Search results for: driver’s state adaptive driving support safety
14009 Outcomes of Using Guidelines for Caring and Referring ST Elevation Myocardial Infarction (STEMI) Patients at the Accident and Emergency Department of Songkhla Hospital, Thailand
Authors: Thanom Kaeniam
Abstract:
ST-Elevation Myocardial Infarction (STEMI) is a state of sudden death of the heart muscle due to sudden blockage of the artery. STEMI patients are usually in critical condition and with a potential opportunity for sudden death. Therefore, management guidelines for safety in caring and referring STEMI patients are needed. The objective of this developmental research was to assess the effectiveness of using the guidelines for caring and referring STEMI patients at the Accident and Emergency Department of Songkhla Hospital. The subjects of the study were 22 nurses in the emergency room, and doctors on duty in the accident and emergency room selected using purposive sampling with inclusion criteria. The research instruments were the guidelines for caring and referring STEMI patients, and record forms for the effectiveness of using the guidelines for caring and referring STEMI patients (a general record form for STEMI patients, a record form for SK administering, a referring record form for PCI, and a record form for dead patient in the accident and emergency room and during referring). The instruments were tested for content validity by three experts, and the reliability was tested using Kuder-Richardson 20 (KR20). The descriptive statistic employed was the percentage. The outcomes of using the guidelines for caring and referring ST Elevation Myocardial Infarction (STEMI) Patients at the Accident and Emergency Department revealed that before using the guidelines in 2009, 2010, and 2011, there were 84, 73, and 138 STEMI patients receiving services at the accident and emergency room, of which, only 9, 32, and 48 patients were referred for PCI/SK medications, or 10.74; 43.84; and 34.78 percent, and the death rates were 10.71; 10.95; and 11.59 percent, respectively. However, after the use of the guidelines in 2012, 2013, and 2014, there were 97, 77, and 57 patients, of which, the increases to 77, 72, and 55 patients were referred for PCI /SK medications or 79.37; 93.51; and 96.49 percent, and the death rates were reduced to 10.30; 6.49; and 1.76 percent, respectively. The results of the study revealed that the use of the guidelines for caring and referring STEMI patients at the Accident and Emergency Department increased the effectiveness and quality of nursing, especially in terms of SK medication, caring and referring patients for PCI to reduce the death rate.Keywords: outcomes, guidelines for caring, referring, myocardial infarction, STEMI
Procedia PDF Downloads 39514008 Indigenizing the Curriculum: Teaching at the Ifugao State University, Philippines
Authors: Nancy Ann P. Gonzales, Serafin L. Ngohayon
Abstract:
The Nurturing Indigenous Knowledge Experts (NIKE) among the young generation in Ifugao was a project in Ifugao, Philippines spearheaded by the Ifugao State University (IFSU) and was sponsored by the UNESCO Association in Japan. Through the project, he Ifugao Indigenous Knowledge Workbook was developed. It contains nine chapters. The workbook was pilot-tested to students who had IK classes. The descriptive survey method of research was used. A questionnaire was used to gather data from first year Bachelor of Elementary Education and Bachelor of Political Science students. Frequency count, percentage and mean were computed. T-test was used to determine if there exists significant difference on knowledge gained before and after IK was taught to the students. Results revealed that the respondents have an increased level of IK in all the areas covered in the NIKE workbook after they enrolled in their classes. It is alarming to note that the students are knowledgeable about IK but they are not practicing it. However, according to the respondents, they will apply their IK through teaching after graduation.Keywords: curriculum, elders, Indigenous knowledge, and students
Procedia PDF Downloads 35714007 Health Trajectory Clustering Using Deep Belief Networks
Authors: Farshid Hajati, Federico Girosi, Shima Ghassempour
Abstract:
We present a Deep Belief Network (DBN) method for clustering health trajectories. Deep Belief Network (DBN) is a deep architecture that consists of a stack of Restricted Boltzmann Machines (RBM). In a deep architecture, each layer learns more complex features than the past layers. The proposed method depends on DBN in clustering without using back propagation learning algorithm. The proposed DBN has a better a performance compared to the deep neural network due the initialization of the connecting weights. We use Contrastive Divergence (CD) method for training the RBMs which increases the performance of the network. The performance of the proposed method is evaluated extensively on the Health and Retirement Study (HRS) database. The University of Michigan Health and Retirement Study (HRS) is a nationally representative longitudinal study that has surveyed more than 27,000 elderly and near-elderly Americans since its inception in 1992. Participants are interviewed every two years and they collect data on physical and mental health, insurance coverage, financial status, family support systems, labor market status, and retirement planning. The dataset is publicly available and we use the RAND HRS version L, which is easy to use and cleaned up version of the data. The size of sample data set is 268 and the length of the trajectories is equal to 10. The trajectories do not stop when the patient dies and represent 10 different interviews of live patients. Compared to the state-of-the-art benchmarks, the experimental results show the effectiveness and superiority of the proposed method in clustering health trajectories.Keywords: health trajectory, clustering, deep learning, DBN
Procedia PDF Downloads 36914006 Poverty Reduction in European Cities: Local Governments’ Strategies and Programmes to Reduce Poverty; Interview Results from Austria
Authors: Melanie Schinnerl, Dorothea Greiling
Abstract:
In the context of the 2020 strategy, poverty and its fight returned to the center of national political efforts. This served as motivation for an Austrian research grant-funded project to focus on the under-researched local government level with the aim to identify municipal best-practice cases and to derive policy implications for Austria. Designing effective poverty reduction strategies is a complex challenge which calls for an integrated multi-actor in approach. Cities are increasingly confronted to combat poverty, even in rich EU-member states. By doing so cities face substantial demographic, cultural, economic and social challenges as well as changing welfare state regimes. Furthermore, there is a low willingness of (right-wing) governments to support the poor. Against this background, the research questions are: 1. How do local governments define poverty? 2. Who are the main risk groups and what are the most pressing problems when fighting urban poverty? 3. What is regarded as successful anti-poverty initiatives? 4. What is the underlying welfare state concept? To address the research questions a multi-method approach was chosen, consisting of a systematic literature analysis, a comprehensive document analysis, and expert interviews. For interpreting the data the project follows the qualitative-interpretive paradigm. Municipal approaches for reducing poverty are compared based on deductive, as well as inductive identified criteria. In addition to an intensive literature analysis, interviews (40) were conducted in Austria since the project started in March 2018. From the other countries, 14 responses have been collected, providing a first insight. Regarding the definition of poverty the EU SILC-definition as well as counting the persons who receive need-based minimum social benefits, the Austrian form of social welfare, are the predominant approaches in Austria. In addition to homeless people, single-parent families, un-skilled persons, long-term unemployed persons, migrants (first and second generation), refugees and families with at least 3 children were frequently mentioned. The most pressing challenges for Austrian cities are: expected reductions of social budgets, a great insecurity of the central government's social policy reform plans, the growing number of homeless people and a lack of affordable housing. Together with affordable housing, old-age poverty will gain more importance in the future. The Austrian best practice examples, suggested by interviewees, focused primarily on homeless, children and young people (till 25). Central government’s policy changes have already negative effects on programs for refugees and elderly unemployed. Social Housing in Vienna was frequently mentioned as an international best practice case, other growing cities can learn from. The results from Austria indicate a change towards the social investment state, which primarily focuses on children and labour market integration. The first insights from the other countries indicate that affordable housing and labor market integration are cross-cutting issues. Inherited poverty and old-age poverty seems to be more pressing outside Austria.Keywords: anti-poverty policies, European cities, empirical study, social investment
Procedia PDF Downloads 11714005 Hip and Valley Support Location in Wood Framing
Authors: P. Hajyalikhani, B. Hudson, D. Boll, L. Boren, Z. Sparks, M. Ward
Abstract:
Wood Light frame construction is one of the most common types of construction methods for residential and light commercial building in North America and parts of Europe. The typical roof framing for wood framed building is sloped and consists of several structural members such as rafters, hips, and valleys which are connected to the ridge and ceiling joists. The common slopes for roofs are 3/12, 8/12, and 12/12. Wood framed residential roof failure is most commonly caused by wind damage in such buildings. In the recent study, one of the weaknesses of wood framed roofs is long unsupported structural member lengths, such as hips and valleys. The purpose of this research is to find the critical support location for long hips and valleys with different slopes. ForteWeb software is used to find the critical location. The analysis results demonstrating the maximum unbraced hip and valley length are from 8.5 to 10.25 ft. dependent on the slope and roof type.Keywords: wood frame, stick framing, hip, valley
Procedia PDF Downloads 11714004 Virtualization of Biomass Colonization: Potential of Application in Precision Medicine
Authors: Maria Valeria De Bonis, Gianpaolo Ruocco
Abstract:
Nowadays, computational modeling is paving new design and verification ways in a number of industrial sectors. The technology is ripe to challenge some case in the Bioengineering and Medicine frameworks: for example, looking at the strategical and ethical importance of oncology research, efforts should be made to yield new and powerful resources to tumor knowledge and understanding. With these driving motivations, we approach this gigantic problem by using some standard engineering tools such as the mathematics behind the biomass transfer. We present here some bacterial colonization studies in complex structures. As strong analogies hold with some tumor proliferation, we extend our study to a benchmark case of solid tumor. By means of a commercial software, we model biomass and energy evolution in arbitrary media. The approach will be useful to cast virtualization cases of cancer growth in human organs, while augmented reality tools will be used to yield for a realistic aid to informed decision in treatment and surgery.Keywords: bacteria, simulation, tumor, precision medicine
Procedia PDF Downloads 33514003 An Inverse Approach for Determining Creep Properties from a Miniature Thin Plate Specimen under Bending
Authors: Yang Zheng, Wei Sun
Abstract:
This paper describes a new approach which can be used to interpret the experimental creep deformation data obtained from miniaturized thin plate bending specimen test to the corresponding uniaxial data based on an inversed application of the reference stress method. The geometry of the thin plate is fully defined by the span of the support, l, the width, b, and the thickness, d. Firstly, analytical solutions for the steady-state, load-line creep deformation rate of the thin plates for a Norton’s power law under plane stress (b → 0) and plane strain (b → ∞) conditions were obtained, from which it can be seen that the load-line deformation rate of the thin plate under plane-stress conditions is much higher than that under the plane-strain conditions. Since analytical solution is not available for the plates with random b-values, finite element (FE) analyses are used to obtain the solutions. Based on the FE results obtained for various b/l ratios and creep exponent, n, as well as the analytical solutions under plane stress and plane strain conditions, an approximate, numerical solutions for the deformation rate are obtained by curve fitting. Using these solutions, a reference stress method is utilised to establish the conversion relationships between the applied load and the equivalent uniaxial stress and between the creep deformations of thin plate and the equivalent uniaxial creep strains. Finally, the accuracy of the empirical solution was assessed by using a set of “theoretical” experimental data.Keywords: bending, creep, thin plate, materials engineering
Procedia PDF Downloads 47414002 Computing Machinery and Legal Intelligence: Towards a Reflexive Model for Computer Automated Decision Support in Public Administration
Authors: Jacob Livingston Slosser, Naja Holten Moller, Thomas Troels Hildebrandt, Henrik Palmer Olsen
Abstract:
In this paper, we propose a model for human-AI interaction in public administration that involves legal decision-making. Inspired by Alan Turing’s test for machine intelligence, we propose a way of institutionalizing a continuous working relationship between man and machine that aims at ensuring both good legal quality and higher efficiency in decision-making processes in public administration. We also suggest that our model enhances the legitimacy of using AI in public legal decision-making. We suggest that case loads in public administration could be divided between a manual and an automated decision track. The automated decision track will be an algorithmic recommender system trained on former cases. To avoid unwanted feedback loops and biases, part of the case load will be dealt with by both a human case worker and the automated recommender system. In those cases an experienced human case worker will have the role of an evaluator, choosing between the two decisions. This model will ensure that the algorithmic recommender system is not compromising the quality of the legal decision making in the institution. It also enhances the legitimacy of using algorithmic decision support because it provides justification for its use by being seen as superior to human decisions when the algorithmic recommendations are preferred by experienced case workers. The paper outlines in some detail the process through which such a model could be implemented. It also addresses the important issue that legal decision making is subject to legislative and judicial changes and that legal interpretation is context sensitive. Both of these issues requires continuous supervision and adjustments to algorithmic recommender systems when used for legal decision making purposes.Keywords: administrative law, algorithmic decision-making, decision support, public law
Procedia PDF Downloads 21714001 Using Machine Learning to Monitor the Condition of the Cutting Edge during Milling Hardened Steel
Authors: Pawel Twardowski, Maciej Tabaszewski, Jakub Czyżycki
Abstract:
The main goal of the work was to use machine learning to predict cutting-edge wear. The research was carried out while milling hardened steel with sintered carbide cutters at various cutting speeds. During the tests, cutting-edge wear was measured, and vibration acceleration signals were also measured. Appropriate measures were determined from the vibration signals and served as input data in the machine-learning process. Two approaches were used in this work. The first one involved a two-state classification of the cutting edge - suitable and unfit for further work. In the second approach, prediction of the cutting-edge state based on vibration signals was used. The obtained research results show that the appropriate use of machine learning algorithms gives excellent results related to monitoring cutting edge during the process.Keywords: milling of hardened steel, tool wear, vibrations, machine learning
Procedia PDF Downloads 5914000 Row Detection and Graph-Based Localization in Tree Nurseries Using a 3D LiDAR
Authors: Ionut Vintu, Stefan Laible, Ruth Schulz
Abstract:
Agricultural robotics has been developing steadily over recent years, with the goal of reducing and even eliminating pesticides used in crops and to increase productivity by taking over human labor. The majority of crops are arranged in rows. The first step towards autonomous robots, capable of driving in fields and performing crop-handling tasks, is for robots to robustly detect the rows of plants. Recent work done towards autonomous driving between plant rows offers big robotic platforms equipped with various expensive sensors as a solution to this problem. These platforms need to be driven over the rows of plants. This approach lacks flexibility and scalability when it comes to the height of plants or distance between rows. This paper proposes instead an algorithm that makes use of cheaper sensors and has a higher variability. The main application is in tree nurseries. Here, plant height can range from a few centimeters to a few meters. Moreover, trees are often removed, leading to gaps within the plant rows. The core idea is to combine row detection algorithms with graph-based localization methods as they are used in SLAM. Nodes in the graph represent the estimated pose of the robot, and the edges embed constraints between these poses or between the robot and certain landmarks. This setup aims to improve individual plant detection and deal with exception handling, like row gaps, which are falsely detected as an end of rows. Four methods were developed for detecting row structures in the fields, all using a point cloud acquired with a 3D LiDAR as an input. Comparing the field coverage and number of damaged plants, the method that uses a local map around the robot proved to perform the best, with 68% covered rows and 25% damaged plants. This method is further used and combined with a graph-based localization algorithm, which uses the local map features to estimate the robot’s position inside the greater field. Testing the upgraded algorithm in a variety of simulated fields shows that the additional information obtained from localization provides a boost in performance over methods that rely purely on perception to navigate. The final algorithm achieved a row coverage of 80% and an accuracy of 27% damaged plants. Future work would focus on achieving a perfect score of 100% covered rows and 0% damaged plants. The main challenges that the algorithm needs to overcome are fields where the height of the plants is too small for the plants to be detected and fields where it is hard to distinguish between individual plants when they are overlapping. The method was also tested on a real robot in a small field with artificial plants. The tests were performed using a small robot platform equipped with wheel encoders, an IMU and an FX10 3D LiDAR. Over ten runs, the system achieved 100% coverage and 0% damaged plants. The framework built within the scope of this work can be further used to integrate data from additional sensors, with the goal of achieving even better results.Keywords: 3D LiDAR, agricultural robots, graph-based localization, row detection
Procedia PDF Downloads 13913999 Bearing Capacity Improvement in a Silty Clay Soil with Crushed Polyethylene Terephthalate
Authors: Renzo Palomino, Alessandra Trujillo, Lidia Pacheco
Abstract:
The document presents a study based on the incremental bearing capacity of silty clay soil with the incorporation of crushed PET fibers. For a better understanding of the behavior of soil, it is necessary to know its origin. The analyzed samples came from the subgrade layer of a highway that connects the cities of Muniches and Yurimaguas in Loreto, Peru. The material in this area usually has properties such as low support index, medium to high plasticity, and other characteristics that make it considered a ‘problematic’ soil due to factors such as climate, humidity, and geographical location. In addition, PET fibers are obtained from the decomposition of plastic bottles that are polluting agents with a high production rate in our country; in that sense, their use in a construction process represents a considerable reduction in environmental impact. Moreover, to perform a precise analysis of the behavior of this soil mixed with PET, tests such as the hydrometer test, Proctor and CBR with 15%, 10%, 5%, 4%, 3%, and 1% of PET with respect to the mass of the sample of natural soil were carried out. The results show that when a low percentage of PET is used, the support index increases.Keywords: environmental impact, geotechnics, PET, silty clay soil
Procedia PDF Downloads 23713998 Active Disturbance Rejection Control for Maximization of Generated Power from Wind Energy Conversion Systems using a Doubly Fed Induction Generator
Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss
Abstract:
This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using matlab simulink.Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking
Procedia PDF Downloads 56413997 Maximization of Generated Power from Wind Energy Conversion Systems Using a Doubly Fed Induction Generator with Active Disturbance Rejection Control
Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss
Abstract:
This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using matlab simulink.Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking
Procedia PDF Downloads 49913996 Improving Patient Journey in the Obstetrics and Gynecology Emergency Department: A Comprehensive Analysis of Patient Experience
Authors: Lolwa Alansari, Abdelhamid Azhaghdani, Sufia Athar, Hanen Mrabet, Annaliza Cruz, Tamara Alshadafat, Almunzer Zakaria
Abstract:
Introduction: Improving the patient experience is a fundamental pillar of healthcare's quadruple aims. Recognizing the importance of patient experiences and perceptions in healthcare interactions is pivotal for driving quality improvement. This abstract centers around the Patient Experience Program, an endeavor crafted with the purpose of comprehending and elevating the experiences of patients in the Obstetrics & Gynecology Emergency Department (OB/GYN ED). Methodology: This comprehensive endeavor unfolded through a structured sequence of phases following Plan-Do-Study-Act (PDSA) model, spanning over 12 months, focused on enhancing patient experiences in the Obstetrics & Gynecology Emergency Department (OB/GYN ED). The study meticulously examined the journeys of patients with acute obstetrics and gynecological conditions, collecting data from over 100 participants monthly. The inclusive approach covered patients of different priority levels (1-5) admitted for acute conditions, with no exclusions. Historical data from March and April 2022 serves as a benchmark for comparison, strengthening causality claims by providing a baseline understanding of OB/GYN ED performance before interventions. Additionally, the methodology includes the incorporation of staff engagement surveys to comprehensively understand the experiences of healthcare professionals with the implemented improvements. Data extraction involved administering open-ended questions and comment sections to gather rich qualitative insights. The survey covered various aspects of the patient journey, including communication, emotional support, timely access to care, care coordination, and patient-centered decision-making. The project's data analysis utilized a mixed-methods approach, combining qualitative techniques to identify recurring themes and extract actionable insights and quantitative methods to assess patient satisfaction scores and relevant metrics over time, facilitating the measurement of intervention impact and longitudinal tracking of changes. From the themes we discovered in both the online and in-person patient experience surveys, several key findings emerged that guided us in initiating improvements, including effective communication and information sharing, providing emotional support and empathy, ensuring timely access to care, fostering care coordination and continuity, and promoting patient-centered decision-making. Results: The project yielded substantial positive outcomes, significantly improving patient experiences in the OB/GYN ED. Patient satisfaction levels rose from 62% to a consistent 98%, with notable improvements in satisfaction with care plan information and physician care. Waiting time satisfaction increased from 68% to a steady 97%. The project positively impacted nurses' and midwives' job satisfaction, increasing from 64% to an impressive 94%. Operational metrics displayed positive trends, including a decrease in the "left without being seen" rate from 3% to 1%, the discharge against medical advice rate dropping from 8% to 1%, and the absconded rate reducing from 3% to 0%. These outcomes underscore the project's effectiveness in enhancing both patient and staff experiences in the healthcare setting. Conclusion: The use of a patient experience questionnaire has been substantiated by evidence-based research as an effective tool for improving the patient experience, guiding interventions, and enhancing overall healthcare quality in the OB/GYN ED. The project's interventions have resulted in a more efficient allocation of resources, reduced hospital stays, and minimized unnecessary resource utilization. This, in turn, contributes to cost savings for the healthcare facility.Keywords: patient experience, patient survey, person centered care, quality initiatives
Procedia PDF Downloads 5713995 An Evaluation of the Artificial Neural Network and Adaptive Neuro Fuzzy Inference System Predictive Models for the Remediation of Crude Oil-Contaminated Soil Using Vermicompost
Authors: Precious Ehiomogue, Ifechukwude Israel Ahuchaogu, Isiguzo Edwin Ahaneku
Abstract:
Vermicompost is the product of the decomposition process using various species of worms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vemicast. This process is called vermicomposting, while the rearing of worms for this purpose is called vermiculture. Several works have verified the adsorption of toxic metals using vermicompost but the application is still scarce for the retention of organic compounds. This research brings to knowledge the effectiveness of earthworm waste (vermicompost) for the remediation of crude oil contaminated soils. The remediation methods adopted in this study were two soil washing methods namely, batch and column process which represent laboratory and in-situ remediation. Characterization of the vermicompost and crude oil contaminated soil were performed before and after the soil washing using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and Atomic adsorption spectrometry (AAS). The optimization of washing parameters, using response surface methodology (RSM) based on Box-Behnken Design was performed on the response from the laboratory experimental results. This study also investigated the application of machine learning models [Artificial neural network (ANN), Adaptive neuro fuzzy inference system (ANFIS). ANN and ANFIS were evaluated using the coefficient of determination (R²) and mean square error (MSE)]. Removal efficiency obtained from the Box-Behnken design experiment ranged from 29% to 98.9% for batch process remediation. Optimization of the experimental factors carried out using numerical optimization techniques by applying desirability function method of the response surface methodology (RSM) produce the highest removal efficiency of 98.9% at absorbent dosage of 34.53 grams, adsorbate concentration of 69.11 (g/ml), contact time of 25.96 (min), and pH value of 7.71, respectively. Removal efficiency obtained from the multilevel general factorial design experiment ranged from 56% to 92% for column process remediation. The coefficient of determination (R²) for ANN was (0.9974) and (0.9852) for batch and column process, respectively, showing the agreement between experimental and predicted results. For batch and column precess, respectively, the coefficient of determination (R²) for RSM was (0.9712) and (0.9614), which also demonstrates agreement between experimental and projected findings. For the batch and column processes, the ANFIS coefficient of determination was (0.7115) and (0.9978), respectively. It can be concluded that machine learning models can predict the removal of crude oil from polluted soil using vermicompost. Therefore, it is recommended to use machines learning models to predict the removal of crude oil from contaminated soil using vermicompost.Keywords: ANFIS, ANN, crude-oil, contaminated soil, remediation and vermicompost
Procedia PDF Downloads 11113994 Alignment in Earnings Management Research: Italy Looking towards US
Authors: Giulia Leoni, Cristina Florio
Abstract:
The paper aims to investigate the factors driving the increasing alignment of Italian earnings management (EM) research to US research on the same field. After characterizing the progressive similarity of Italian EM research with respect to US one by means of an historical comparison, the paper relies on a subsequent secondary source analysis to detect the possible causes of said alignment. Once identified that the alignment increased along three subsequent periods, the paper analyses and discusses this incremental similarity according to new institutional sociology (NIS) and highlights the presence of different combination of isomorphic pressures that help explaining this incremental similarity. The paper contributes to the institutional literature by providing evidence of isomorphism in academic research; it also contributes to accounting research by indicating the forces that are able to drive change and development in accounting research at national and international level. The paper also enlarges the explanatory value of NIS in alternative contexts, like academic accounting research.Keywords: accounting research, earnings management, international comparison, Italy, new institutional sociology, US
Procedia PDF Downloads 57313993 A Dose Distribution Approach Using Monte Carlo Simulation in Dosimetric Accuracy Calculation for Treating the Lung Tumor
Authors: Md Abdullah Al Mashud, M. Tariquzzaman, M. Jahangir Alam, Tapan Kumar Godder, M. Mahbubur Rahman
Abstract:
This paper presents a Monte Carlo (MC) method-based dose distributions on lung tumor for 6 MV photon beam to improve the dosimetric accuracy for cancer treatment. The polystyrene which is tissue equivalent material to the lung tumor density is used in this research. In the empirical calculations, TRS-398 formalism of IAEA has been used, and the setup was made according to the ICRU recommendations. The research outcomes were compared with the state-of-the-art experimental results. From the experimental results, it is observed that the proposed based approach provides more accurate results and improves the accuracy than the existing approaches. The average %variation between measured and TPS simulated values was obtained 1.337±0.531, which shows a substantial improvement comparing with the state-of-the-art technology.Keywords: lung tumour, Monte Carlo, polystyrene, Elekta synergy, Monaco planning system
Procedia PDF Downloads 44513992 Relationship and Comorbidity Between Down Syndrome and Autism Spectrum Disorder
Authors: Javiera Espinosa, Patricia López, Noelia Santos, Nadia Loro, Esther Moraleda
Abstract:
In recent years, there has been a notable increase in the number of investigations that establish that Down Syndrome and Autism Spectrum Disorder are diagnoses that can coexist together. However, there are also many studies that consider that both diagnoses present neuropsychological, linguistic and adaptive characteristics with a totally different profile. The objective of this research is to question whether there really can be a profile that encompasses both disorders or if they can be incompatible with each other. To this end, a review of the scientific literature of recent years has been carried out. The results indicate that the two lines collect opposite approaches. On the one hand, there is research that supports the increase in comorbidity between Down Syndrome and Autism Spectrum Disorder, and on the other hand, many investigations show a totally different general development profile between the two. The discussion focuses on discussing both lines of work and on proposing future lines of research in this regard.Keywords: disability, language, speech, down syndrome
Procedia PDF Downloads 7313991 An Adaptive CFAR Algorithm Based on Automatic Censoring in Heterogeneous Environments
Authors: Naime Boudemagh
Abstract:
In this work, we aim to improve the detection performances of radar systems. To this end, we propose and analyze a novel censoring technique of undesirable samples, of priori unknown positions, that may be present in the environment under investigation. Therefore, we consider heterogeneous backgrounds characterized by the presence of some irregularities such that clutter edge transitions and/or interfering targets. The proposed detector, termed automatic censoring constant false alarm (AC-CFAR), operates exclusively in a Gaussian background. It is built to allow the segmentation of the environment to regions and switch automatically to the appropriate detector; namely, the cell averaging CFAR (CA-CFAR), the censored mean level CFAR (CMLD-CFAR) or the order statistic CFAR (OS-CFAR). Monte Carlo simulations show that the AC-CFAR detector performs like the CA-CFAR in a homogeneous background. Moreover, the proposed processor exhibits considerable robustness in a heterogeneous background.Keywords: CFAR, automatic censoring, heterogeneous environments, radar systems
Procedia PDF Downloads 60213990 Inducing Cryptobiosis State of Tardigrades in Cyanobacteria Synechococcus elongatus for Effective Preservation
Authors: Nilesh Bandekar, Sumita Dasgupta, Luis Alberto Allcahuaman Huaya, Souvik Manna
Abstract:
Cryptobiosis is a dormant state where all measurable metabolic activities are at a halt, allowing an organism to survive in extreme conditions like low temperature (cryobiosis), extreme drought (anhydrobiosis), etc. This phenomenon is observed especially in tardigrades that can retain this state for decades depending on the abiotic environmental conditions. On returning to favorable conditions, tardigrades re-attain a metabolically active state. In this study, cyanobacteria as a model organism are being chosen to induce cryptobiosis for its effective preservation over a long period of time. Preserving cyanobacteria using this strategy will have multiple space applications because of its ability to produce oxygen. In addition, research has shown the survivability of this organism in space for a certain period of time. Few species of cyanobacterial residents of the soil such as Microcoleus, are able to survive in extreme drought as well. This work specifically focuses on Synechococcus elongatus, an endolith cyanobacteria with multiple benefits. It has the capability to produce 25% oxygen in water bodies. It utilizes carbon dioxide to produce oxygen via photosynthesis and also uses carbon dioxide as an energy source to form glucose via the Calvin cycle. There is a fair possibility of initiating cryptobiosis in such an organism by inducing certain proteins extracted from tardigrades such as Heat Shock Proteins (Hsp27 and Hsp30c) and/or hydrophilic Late Embryogenesis Abundant proteins (LEA). Existing methods like cryopreservation are difficult to execute in space keeping in mind their cost and heavy instrumentation. Also, extensive freezing may cause cellular damage. Therefore, cryptobiosis-induced cyanobacteria for its transportation from Earth to Mars as a part of future terraforming missions on Mars will save resources and increase the effectiveness of preservation. Finally, Cyanobacteria species like Synechococcus elongatus can also produce oxygen and glucose on Mars in favorable conditions and holds the key to terraforming Mars.Keywords: cryptobiosis, cyanobacteria, glucose, mars, Synechococcus elongatus, tardigrades
Procedia PDF Downloads 22813989 Opportunities and Challenges: Tracing the Evolution of India's First State-led Curriculum-based Media Literacy Intervention
Authors: Ayush Aditya
Abstract:
In today's digitised world, the extent of an individual’s social involvement is largely determined by their interaction over the internet. The Internet has emerged as a primary source of information consumption and a reliable medium for receiving updates on everyday activities. Owing to this change in the information consumption pattern, the internet has also emerged as a hotbed of misinformation. Experts are of the view that media literacy has emerged as one of the most effective strategies for addressing the issue of misinformation. This paper aims to study the evolution of the Kerala government's media literacy policy, its implementation strategy, challenges and opportunities. The objective of this paper is to create a conceptual framework containing details of the implementation strategy based on the Kerala model. Extensive secondary research of literature, newspaper articles, and other online sources was carried out to locate the timeline of this policy. This was followed by semi-structured interview discussions with government officials from Kerala to trace the origin and evolution of this policy. Preliminary findings based on the collected data suggest that this policy is a case of policy by chance, as the officer who headed this policy during the state level implementation was the one who has already piloted a media literacy program in a district called Kannur as the district collector. Through this paper, an attempt is made to trace the history of the media literacy policy starting from the Kannur intervention in 2018, which was started to address the issue of vaccine hesitancy around measles rubella(MR) vaccination. If not for the vaccine hesitancy, this program would not have been rolled out in Kannur. Interviews with government officials suggest that when authorities decided to take up this initiative in 2020, a huge amount of misinformation emerging during the COVID-19 pandemic was the trigger. There was misinformation regarding government orders, healthcare facilities, vaccination, and lockdown regulations, which affected everyone, unlike the case of Kannur, where it was only a certain age group of kids. As a solution to this problem, the state government decided to create a media literacy curriculum to be taught in all government schools of the state starting from standard 8 till graduation. This was a tricky task, as a new course had to be immediately introduced in the school curriculum amid all the disruptions in the education system caused by the pandemic. It was revealed during the interview that in the case of the state-wide implementation, every step involved multiple checks and balances, unlike the earlier program where stakeholders were roped-in as and when the need emerged. On the pedagogy, while the training during the pilot could be managed through PowerPoint presentation, designing a state-wide curriculum involved multiple iterations and expert approvals. The reason for this is COVID-19 related misinformation has lost its significance. In the next phase of the research, an attempt will be made to compare other aspects of the pilot implementation with the state-wide implementation.Keywords: media literacy, digital media literacy, curriculum based media literacy intervention, misinformation
Procedia PDF Downloads 9313988 Overcoming Reading Barriers in an Inclusive Mathematics Classroom with Linguistic and Visual Support
Authors: A. Noll, J. Roth, M. Scholz
Abstract:
The importance of written language in a democratic society is non-controversial. Students with physical, learning, cognitive or developmental disabilities often have difficulties in understanding information which is presented in written language only. These students suffer from obstacles in diverse domains. In order to reduce such barriers in educational as well as in out-of-school areas, access to written information must be facilitated. Readability can be enhanced by linguistic simplifications like the application of easy-to-read language. Easy-to-read language shall help people with disabilities to participate socially and politically in society. The authors state, for example, that only short simple words should be used, whereas the occurrence of complex sentences should be avoided. So far, these guidelines were not empirically proved. Another way to reduce reading barriers is the use of visual support, for example, symbols. A symbol conveys, in contrast to a photo, a single idea or concept. Little empirical data about the use of symbols to foster the readability of texts exist. Nevertheless, a positive influence can be assumed, e.g., because of the multimedia principle. It indicates that people learn better from words and pictures than from words alone. A qualitative Interview and Eye-Tracking-Study, which was conducted by the authors, gives cause for the assumption that besides the illustration of single words, the visualization of complete sentences may be helpful. Thus, the effect of photos, which illustrate the content of complete sentences, is also investigated in this study. This leads us to the main research question which was focused on: Does the use of easy-to-read language and/or enriching text with symbols or photos facilitate pupils’ comprehension of learning tasks? The sample consisted of students with learning difficulties (N = 144) and students without SEN (N = 159). The students worked on the tasks, which dealt with introducing fractions, individually. While experimental group 1 received a linguistically simplified version of the tasks, experimental group 2 worked with a variation which was linguistically simplified and furthermore, the keywords of the tasks were visualized by symbols. Experimental group 3 worked on exercises which were simplified by easy-to-read-language and the content of the whole sentences was illustrated by photos. Experimental group 4 received a not simplified version. The participants’ reading ability and their IQ was elevated beforehand to build four comparable groups. There is a significant effect of the different setting on the students’ results F(3,140) = 2,932; p = 0,036*. A post-hoc-analyses with multiple comparisons shows that this significance results from the difference between experimental group 3 and 4. The students in the group easy-to-read language plus photos worked on the exercises significantly more successfully than the students who worked in the group with no simplifications. Further results which refer, among others, to the influence of the students reading ability will be presented at the ICERI 2018.Keywords: inclusive education, mathematics education, easy-to-read language, photos, symbols, special educational needs
Procedia PDF Downloads 15413987 Development of 3D Laser Scanner for Robot Navigation
Authors: Ali Emre Öztürk, Ergun Ercelebi
Abstract:
Autonomous robotic systems needs an equipment like a human eye for their movement. Robotic camera systems, distance sensors and 3D laser scanners have been used in the literature. In this study a 3D laser scanner has been produced for those autonomous robotic systems. In general 3D laser scanners are using 2 dimension laser range finders that are moving on one-axis (1D) to generate the model. In this study, the model has been obtained by a one-dimensional laser range finder that is moving in two –axis (2D) and because of this the laser scanner has been produced cheaper. Furthermore for the laser scanner a motor driver, an embedded system control board has been used and at the same time a user interface card has been used to make the communication between those cards and computer. Due to this laser scanner, the density of the objects, the distance between the objects and the necessary path ways for the robot can be calculated. The data collected by the laser scanner system is converted in to cartesian coordinates to be modeled in AutoCAD program. This study shows also the synchronization between the computer user interface, AutoCAD and the embedded systems. As a result it makes the solution cheaper for such systems. The scanning results are enough for an autonomous robot but the scan cycle time should be developed. This study makes also contribution for further studies between the hardware and software needs since it has a powerful performance and a low cost.Keywords: 3D laser scanner, embedded system, 1D laser range finder, 3D model
Procedia PDF Downloads 27513986 Funding Innovative Activities in Firms: The Ownership Structure and Governance Linkage - Evidence from Mongolia
Authors: Ernest Nweke, Enkhtuya Bavuudorj
Abstract:
The harsh realities of the scandalous failure of several notable corporations in the past two decades have inextricably resulted in a surge in corporate governance studies. Nevertheless, little or no attention has been paid to corporate governance studies in Mongolian firms and much less to the comprehension of the correlation among ownership structure, corporate governance mechanisms and trend of innovative activities. Innovation is the bed rock of enterprise success. However, the funding and support for innovative activities in many firms are to a great extent determined by the incentives provided by the firm’s internal and external governance mechanisms. Mongolia is an East Asian country currently undergoing a fast-paced transition from socialist to democratic system and it is a widely held view that private ownership as against public ownership fosters innovation. Hence, following the privatization policy of Mongolian Government which has led to the transfer of the ownership of hitherto state controlled and state directed firms to private individuals and organizations, expectations are high that sufficient motivation would be provided for firm managers to engage in innovative activities. This research focuses on the relationship between ownership structure, corporate governance on one hand and the level of innovation on the hand. The paper is empirical in nature and derives data from both reliable secondary and primary sources. Secondary data for the study was in respect of ownership structure of Mongolian listed firms and innovation trend in Mongolia generally. These were analyzed using tables, charts, bars and percentages. Personal interviews and surveys were held to collect primary data. Primary data was in respect of corporate governance practices in Mongolian firms and were collected using structured questionnaire. Out of a population of three hundred and twenty (320) companies listed on the Mongolian Stock Exchange (MSE), a sample size of thirty (30) randomly selected companies was utilized for the study. Five (5) management level employees were surveyed in each selected firm giving a total of one hundred and fifty (150) respondents. Data collected were analyzed and research hypotheses tested using Chi-Square test statistic. Research results showed that corporate governance mechanisms were better and have significantly improved overtime in privately held as opposed to publicly owned firms. Consequently, the levels of innovation in privately held firms were considerably higher. It was concluded that a significant and positive relationship exists between private ownership and good corporate governance on one hand and the level of funding provided for innovative activities in Mongolian firms on the other hand.Keywords: corporate governance, innovation, ownership structure, stock exchange
Procedia PDF Downloads 19513985 Parent’s Preferences about Technology-Based Therapy for Children and Young People on the Autism Spectrum – a UK Survey
Authors: Athanasia Kouroupa, Karen Irvine, Sivana Mengoni, Shivani Sharma
Abstract:
Exploring parents’ preferences towards technology-based interventions for children on the autism spectrum can inform future research and support technology design. The study aimed to provide a comprehensive description of parents’ knowledge and preferences about innovative technology to support children on the autism spectrum. Survey data were collected from parents (n = 267) internationally. The survey included information about the use of conventional (e.g., smartphone, iPod, tablets) and non-conventional (e.g., virtual reality, robot) technologies. Parents appeared to prefer conventional technologies such as tablets and dislike non-conventional ones. They highlighted the positive contribution technology brought to the children’s lives during the pandemic. A few parents were equally concerned that the compulsory introduction of technology during the pandemic was associated with elongated time on devices. The data suggested that technology-based interventions are not widely known, need to be financially approachable and achieve a high standard of design to engage users.Keywords: autism, intervention, preferences, technology
Procedia PDF Downloads 13313984 Assessment of Solid Waste Management in General Mohammed Inuwa Wushishi Housing Estate, Minna, Niger State, Nigeria
Authors: Garba Inuwa Kuta, Mohammed, Adamu, Mohammed Ahmed Emigilati, Ibrahim Ishiaku, Kudu Dangana
Abstract:
The study sought to identify the problems of solid waste management in General Mohammed InuwaWushishi Housing Estate. The two broad types of data, the secondary and primary data were used in the study. Questionnaires and personal observations were also used to collect some of the data. Factors impeding the effective and efficient solid waste management were identified. The study revealed that sacks disposal method and open dumping are the most commonly used method of disposal, about 30.0% of the respondent use sacks disposal method in the estate while 24.9% dump their refuse on the floor. Wrong attitudes and perceptions of the people about sanitation issues contributed to solid waste management problems of General Mohammed InuwaWushishi Housing Estate. Majority of the households did not educate their members on the need to clean their surroundings and refuse to buy drum for waste disposal from Niger State Environmental Protection Agency (NISEPA) on the basis that the drums are expensive. Virtually, all the people depended on Niger State Environmental Protection Agency (NISEPA) facilities for the disposal of their household refuse. Solid waste management problems were partly the results of NISEPA’s inability to cope with the situation because of lack of equipment. It was recommended that there should be an increase in enlightenment to the people on domestic waste disposal to keep the surroundings clean.Keywords: housing estate, assessment, solid waste, disposal, management
Procedia PDF Downloads 65013983 Big Data Analysis Approach for Comparison New York Taxi Drivers' Operation Patterns between Workdays and Weekends Focusing on the Revenue Aspect
Authors: Yongqi Dong, Zuo Zhang, Rui Fu, Li Li
Abstract:
The records generated by taxicabs which are equipped with GPS devices is of vital importance for studying human mobility behavior, however, here we are focusing on taxi drivers' operation strategies between workdays and weekends temporally and spatially. We identify a group of valuable characteristics through large scale drivers' behavior in a complex metropolis environment. Based on the daily operations of 31,000 taxi drivers in New York City, we classify drivers into top, ordinary and low-income groups according to their monthly working load, daily income, daily ranking and the variance of the daily rank. Then, we apply big data analysis and visualization methods to compare the different characteristics among top, ordinary and low income drivers in selecting of working time, working area as well as strategies between workdays and weekends. The results verify that top drivers do have special operation tactics to help themselves serve more passengers, travel faster thus make more money per unit time. This research provides new possibilities for fully utilizing the information obtained from urban taxicab data for estimating human behavior, which is not only very useful for individual taxicab driver but also to those policy-makers in city authorities.Keywords: big data, operation strategies, comparison, revenue, temporal, spatial
Procedia PDF Downloads 22713982 Machine Vision System for Measuring the Quality of Bulk Sun-dried Organic Raisins
Authors: Navab Karimi, Tohid Alizadeh
Abstract:
An intelligent vision-based system was designed to measure the quality and purity of raisins. A machine vision setup was utilized to capture the images of bulk raisins in ranges of 5-50% mixed pure-impure berries. The textural features of bulk raisins were extracted using Grey-level Histograms, Co-occurrence Matrix, and Local Binary Pattern (a total of 108 features). Genetic Algorithm and neural network regression were used for selecting and ranking the best features (21 features). As a result, the GLCM features set was found to have the highest accuracy (92.4%) among the other sets. Followingly, multiple feature combinations of the previous stage were fed into the second regression (linear regression) to increase accuracy, wherein a combination of 16 features was found to be the optimum. Finally, a Support Vector Machine (SVM) classifier was used to differentiate the mixtures, producing the best efficiency and accuracy of 96.2% and 97.35%, respectively.Keywords: sun-dried organic raisin, genetic algorithm, feature extraction, ann regression, linear regression, support vector machine, south azerbaijan.
Procedia PDF Downloads 7313981 Applying the Global Trigger Tool in German Hospitals: A Retrospective Study in Surgery and Neurosurgery
Authors: Mareen Brosterhaus, Antje Hammer, Steffen Kalina, Stefan Grau, Anjali A. Roeth, Hany Ashmawy, Thomas Gross, Marcel Binnebosel, Wolfram T. Knoefel, Tanja Manser
Abstract:
Background: The identification of critical incidents in hospitals is an essential component of improving patient safety. To date, various methods have been used to measure and characterize such critical incidents. These methods are often viewed by physicians and nurses as external quality assurance, and this creates obstacles to the reporting events and the implementation of recommendations in practice. One way to overcome this problem is to use tools that directly involve staff in measuring indicators of quality and safety of care in the department. One such instrument is the global trigger tool (GTT), which helps physicians and nurses identify adverse events by systematically reviewing randomly selected patient records. Based on so-called ‘triggers’ (warning signals), indications of adverse events can be given. While the tool is already used internationally, its implementation in German hospitals has been very limited. Objectives: This study aimed to assess the feasibility and potential of the global trigger tool for identifying adverse events in German hospitals. Methods: A total of 120 patient records were randomly selected from two surgical, and one neurosurgery, departments of three university hospitals in Germany over a period of two months per department between January and July, 2017. The records were reviewed using an adaptation of the German version of the Institute for Healthcare Improvement Global Trigger Tool to identify triggers and adverse event rates per 1000 patient days and per 100 admissions. The severity of adverse events was classified using the National Coordinating Council for Medication Error Reporting and Prevention. Results: A total of 53 adverse events were detected in the three departments. This corresponded to adverse event rates of 25.5-72.1 per 1000 patient-days and from 25.0 to 60.0 per 100 admissions across the three departments. 98.1% of identified adverse events were associated with non-permanent harm without (Category E–71.7%) or with (Category F–26.4%) the need for prolonged hospitalization. One adverse event (1.9%) was associated with potentially permanent harm to the patient. We also identified practical challenges in the implementation of the tool, such as the need for adaptation of the global trigger tool to the respective department. Conclusions: The global trigger tool is feasible and an effective instrument for quality measurement when adapted to the departmental specifics. Based on our experience, we recommend a continuous use of the tool thereby directly involving clinicians in quality improvement.Keywords: adverse events, global trigger tool, patient safety, record review
Procedia PDF Downloads 24913980 Child Feeding Practices Among Mothers in Urban Areas of Akure, Ondo State, Nigeria
Authors: Olufemi Samuel Shola, Oladapo Adenike Adesola
Abstract:
Inadequate dietary intake has increased the susceptibility of under five children to malnutrition and infections. This study, therefore, assessed the feeding practices of children of 0-23 months of age among mothers in urban areas of Akure, Ondo State, Nigeria. Simple random sampling technique was used to select four hundred (400) mothers out of 710 mothers from 7 primary health care centres in Akure metropolis for the study. Data were collected using modified WHO 2003 Questionnaire on child feeding practices. Data were analyzed using descriptive statistics, while chi-square was used to determine the association between variables. Results showed that 52.0% of the children were males, with 47.5% in the 6-8 months age group. More than half (57.0%) of the mothers were between the ages of 20-29 years, and 45.0% had secondary education. Majority (94.3%) of the mothers breastfed their children in the last 24 hours preceding the survey. The feeding practices history of mothers showed that 28.0% and 53.7% of the mothers initiated breastfeeding less than 30 minutes and between 30 minutes to 1 hour after delivery, respectively. Also, 52.0% of mothers practiced exclusive breastfeeding for six months, while 26.2% breastfed from 6 months up to 2 years of age. Dietary diversity of the children age 6-23 months revealed that 68.7% of the children attained the minimum dietary diversity by consuming 4 or more food groups in the last 24 hours. There was a significant association (P < 0.05) between mothers’ education (n=180), occupation(n=41) and dietary diversity (n= 150) and meal frequency (n=209). Therefore, the study concluded that the duration of breastfeeding and time of introduction of complementary food did not meet WHO recommended guidelines. There is urgent need to launching more programmes.Keywords: breastfeeding, mothers, child feeding, urban areas, ondo state, nigeria
Procedia PDF Downloads 127