to higher efficiency but widening beyond that decreases the efficiency. The VFSMOD, which was proved to work well in estimation of VFS trapping efficiency, showed confirming results for ARG removal.

Keywords: antimicrobial resistance genes, emerging contaminants, narrow grass hedges, vegetative filter strips, vegetative filter strip modeling system

Procedia PDF Downloads 137
14952 A Comparison Between Different Discretization Techniques for the Doyle-Fuller-Newman Li+ Battery Model

Authors: Davide Gotti, Milan Prodanovic, Sergio Pinilla, David Muñoz-Torrero

Abstract:

Since its proposal, the Doyle-Fuller-Newman (DFN) lithium-ion battery model has gained popularity in the electrochemical field. In fact, this model provides the user with theoretical support for designing the lithium-ion battery parameters, such as the material particle or the diffusion coefficient adjustment direction. However, the model is mathematically complex as it is composed of several partial differential equations (PDEs) such as Fick’s law of diffusion, the MacInnes and Ohm’s equations, among other phenomena. Thus, to efficiently use the model in a time-domain simulation environment, the selection of the discretization technique is of a pivotal importance. There are several numerical methods available in the literature that can be used to carry out this task. In this study, a comparison between the explicit Euler, Crank-Nicolson, and Chebyshev discretization methods is proposed. These three methods are compared in terms of accuracy, stability, and computational times. Firstly, the explicit Euler discretization technique is analyzed. This method is straightforward to implement and is computationally fast. In this work, the accuracy of the method and its stability properties are shown for the electrolyte diffusion partial differential equation. Subsequently, the Crank-Nicolson method is considered. It represents a combination of the implicit and explicit Euler methods that has the advantage of being of the second order in time and is intrinsically stable, thus overcoming the disadvantages of the simpler Euler explicit method. As shown in the full paper, the Crank-Nicolson method provides accurate results when applied to the DFN model. Its stability does not depend on the integration time step, thus it is feasible for both short- and long-term tests. This last remark is particularly important as this discretization technique would allow the user to implement parameter estimation and optimization techniques such as system or genetic parameter identification methods using this model. Finally, the Chebyshev discretization technique is implemented in the DFN model. This discretization method features swift convergence properties and, as other spectral methods used to solve differential equations, achieves the same accuracy with a smaller number of discretization nodes. However, as shown in the literature, these methods are not suitable for handling sharp gradients, which are common during the first instants of the charge and discharge phases of the battery. The numerical results obtained and presented in this study aim to provide the guidelines on how to select the adequate discretization technique for the DFN model according to the type of application to be performed, highlighting the pros and cons of the three methods. Specifically, the non-eligibility of the simple Euler method for longterm tests will be presented. Afterwards, the Crank-Nicolson and the Chebyshev discretization methods will be compared in terms of accuracy and computational times under a wide range of battery operating scenarios. These include both long-term simulations for aging tests, and short- and mid-term battery charge/discharge cycles, typically relevant in battery applications like grid primary frequency and inertia control and electrical vehicle breaking and acceleration.

Keywords: Doyle-Fuller-Newman battery model, partial differential equations, discretization, numerical methods

Procedia PDF Downloads 30
14951 Thermal and Caloric Imperfections Effect on the Supersonic Flow Parameters with Application for Air in Nozzles

Authors: Merouane Salhi, Toufik Zebbiche, Omar Abada

Abstract:

When the stagnation pressure of perfect gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with this pressure. The gas does not remain perfect. Its state equation change and it becomes a real gas. In this case, the effects of molecular size and inter molecular attraction forces intervene to correct the state equation. The aim of this work is to show and discuss the effect of stagnation pressure on supersonic thermo dynamical, physical and geometrical flow parameters, to find a general case for real gas. With the assumptions that Berthelot’s state equation accounts for molecular size and inter molecular force effects, expressions are developed for analyzing supersonic flow for thermally and calorically imperfect gas lower than the dissociation molecules threshold. The designs parameters for supersonic nozzle like thrust coefficient depend directly on stagnation parameters of the combustion chamber. The application is for air. A computation of error is made in this case to give a limit of perfect gas model compared to real gas model.

Keywords: supersonic flow, real gas model, Berthelot’s state equation, Simpson’s method, condensation function, stagnation pressure

Procedia PDF Downloads 526
14950 Saturation Misbehavior and Field Activation of the Mobility in Polymer-Based OTFTs

Authors: L. Giraudet, O. Simonetti, G. de Tournadre, N. Dumelié, B. Clarenc, F. Reisdorffer

Abstract:

In this paper we intend to give a comprehensive view of the saturation misbehavior of thin film transistors (TFTs) based on disordered semiconductors, such as most organic TFTs, and its link to the field activation of the mobility. Experimental evidence of the field activation of the mobility is given for disordered semiconductor based TFTs, when reducing the gate length. Saturation misbehavior is observed simultaneously. Advanced transport models have been implemented in a quasi-2D numerical TFT simulation software. From the numerical simulations it is clearly established that field activation of the mobility alone cannot explain the saturation misbehavior. Evidence is given that high longitudinal field gradient at the drain end of the channel is responsible for an excess charge accumulation, preventing saturation. The two combined effects allow reproducing the experimental output characteristics of short channel TFTs, with S-shaped characteristics and saturation failure.

Keywords: mobility field activation, numerical simulation, OTFT, saturation failure

Procedia PDF Downloads 525
14949 Women's Pathways to Prison in Thailand

Authors: Samantha Jeffries, Chontit Chuenurah

Abstract:

Thailand incarcerates the largest number of women and has the highest female incarceration rate in South East Asia. Since the 1990s, there has been a substantial increase in the number, rate and proportion of women imprisoned. Thailand places a high priority on the gender specific contexts out of which offending arises and the different needs of women in the criminal justice system. This is manifested in work undertaken to guide the development of the United Nations Rules for the Treatment of Women Prisoners and Non-Custodial Measures for Women Offenders (the Bangkok Rules); adopted by the United Nations General Assembly in 2010. The Bangkok Rules make a strong statement about Thailand’s recognition of and commitment to the fair and equitable treatment of women throughout their contact with the criminal justice system including at sentencing and in prison. This makes the comparatively high use of imprisonment for women in Thailand particularly concerning and raises questions about the relationship between gender, crime and criminal justice. While there is an extensive body of research in Western jurisdictions exploring women’s pathways to prison, there is a relative dearth of methodologically robust research examining the possible gendered circumstances leading to imprisonment in Thailand. In this presentation, we will report preliminary findings from a qualitative study of women’s pathways to prison in Thailand. Our research aims were to ascertain: 1) the type, frequency, and context of criminal behavior that led to women’s incarceration, 2) women’s experiences of the criminal justice system, 3) the broader life experiences and circumstances that led women to prison in Thailand. In-depth life history interviews (n=77) were utilized to gain a comprehensive understanding of women’s journeys into prison. The interview schedule was open-ended consisting of prisoner responses to broad discussion topics. This approach provided women with the opportunity to describe significant experiences in their lives, to bring together distinct chronologies of events, and to analyze links between their varied life experiences, offending, and incarceration. Analyses showed that women’s journey’s to prison take one of eight pathways which tentatively labelled as follows, the: 1) harmed and harming pathway, 2) domestic/family violence victimization pathway, 3) drug connected pathway, 4) street woman pathway, 5) economically motivated pathway, 6) jealousy anger and/or revenge pathway, 7) naivety pathway, 8) unjust and/or corrupted criminal justice pathway. Each will be fully discussed during the presentation. This research is significant because it is the first in-depth methodologically robust exploration of women’s journeys to prison in Thailand and one of a few studies to explore gendered pathways outside of western contexts. Understanding women’s pathways into Thailand’s prisons is crucial to the development of effective planning, policy and program responses not only while women are in prison but also post-release. To best meet women’s needs in prison and effectively support their reintegration, we must have a comprehensive understanding of who these women are, what offenses they commit, the reasons that trigger their confrontations with the criminal justice system and the impact of the criminal justice system on them.

Keywords: pathways, prison, women, Thailand

Procedia PDF Downloads 248
14948 On the Creep of Concrete Structures

Authors: A. Brahma

Abstract:

Analysis of deferred deformations of concrete under sustained load shows that the creep has a leading role on deferred deformations of concrete structures. Knowledge of the creep characteristics of concrete is a Necessary starting point in the design of structures for crack control. Such knowledge will enable the designer to estimate the probable deformation in pre-stressed concrete or reinforced and the appropriate steps can be taken in design to accommodate this movement. In this study, we propose a prediction model that involves the acting principal parameters on the deferred behaviour of concrete structures. For the estimation of the model parameters Levenberg-Marquardt method has proven very satisfactory. A confrontation between the experimental results and the predictions of models designed shows that it is well suited to describe the evolution of the creep of concrete structures.

Keywords: concrete structure, creep, modelling, prediction

Procedia PDF Downloads 295
14947 Effects of Operating Conditions on Creep Life of Industrial Gas Turbine

Authors: Enyia James Diwa, Dodeye Ina Igbong, Archibong Eso Archibong

Abstract:

The creep life of an industrial gas turbine is determined through a physics-based model used to investigate the high pressure temperature (HPT) of the blade in use. A performance model was carried out via the Cranfield University TURBOMATCH simulation software to size the blade and to determine the corresponding stress. Various effects such as radial temperature distortion factor, turbine entry temperature, ambient temperature, blade metal temperature, and compressor degradation on the blade creep life were investigated. The output results show the difference in creep life and the location of failure along the span of the blade enabling better-informed advice for the gas turbine operator.

Keywords: creep, living, performance, degradation

Procedia PDF Downloads 404
14946 Automating and Optimization Monitoring Prognostics for Rolling Bearing

Authors: H. Hotait, X. Chiementin, L. Rasolofondraibe

Abstract:

This paper presents a continuous work to detect the abnormal state in the rolling bearing by studying the vibration signature analysis and calculation of the remaining useful life. To achieve these aims, two methods; the first method is the classification to detect the degradation state by the AOM-OPTICS (Acousto-Optic Modulator) method. The second one is the prediction of the degradation state using least-squares support vector regression and then compared with the linear degradation model. An experimental investigation on ball-bearing was conducted to see the effectiveness of the used method by applying the acquired vibration signals. The proposed model for predicting the state of bearing gives us accurate results with the experimental and numerical data.

Keywords: bearings, automatization, optimization, prognosis, classification, defect detection

Procedia PDF Downloads 124
14945 COVID_ICU_BERT: A Fine-Tuned Language Model for COVID-19 Intensive Care Unit Clinical Notes

Authors: Shahad Nagoor, Lucy Hederman, Kevin Koidl, Annalina Caputo

Abstract:

Doctors’ notes reflect their impressions, attitudes, clinical sense, and opinions about patients’ conditions and progress, and other information that is essential for doctors’ daily clinical decisions. Despite their value, clinical notes are insufficiently researched within the language processing community. Automatically extracting information from unstructured text data is known to be a difficult task as opposed to dealing with structured information such as vital physiological signs, images, and laboratory results. The aim of this research is to investigate how Natural Language Processing (NLP) techniques and machine learning techniques applied to clinician notes can assist in doctors’ decision-making in Intensive Care Unit (ICU) for coronavirus disease 2019 (COVID-19) patients. The hypothesis is that clinical outcomes like survival or mortality can be useful in influencing the judgement of clinical sentiment in ICU clinical notes. This paper introduces two contributions: first, we introduce COVID_ICU_BERT, a fine-tuned version of clinical transformer models that can reliably predict clinical sentiment for notes of COVID patients in the ICU. We train the model on clinical notes for COVID-19 patients, a type of notes that were not previously seen by clinicalBERT, and Bio_Discharge_Summary_BERT. The model, which was based on clinicalBERT achieves higher predictive accuracy (Acc 93.33%, AUC 0.98, and precision 0.96 ). Second, we perform data augmentation using clinical contextual word embedding that is based on a pre-trained clinical model to balance the samples in each class in the data (survived vs. deceased patients). Data augmentation improves the accuracy of prediction slightly (Acc 96.67%, AUC 0.98, and precision 0.92 ).

Keywords: BERT fine-tuning, clinical sentiment, COVID-19, data augmentation

Procedia PDF Downloads 213
14944 Innovations in the Implementation of Preventive Strategies and Measuring Their Effectiveness Towards the Prevention of Harmful Incidents to People with Mental Disabilities who Receive Home and Community Based Services

Authors: Carlos V. Gonzalez

Abstract:

Background: Providers of in-home and community based services strive for the elimination of preventable harm to the people under their care as well as to the employees who support them. Traditional models of safety and protection from harm have assumed that the absence of incidents of harm is a good indicator of safe practices. However, this model creates an illusion of safety that is easily shaken by sudden and inadvertent harmful events. As an alternative, we have developed and implemented an evidence-based resilient model of safety known as C.O.P.E. (Caring, Observing, Predicting and Evaluating). Within this model, safety is not defined by the absence of harmful incidents, but by the presence of continuous monitoring, anticipation, learning, and rapid response to events that may lead to harm. Objective: The objective was to evaluate the effectiveness of the C.O.P.E. model for the reduction of harm to individuals with mental disabilities who receive home and community based services. Methods: Over the course of 2 years we counted the number of incidents of harm and near misses. We trained employees on strategies to eliminate incidents before they fully escalated. We trained employees to track different levels of patient status within a scale from 0 to 10. Additionally, we provided direct support professionals and supervisors with customized smart phone applications to track and notify the team of changes in that status every 30 minutes. Finally, the information that we collected was saved in a private computer network that analyzes and graphs the outcome of each incident. Result and conclusions: The use of the COPE model resulted in: A reduction in incidents of harm. A reduction the use of restraints and other physical interventions. An increase in Direct Support Professional’s ability to detect and respond to health problems. Improvement in employee alertness by decreasing sleeping on duty. Improvement in caring and positive interaction between Direct Support Professionals and the person who is supported. Developing a method to globally measure and assess the effectiveness of prevention from harm plans. Future applications of the COPE model for the reduction of harm to people who receive home and community based services are discussed.

Keywords: harm, patients, resilience, safety, mental illness, disability

Procedia PDF Downloads 450
14943 A High Performance Piano Note Recognition Scheme via Precise Onset Detection and Segmented Short-Time Fourier Transform

Authors: Sonali Banrjee, Swarup Kumar Mitra, Aritra Acharyya

Abstract:

A piano note recognition method has been proposed by the authors in this paper. The authors have used a comprehensive method for onset detection of each note present in a piano piece followed by segmented short-time Fourier transform (STFT) for the identification of piano notes. The performance evaluation of the proposed method has been carried out in different harsh noisy environments by adding different levels of additive white Gaussian noise (AWGN) having different signal-to-noise ratio (SNR) in the original signal and evaluating the note detection error rate (NDER) of different piano pieces consisting of different number of notes at different SNR levels. The NDER is found to be remained within 15% for all piano pieces under consideration when the SNR is kept above 8 dB.

Keywords: AWGN, onset detection, piano note, STFT

Procedia PDF Downloads 161
14942 Nonlinear Estimation Model for Rail Track Deterioration

Authors: M. Karimpour, L. Hitihamillage, N. Elkhoury, S. Moridpour, R. Hesami

Abstract:

Rail transport authorities around the world have been facing a significant challenge when predicting rail infrastructure maintenance work for a long period of time. Generally, maintenance monitoring and prediction is conducted manually. With the restrictions in economy, the rail transport authorities are in pursuit of improved modern methods, which can provide precise prediction of rail maintenance time and location. The expectation from such a method is to develop models to minimize the human error that is strongly related to manual prediction. Such models will help them in understanding how the track degradation occurs overtime under the change in different conditions (e.g. rail load, rail type, rail profile). They need a well-structured technique to identify the precise time that rail tracks fail in order to minimize the maintenance cost/time and secure the vehicles. The rail track characteristics that have been collected over the years will be used in developing rail track degradation prediction models. Since these data have been collected in large volumes and the data collection is done both electronically and manually, it is possible to have some errors. Sometimes these errors make it impossible to use them in prediction model development. This is one of the major drawbacks in rail track degradation prediction. An accurate model can play a key role in the estimation of the long-term behavior of rail tracks. Accurate models increase the track safety and decrease the cost of maintenance in long term. In this research, a short review of rail track degradation prediction models has been discussed before estimating rail track degradation for the curve sections of Melbourne tram track system using Adaptive Network-based Fuzzy Inference System (ANFIS) model.

Keywords: ANFIS, MGT, prediction modeling, rail track degradation

Procedia PDF Downloads 338
14941 Comparative Study of Sorption of Cr Ions and Dye Bezaktiv Yellow HE-4G with the Use of Adsorbents Natural Mixture of Olive Stone and Date Pits from Aqueous Solution

Authors: H. Aksas, H. Babaci, K. Louhab

Abstract:

In this paper, a comparative study of the adsorption of Chromium and dyes, onto mixture biosorbents, olive stones and date pits at different percentage was investigated in aqueous solution. The study of various parameters: Effect of contact time, pH, temperature and initial concentration shows that these materials possess a high affinity for the adsorption of chromium for the adsorption of dye bezaktiv yellow HE-4G. To deepen the comparative study of the adsorption of chromium and dye with the use of different blends of olive stones and date pits, the following models are studied: Langmuir, Freundlich isotherms and Dubinin- Radushkvich (D-R) were used as the adsorption equilibrium data model. Langmuir isotherm model was the most suitable for the adsorption of the dye bezaktiv HE-4G and the D-R model is most suitable for adsorption Chrome. The pseudo-first-order model, pseudo-second order and intraparticle diffusion were used to describe the adsorption kinetics. The apparent activation energy was found to be less than 8KJ/mol, which is characteristic of a controlled chemical reaction for the adsorption of two materials. t was noticed that adsorption of chromium and dye BEZAKTIV HE-YELLOW 4G follows the kinetics of the pseudo second order. The study of the effect of temperature was quantified by calculating various thermodynamic parameters such as Gibbs free energy, enthalpy and entropy changes. The resulting thermodynamic parameters indicate the endothermic nature of the adsorption of Cr (VI) ions and the dye Bezaktiv HE-4G. But these materials are very good adsorbents, as they represent a low cost. in addition, it has been noticed that the greater the quantity of olive stone in the mixture increases, the adsorption ability of the dye or chromium increases.

Keywords: chromium ions, anions dye, sorption, mixed adsorbents, olive stone, date pits

Procedia PDF Downloads 230
14940 Growth Curves Genetic Analysis of Native South Caspian Sea Poultry Using Bayesian Statistics

Authors: Jamal Fayazi, Farhad Anoosheh, Mohammad R. Ghorbani, Ali R. Paydar

Abstract:

In this study, to determine the best non-linear regression model describing the growth curve of native poultry, 9657 chicks of generations 18, 19, and 20 raised in Mazandaran breeding center were used. Fowls and roosters of this center distributed in south of Caspian Sea region. To estimate the genetic variability of none linear regression parameter of growth traits, a Gibbs sampling of Bayesian analysis was used. The average body weight traits in the first day (BW1), eighth week (BW8) and twelfth week (BW12) were respectively estimated as 36.05, 763.03, and 1194.98 grams. Based on the coefficient of determination, mean squares of error and Akaike information criteria, Gompertz model was selected as the best growth descriptive function. In Gompertz model, the estimated values for the parameters of maturity weight (A), integration constant (B) and maturity rate (K) were estimated to be 1734.4, 3.986, and 0.282, respectively. The direct heritability of BW1, BW8 and BW12 were respectively reported to be as 0.378, 0.3709, 0.316, 0.389, 0.43, 0.09 and 0.07. With regard to estimated parameters, the results of this study indicated that there is a possibility to improve some property of growth curve using appropriate selection programs.

Keywords: direct heritability, Gompertz, growth traits, maturity weight, native poultry

Procedia PDF Downloads 267
14939 Research on Ice Fixed-Abrasive Polishing Mechanism and Technology for High-Definition Display Panel Glass

Authors: Y. L. Sun, L. Shao, Y. Zhao, H. X. Zhou, W. Z. Lu, J. Li, D. W. Zuo

Abstract:

This study introduces an ice fixed-abrasive polishing (IFAP) technology. Using silica solution IFAP pad and Al2O3 IFAP pad, orthogonal tests were performed on polishing high-definition display panel glass, respectively. The results show that the polishing efficiency and effect polished with silica solution IFAP pad are better than those polished with Al2O3 IFAP pad. The optimized silica solution IFAP parameters are: polishing pressure 0.1MPa, polishing time 40min, table velocity 80r/min, and the ratio of accelerator and slurry 1:10. Finally, the IFAP mechanism was studied and it suggests by complicated analysis that IFAP is comprehensive effect of mechanical removal and microchemical reaction, combined with fixed abrasive polishing and free abrasive polishing.

Keywords: ice fixed-abrasive polishing, high-definition display panel glass, material removal rate, surface roughness

Procedia PDF Downloads 391
14938 Implementation of an Image Processing System Using Artificial Intelligence for the Diagnosis of Malaria Disease

Authors: Mohammed Bnebaghdad, Feriel Betouche, Malika Semmani

Abstract:

Image processing become more sophisticated over time due to technological advances, especially artificial intelligence (AI) technology. Currently, AI image processing is used in many areas, including surveillance, industry, science, and medicine. AI in medical image processing can help doctors diagnose diseases faster, with minimal mistakes, and with less effort. Among these diseases is malaria, which remains a major public health challenge in many parts of the world. It affects millions of people every year, particularly in tropical and subtropical regions. Early detection of malaria is essential to prevent serious complications and reduce the burden of the disease. In this paper, we propose and implement a scheme based on AI image processing to enhance malaria disease diagnosis through automated analysis of blood smear images. The scheme is based on the convolutional neural network (CNN) method. So, we have developed a model that classifies infected and uninfected single red cells using images available on Kaggle, as well as real blood smear images obtained from the Central Laboratory of Medical Biology EHS Laadi Flici (formerly El Kettar) in Algeria. The real images were segmented into individual cells using the watershed algorithm in order to match the images from the Kaagle dataset. The model was trained and tested, achieving an accuracy of 99% and 97% accuracy for new real images. This validates that the model performs well with new real images, although with slightly lower accuracy. Additionally, the model has been embedded in a Raspberry Pi4, and a graphical user interface (GUI) was developed to visualize the malaria diagnostic results and facilitate user interaction.

Keywords: medical image processing, malaria parasite, classification, CNN, artificial intelligence

Procedia PDF Downloads 25
14937 Soliton Solutions of the Higher-Order Nonlinear Schrödinger Equation with Dispersion Effects

Authors: H. Triki, Y. Hamaizi, A. El-Akrmi

Abstract:

We consider the higher order nonlinear Schrödinger equation model with fourth-order dispersion, cubic-quintic terms, and self-steepening. This equation governs the propagation of fem to second pulses in optical fibers. We present new bright and dark solitary wave type solutions for such a model under certain parametric conditions. This kind of solution may be useful to explain some physical phenomena related to wave propagation in a nonlinear optical fiber systems supporting high-order nonlinear and dispersive effects.

Keywords: nonlinear Schrödinger equation, high-order effects, soliton solution

Procedia PDF Downloads 639