Search results for: data logging
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25397

Search results for: data logging

21227 Using Classifiers to Predict Student Outcome at Higher Institute of Telecommunication

Authors: Fuad M. Alkoot

Abstract:

We aim at highlighting the benefits of classifier systems especially in supporting educational management decisions. The paper aims at using classifiers in an educational application where an outcome is predicted based on given input parameters that represent various conditions at the institute. We present a classifier system that is designed using a limited training set with data for only one semester. The achieved system is able to reach at previously known outcomes accurately. It is also tested on new input parameters representing variations of input conditions to see its prediction on the possible outcome value. Given the supervised expectation of the outcome for the new input we find the system is able to predict the correct outcome. Experiments were conducted on one semester data from two departments only, Switching and Mathematics. Future work on other departments with larger training sets and wider input variations will show additional benefits of classifier systems in supporting the management decisions at an educational institute.

Keywords: machine learning, pattern recognition, classifier design, educational management, outcome estimation

Procedia PDF Downloads 282
21226 Determine Causal Factors Affecting the Responsiveness and Productivity of Non-Governmental Universities

Authors: Davoud Maleki

Abstract:

Today, education and investment in human capital is a long-term investment without which the economy will be stagnant Stayed. Higher education represents a type of investment in human resources by providing and improving knowledge, skills and Attitudes help economic development. Providing efficient human resources by increasing the efficiency and productivity of people and on the other hand with Expanding the boundaries of knowledge and technology and promoting technology such as the responsibility of training human resources and increasing productivity and efficiency in High specialized levels are the responsibility of universities. Therefore, the university plays an infrastructural role in economic development and growth because education by creating skills and expertise in people and improving their ability.In recent decades, Iran's higher education system has been faced with many problems, therefore, scholars have looked for it is to identify and validate the causal factors affecting the responsiveness and productivity of non-governmental universities. The data in the qualitative part is the result of semi-structured interviews with 25 senior and middle managers working in the units It was Islamic Azad University of Tehran province, which was selected by theoretical sampling method. In data analysis, stepwise method and Analytical techniques of Strauss and Corbin (1992) were used. After determining the central category (answering for the sake of the beneficiaries) and using it in order to bring the categories, expressions and ideas that express the relationships between the main categories and In the end, six main categories were identified as causal factors affecting the university's responsiveness and productivity.They are: 1- Scientism 2- Human resources 3- Creating motivation in the university 4- Development based on needs assessment 5- Teaching process and Learning 6- University quality evaluation. In order to validate the response model obtained from the qualitative stage, a questionnaire The questionnaire was prepared and the answers of 146 students of Master's degree and Doctorate of Islamic Azad University located in Tehran province were received. Quantitative data in the form of descriptive data analysis, first and second stage factor analysis using SPSS and Amos23 software were analyzed. The findings of the research indicated the relationship between the central category and the causal factors affecting the response The results of the model test in the quantitative stage confirmed the generality of the conceptual model.

Keywords: accountability, productivity, non-governmental, universities, foundation data theory

Procedia PDF Downloads 65
21225 The Impact of Corporate Social Responsibility and Relationship Marketing on Relationship Maintainer and Customer Loyalty by Mediating Role of Customer Satisfaction

Authors: Anam Bhatti, Sumbal Arif, Mariam Mehar, Sohail Younas

Abstract:

CSR has become one of the imperative implements in satisfying customers. The impartial of this research is to calculate CSR, relationship marketing, and customer satisfaction. In Pakistan, there is not enough research work on the effect of CSR and relationship marketing on relationship maintainer and customer loyalty. To find out deductive approach and survey method is used as research approach and research strategy respectively. This research design is descriptive and quantitative study. For data, collection questionnaire method with semantic differential scale and seven point scales are adopted. Data has been collected by adopting the non-probability convenience technique as sampling technique and the sample size is 400. For factor confirmatory factor analysis, structure equation modeling and medication analysis, regression analysis Amos software were used. Strong empirical evidence supports that the customer’s perception of CSR performance is highly influenced by the values.

Keywords: CSR, Relationship marketing, Relationship maintainer, Customer loyalty, Customer satisfaction

Procedia PDF Downloads 491
21224 Optimization Method of the Number of Berth at Bus Rapid Transit Stations Based on Passenger Flow Demand

Authors: Wei Kunkun, Cao Wanyang, Xu Yujie, Qiao Yuzhi, Liu Yingning

Abstract:

The reasonable design of bus parking spaces can improve the traffic capacity of the station and reduce traffic congestion. In order to reasonably determine the number of berths at BRT (Bus Rapid Transit) stops, it is based on the actual bus rapid transit station observation data, scheduling data, and passenger flow data. Optimize the number of station berths from the perspective of optimizing the balance of supply and demand at the site. Combined with the classical capacity calculation model, this paper first analyzes the important factors affecting the traffic capacity of BRT stops by using SPSS PRO and MATLAB programming software, namely the distribution of BRT stops and the distribution of BRT stop time. Secondly, the method of calculating the number of the classic human capital management (HCM) model is optimized based on the actual passenger demand of the station, and the method applicable to the actual number of station berths is proposed. Taking Gangding Station of Zhongshan Avenue Bus Rapid Transit Corridor in Guangzhou as an example, based on the calculation method proposed in this paper, the number of berths of sub-station 1, sub-station 2 and sub-station 3 is 2, which reduces the road space of the station by 33.3% compared with the previous berth 3 of each sub-station, and returns to social vehicles. Therefore, under the condition of ensuring the passenger flow demand of BRT stations, the road space of the station is reduced, and the road is returned to social vehicles, the traffic capacity of social vehicles is improved, and the traffic capacity and efficiency of the BRT corridor system are improved as a whole.

Keywords: urban transportation, bus rapid transit station, HCM model, capacity, number of berths

Procedia PDF Downloads 98
21223 Guidelines for Cooperation between Police and the Media with an Approach to Prevent Juvenile Delinquency

Authors: Akbar Salimi, Mehdi Moghimi

Abstract:

Goal: Today, the cooperative and systemic work is of importance and guarantees higher efficiency. This research was done with the aim of understanding the guidelines for co-op between police and the national media in order to reduce the juvenile delinquency. Method: This research is applied in terms of goal and of a compound type, which was done through a descriptive-analytical methodology. The data were collected through field surveys and documents. The statistical population included the professors of a higher education center in the area of education affairs, where as many as 36 people were randomly selected. The data collection procedure was by way of interview and researcher made questionnaire. Findings and results: Problems caused by the national media in the area of adolescents are categorized in three levels of production, broadcasting and consumption and elimination and reduction of the problems entail a set of estimations and predictions and also some education which the police forces has the capability to operationalize them. Thus, three hypotheses were defined and by conducting t and Friedman tests, all three hypotheses were confirmed and their rating was identified.

Keywords: management, media, TV, adolscents, delinquency

Procedia PDF Downloads 259
21222 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder

Authors: Dua Hişam, Serhat İkizoğlu

Abstract:

Identifying the problem behind balance disorder is one of the most interesting topics in the medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three machine learning (ML) models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest Classifier (RF) was the most accurate model.

Keywords: vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting

Procedia PDF Downloads 74
21221 The Antecedent Factor Affecting Manpower’s Working Performance of Suan Sunandha Rajabhat University

Authors: Suvimon Wajeetongratana, Sittichai Thammasane

Abstract:

This research objective was to study the development training that affecting the work performance of Suan Sunandha Rajabhat University manpower. The sample of 200 manpower was used to collect data for the survey. The statistics for data analysis were frequency percentage, mean value, standard deviation and hypothesis testing using independent samples (t-test). The study indicated that the development training has the most affect to employees in the high level and the second was coaching by the senior follow by the orientation in case of changing jobs task or changing positions. Interms of manpower work performance have three performance areas are quality of the job is better than the original. Moreover the results of hypothesis testing found that the difference personal information including gender, age, education, income per month have difference effectiveness of attitudes and also found the develop training is correlated with the performance of employees in the same direction.

Keywords: development training, employees job satisfaction, work performance, Sunandha Rajabhat University

Procedia PDF Downloads 221
21220 Implementation of a Low-Cost Instrumentation for an Open Cycle Wind Tunnel to Evaluate Pressure Coefficient

Authors: Cristian P. Topa, Esteban A. Valencia, Victor H. Hidalgo, Marco A. Martinez

Abstract:

Wind tunnel experiments for aerodynamic profiles display numerous advantages, such as: clean steady laminar flow, controlled environmental conditions, streamlines visualization, and real data acquisition. However, the experiment instrumentation usually is expensive, and hence, each test implies a incremented in design cost. The aim of this work is to select and implement a low-cost static pressure data acquisition system for a NACA 2412 airfoil in an open cycle wind tunnel. This work compares wind tunnel experiment with Computational Fluid Dynamics (CFD) simulation and parametric analysis. The experiment was evaluated at Reynolds of 1.65 e5, with increasing angles from -5° to 15°. The comparison between the approaches show good enough accuracy, between the experiment and CFD, additional parametric analysis results differ widely from the other methods, which complies with the lack of accuracy of the lateral approach due its simplicity.

Keywords: wind tunnel, low cost instrumentation, experimental testing, CFD simulation

Procedia PDF Downloads 186
21219 Salting Effect in Partially Miscible Systems of Water/Acétic Acid/1-Butanol at 298.15k: Experimental Study and Estimation of New Solvent-Solvent and Salt-Solvent Binary Interaction Parameters for NRTL Model

Authors: N. Bourayou, A. -H. Meniai, A. Gouaoura

Abstract:

The presence of salt can either raise or lower the distribution coefficient of a solute acetic acid in liquid- liquid equilibria. The coefficient of solute is defined as the ratio of the composition of solute in solvent rich phase to the composition of solute in diluents (water) rich phase. The phenomena are known as salting–out or salting-in, respectively. The effect of monovalent salt, sodium chloride and the bivalent salt, sodium sulfate on the distribution of acetic acid between 1-butanol and water at 298.15K were experimentally shown to be effective in modifying the liquid-liquid equilibrium of water/acetic acid/1-butanol system in favour of the solvent extraction of acetic acid from an aqueous solution with 1-butanol, particularly at high salt concentrations of both salts. All the two salts studied are found to have to salt out effect for acetic acid in varying degrees. The experimentally measured data were well correlated by Eisen-Joffe equation. NRTL model for solvent mixtures containing salts was able to provide good correlation of the present liquid-liquid equilibrium data. Using the regressed salt concentration coefficients for the salt-solvent interaction parameters and the solvent-solvent interaction parameters obtained from the same system without salt. The calculated phase equilibrium was in a quite good agreement with the experimental data, showing the ability of NRTL model to correlate salt effect on the liquid-liquid equilibrium.

Keywords: activity coefficient, Eisen-Joffe, NRTL model, sodium chloride

Procedia PDF Downloads 286
21218 Moral Brand Machines: Towards a Conceptual Framework

Authors: Khaled Ibrahim, Mathew Parackal, Damien Mather, Paul Hansen

Abstract:

The integration between marketing and technology has given brands unprecedented opportunities to reach accurate customer data and competence to change customers' behaviour. Technology has generated a transformation within brands from traditional branding to algorithmic branding. However, brands have utilised customer data in non-cognitive programmatic targeting. This algorithmic persuasion may be effective in reaching the targeted audience. But it may encounter a moral conflict simultaneously, as it might not consider our social principles. Moral branding is a critical topic; particularly, with the increasing interest in commercial settings to teaching machines human morals, e.g., autonomous vehicles and chatbots; however, it is understudied in the marketing literature. Therefore, this paper aims to investigate the recent moral branding literature. Furthermore, applying human-like mind theory as initial framing to this paper explores a more comprehensive concept involving human morals, machine behaviour, and branding.

Keywords: brand machines, conceptual framework, moral branding, moral machines

Procedia PDF Downloads 167
21217 An Analysis on the Appropriateness and Effectiveness of CCTV Location for Crime Prevention

Authors: Tae-Heon Moon, Sun-Young Heo, Sang-Ho Lee, Youn-Taik Leem, Kwang-Woo Nam

Abstract:

This study aims to investigate the possibility of crime prevention through CCTV by analyzing the appropriateness of the CCTV location, whether it is installed in the hotspot of crime-prone areas, and exploring the crime prevention effect and transition effect. The real crime and CCTV locations of case city were converted into the spatial data by using GIS. The data was analyzed by hotspot analysis and weighted displacement quotient(WDQ). As study methods, it analyzed existing relevant studies for identifying the trends of CCTV and crime studies based on big data from 1800 to 2014 and understanding the relation between CCTV and crime. Second, it investigated the current situation of nationwide CCTVs and analyzed the guidelines of CCTV installation and operation to draw attention to the problems and indicating points of domestic CCTV use. Third, it investigated the crime occurrence in case areas and the current situation of CCTV installation in the spatial aspects, and analyzed the appropriateness and effectiveness of CCTV installation to suggest a rational installation of CCTV and the strategic direction of crime prevention. The results demonstrate that there was no significant effect in the installation of CCTV on crime prevention. This indicates that CCTV should be installed and managed in a more scientific way reflecting local crime situations. In terms of CCTV, the methods of spatial analysis such as GIS, which can evaluate the installation effect, and the methods of economic analysis like cost-benefit analysis should be developed. In addition, these methods should be distributed to local governments across the nation for the appropriate installation of CCTV and operation. This study intended to find a design guideline of the optimum CCTV installation. In this regard, this study is meaningful in that it will contribute to the creation of a safe city.

Keywords: CCTV, safe city, crime prevention, spatial analysis

Procedia PDF Downloads 442
21216 Proof of Concept Design and Development of a Computer-Aided Medical Evaluation of Symptoms Web App: An Expert System for Medical Diagnosis in General Practice

Authors: Ananda Perera

Abstract:

Computer-Assisted Medical Evaluation of Symptoms (CAMEOS) is a medical expert system designed to help General Practices (GPs) make an accurate diagnosis. CAMEOS comprises a knowledge base, user input, inference engine, reasoning module, and output statement. The knowledge base was developed by the author. User input is an Html file. The physician user collects data in the consultation. Data is sent to the inference engine at servers. CAMEOS uses set theory to simulate diagnostic reasoning. The program output is a list of differential diagnoses, the most probable diagnosis, and the diagnostic reasoning.

Keywords: CDSS, computerized decision support systems, expert systems, general practice, diagnosis, diagnostic systems, primary care diagnostic system, artificial intelligence in medicine

Procedia PDF Downloads 161
21215 Text Analysis to Support Structuring and Modelling a Public Policy Problem-Outline of an Algorithm to Extract Inferences from Textual Data

Authors: Claudia Ehrentraut, Osama Ibrahim, Hercules Dalianis

Abstract:

Policy making situations are real-world problems that exhibit complexity in that they are composed of many interrelated problems and issues. To be effective, policies must holistically address the complexity of the situation rather than propose solutions to single problems. Formulating and understanding the situation and its complex dynamics, therefore, is a key to finding holistic solutions. Analysis of text based information on the policy problem, using Natural Language Processing (NLP) and Text analysis techniques, can support modelling of public policy problem situations in a more objective way based on domain experts knowledge and scientific evidence. The objective behind this study is to support modelling of public policy problem situations, using text analysis of verbal descriptions of the problem. We propose a formal methodology for analysis of qualitative data from multiple information sources on a policy problem to construct a causal diagram of the problem. The analysis process aims at identifying key variables, linking them by cause-effect relationships and mapping that structure into a graphical representation that is adequate for designing action alternatives, i.e., policy options. This study describes the outline of an algorithm used to automate the initial step of a larger methodological approach, which is so far done manually. In this initial step, inferences about key variables and their interrelationships are extracted from textual data to support a better problem structuring. A small prototype for this step is also presented.

Keywords: public policy, problem structuring, qualitative analysis, natural language processing, algorithm, inference extraction

Procedia PDF Downloads 596
21214 The Optimization of TICSI in the Convergence Mechanism of Urban Water Management

Authors: M. Macchiaroli, L. Dolores, V. Pellecchia

Abstract:

With the recent Resolution n. 580/2019/R/idr, the Italian Regulatory Authority for Energy, Networks, and Environment (ARERA) for the Urban Water Management has introduced, for water managements characterized by persistent critical issues regarding the planning and organization of the service and the implementation of the necessary interventions for the improvement of infrastructures and management quality, a new mechanism for determining tariffs: the regulatory scheme of Convergence. The aim of this regulatory scheme is the overcoming of the Water Service Divided in order to improve the stability of the local institutional structures, technical quality, contractual quality, as well as in order to guarantee transparency elements for Users of the Service. Convergence scheme presupposes the identification of the cost items to be considered in the tariff in parametric terms, distinguishing three possible cases according to the type of historical data available to the Manager. The study, in particular, focuses on operations that have neither data on tariff revenues nor data on operating costs. In this case, the Manager's Constraint on Revenues (VRG) is estimated on the basis of a reference benchmark and becomes the starting point for defining the structure of the tariff classes, in compliance with the TICSI provisions (Integrated Text for tariff classes, ARERA's Resolution n. 665/2017/R/idr). The proposed model implements the recent studies on optimization models for the definition of tariff classes in compliance with the constraints dictated by TICSI in the application of the Convergence mechanism, proposing itself as a support tool for the Managers and the local water regulatory Authority in the decision-making process.

Keywords: decision-making process, economic evaluation of projects, optimizing tools, urban water management, water tariff

Procedia PDF Downloads 124
21213 Removal of Toxic Ni++ Ions from Wastewater by Nano-Bentonite

Authors: A. M. Ahmed, Mona A. Darwish

Abstract:

Removal of Ni++ ions from aqueous solution by sorption ontoNano-bentonite was investigated. Experiments were carried out as a function amount of Nano-bentonite, pH, concentration of metal, constant time, agitation speed and temperature. The adsorption parameter of metal ions followed the Langmuir Freundlich adsorption isotherm were applied to analyze adsorption data. The adsorption process has fit pseudo-second order kinetic models. Thermodynamics parameters e.g.ΔG*, ΔS °and ΔH ° of adsorption process have also been calculated and the sorption process was found to be endothermic. The adsorption process has fit pseudo-second order kinetic models. Langmuir and Freundich adsorption isotherm models were applied to analyze adsorption data and both were found to be applicable to the adsorption process. Thermodynamic parameters, e.g., ∆G °, ∆S ° and ∆H ° of the on-going adsorption process have also been calculated and the sorption process was found to be endothermic. Finally, it can be seen that Bentonite was found to be more effective for the removal of Ni (II) same with some experimental conditions.

Keywords: waste water, nickel, bentonite, adsorption

Procedia PDF Downloads 262
21212 Assets and Health: Examining the Asset-Building Theoretical Framework and Psychological Distress

Authors: Einav Srulovici, Michal Grinstein-Weiss, George Knafl, Linda Beeber, Shawn Kneipp, Barbara Mark

Abstract:

Background: The asset-building theoretical framework (ABTF) is acknowledged as the most complete framework thus far for depicting the relationships between asset accumulation (the stock of a household’s saved resources available for future investment) and health outcomes. Although the ABTF takes into consideration the reciprocal relationship between asset accumulation and health, no ABTF based study has yet examined this relationship. Therefore, the purpose of this study was to test the ABTF and psychological distress, focusing on the reciprocal relationship between assets accumulation and psychological distress. Methods: The study employed longitudinal data from 6,295 families from the 2001 and 2007 Panel Study of Income Dynamics data sets. Structural equation modeling (SEM) was used to test the reciprocal relationship between asset accumulation and psychological distress. Results: In general, the data displayed a good fit to the model. The longitudinal SEM found that asset accumulation significantly increased with a decreased in psychological distress over time, while psychological distress significantly increased with an increase in asset accumulation over time, confirming the existence of the hypothesized reciprocal relationship. Conclusions: Individuals who are less psychological distressed might have more energy to engage in activities, such as furthering their education or obtaining better jobs that are in turn associated with greater asset accumulation, while those who have greater assets may invest those assets in riskier investments, resulting in increased psychological distress. The confirmation of this reciprocal relationship highlights the importance of conducting longitudinal studies and testing the reciprocal relationship between asset accumulation and other health outcomes.

Keywords: asset-building theoretical framework, psychological distress, structural equation modeling, reciprocal relationship

Procedia PDF Downloads 398
21211 Artificial Neural Network Approach for Vessel Detection Using Visible Infrared Imaging Radiometer Suite Day/Night Band

Authors: Takashi Yamaguchi, Ichio Asanuma, Jong G. Park, Kenneth J. Mackin, John Mittleman

Abstract:

In this paper, vessel detection using the artificial neural network is proposed in order to automatically construct the vessel detection model from the satellite imagery of day/night band (DNB) in visible infrared in the products of Imaging Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (Suomi-NPP).The goal of our research is the establishment of vessel detection method using the satellite imagery of DNB in order to monitor the change of vessel activity over the wide region. The temporal vessel monitoring is very important to detect the events and understand the circumstances within the maritime environment. For the vessel locating and detection techniques, Automatic Identification System (AIS) and remote sensing using Synthetic aperture radar (SAR) imagery have been researched. However, each data has some lack of information due to uncertain operation or limitation of continuous observation. Therefore, the fusion of effective data and methods is important to monitor the maritime environment for the future. DNB is one of the effective data to detect the small vessels such as fishery ships that is difficult to observe in AIS. DNB is the satellite sensor data of VIIRS on Suomi-NPP. In contrast to SAR images, DNB images are moderate resolution and gave influence to the cloud but can observe the same regions in each day. DNB sensor can observe the lights produced from various artifact such as vehicles and buildings in the night and can detect the small vessels from the fishing light on the open water. However, the modeling of vessel detection using DNB is very difficult since complex atmosphere and lunar condition should be considered due to the strong influence of lunar reflection from cloud on DNB. Therefore, artificial neural network was applied to learn the vessel detection model. For the feature of vessel detection, Brightness Temperature at the 3.7 μm (BT3.7) was additionally used because BT3.7 can be used for the parameter of atmospheric conditions.

Keywords: artificial neural network, day/night band, remote sensing, Suomi National Polar-orbiting Partnership, vessel detection, Visible Infrared Imaging Radiometer Suite

Procedia PDF Downloads 239
21210 The Impact of Step-By-Step Program in the Public Preschool Institutions in Kosova

Authors: Rozafa Shala

Abstract:

Development of preschool education in Kosovo has passed through several periods. The period after the 1999 war was very intensive period when preschool education started to change. Step-by-step program was one of the programs which were very well extended during the period after the 1999 war until now. The aim of this study is to present the impact of the step-by-step program in the preschool education. This research is based on the hypothesis that: Step-by-step program continues to be present with its elements, in all other programs that the teachers can use. For data collection a questionnaire is constructed which was distributed to 25 teachers of preschool education who work in public preschool institutions. All the teachers have finished the training for step by step program. To support the data from the questionnaire a focus group is also organized with whom the critical issues of the program were discussed. From the results obtained we can conclude that the step-by-step program has a very strong impact in the preschool level. Many specific elements such as: circle time, weather calendar, environment inside the class, portfolios and many other elements are present in most of the preschool classes. The teacher's approach also has many elements of the step-by-step program.

Keywords: preschool education, step-by-step program, impact, teachers

Procedia PDF Downloads 355
21209 Enhancing Teachers’ Professional Development Programmes by the Implementation of Flipped Learning Instruction: A Qualitative Study

Authors: Badriah Algarni

Abstract:

The pedagogy of ‘flipped learning’ is a form of blended instruction which is gaining widespread attention throughout the world. However, there is a lack of research concerning teachers’ professional development (TPD) in teachers who use flipping. The aim of this study was, therefore, to identify teachers’ perspectives on their experience of flipped PD. The study used a qualitative approach. Purposive sampling recruited nineteen teachers who participated in semi-structured, in-depth interviews. Thematic analysis was used to analyse the interview data. Overall, the teachers reported feeling more confident in their knowledge and skills after participating in flipped TPD. The analysis of the interview data revealed five overarching themes:1) increased engagement with the content; 2) better use of resources; 3) a social, collaborative environment; 4) exchange of practices and experiences; and 5) valuable online activities. These findings can encourage educators, policymakers, and trainers to consider flipped TPD as a form of PD to promote the building of teachers’ knowledge and stimulate reflective practices to improve teaching and learning practices.

Keywords: engagement, flipped learning, teachers’ professional development, collaboration

Procedia PDF Downloads 101
21208 The Impact of Leadership Culture on Motivation, Efficiency, and Performance of Customs Employees: A Case Study of Iran Customs

Authors: Kazem Samadi

Abstract:

In today’s world, public agencies like customs have become vital institutions in international trade processes and in maintaining national economic security due to increasing economic and commercial complexities. In this regard, human resource management (HRM) is crucial to achieving organizational goals. This research employed a descriptive survey method, in which the statistical population consisted of all customs employees. Using Cochran's formula, 300 employees were selected from the central customs office. A researcher-made questionnaire was used as the data collection tool, with content validity and reliability confirmed using Cronbach's alpha coefficient. The collected data were analyzed through structural modeling using SPSS and AMOS 24. The results indicated that leadership culture significantly affected employee motivation, efficiency, and performance in customs. Customs managers and leaders in Iran can improve organizational productivity by fostering this culture, thereby facilitating individual and organizational development for their staff.

Keywords: leadership culture, organizational culture, employee performance, customs

Procedia PDF Downloads 30
21207 Image Compression Based on Regression SVM and Biorthogonal Wavelets

Authors: Zikiou Nadia, Lahdir Mourad, Ameur Soltane

Abstract:

In this paper, we propose an effective method for image compression based on SVM Regression (SVR), with three different kernels, and biorthogonal 2D Discrete Wavelet Transform. SVM regression could learn dependency from training data and compressed using fewer training points (support vectors) to represent the original data and eliminate the redundancy. Biorthogonal wavelet has been used to transform the image and the coefficients acquired are then trained with different kernels SVM (Gaussian, Polynomial, and Linear). Run-length and Arithmetic coders are used to encode the support vectors and its corresponding weights, obtained from the SVM regression. The peak signal noise ratio (PSNR) and their compression ratios of several test images, compressed with our algorithm, with different kernels are presented. Compared with other kernels, Gaussian kernel achieves better image quality. Experimental results show that the compression performance of our method gains much improvement.

Keywords: image compression, 2D discrete wavelet transform (DWT-2D), support vector regression (SVR), SVM Kernels, run-length, arithmetic coding

Procedia PDF Downloads 385
21206 A Prevalence of Phonological Disorder in Children with Specific Language Impairment

Authors: Etim, Victoria Enefiok, Dada, Oluseyi Akintunde, Bassey Okon

Abstract:

Phonological disorder is a serious and disturbing issue to many parents and teachers. Efforts towards resolving the problem have been undermined by other specific disabilities which were hidden to many regular and special education teachers. It is against this background that this study was motivated to provide data on the prevalence of phonological disorders in children with specific language impairment (CWSLI) as the first step towards critical intervention. The study was a survey of 15 CWSLI from St. Louise Inclusive schools, Ikot Ekpene in Akwa Ibom State of Nigeria. Phonological Processes Diagnostic Scale (PPDS) with 17 short sentences, which cut across the five phonological processes that were examined, were validated by experts in test measurement, phonology and special education. The respondents were made to read the sentences with emphasis on the targeted sounds. Their utterances were recorded and analyzed in the language laboratory using Praat Software. Data were also collected through friendly interactions at different times from the clients. The theory of generative phonology was adopted for the descriptive analysis of the phonological processes. Data collected were analyzed using simple percentage and composite bar chart for better understanding of the result. The study found out that CWSLI exhibited the five phonological processes under investigation. It was revealed that 66.7%, 80%, 73.3%, 80%, and 86.7% of the respondents have severe deficit in fricative stopping, velar fronting, liquid gliding, final consonant deletion and cluster reduction, respectively. It was therefore recommended that a nationwide survey should be carried out to have national statistics of CWSLI with phonological deficits and develop intervention strategies for effective therapy to remediate the disorder.

Keywords: language disorders, phonology, phonological processes, specific language impairment

Procedia PDF Downloads 197
21205 Estimation of Particle Size Distribution Using Magnetization Data

Authors: Navneet Kaur, S. D. Tiwari

Abstract:

Magnetic nanoparticles possess fascinating properties which make their behavior unique in comparison to corresponding bulk materials. Superparamagnetism is one such interesting phenomenon exhibited only by small particles of magnetic materials. In this state, the thermal energy of particles become more than their magnetic anisotropy energy, and so particle magnetic moment vectors fluctuate between states of minimum energy. This situation is similar to paramagnetism of non-interacting ions and termed as superparamagnetism. The magnetization of such systems has been described by Langevin function. But, the estimated fit parameters, in this case, are found to be unphysical. It is due to non-consideration of particle size distribution. In this work, analysis of magnetization data on NiO nanoparticles is presented considering the effect of particle size distribution. Nanoparticles of NiO of two different sizes are prepared by heating freshly synthesized Ni(OH)₂ at different temperatures. Room temperature X-ray diffraction patterns confirm the formation of single phase of NiO. The diffraction lines are seen to be quite broad indicating the nanocrystalline nature of the samples. The average crystallite size are estimated to be about 6 and 8 nm. The samples are also characterized by transmission electron microscope. Magnetization of both sample is measured as function of temperature and applied magnetic field. Zero field cooled and field cooled magnetization are measured as a function of temperature to determine the bifurcation temperature. The magnetization is also measured at several temperatures in superparamagnetic region. The data are fitted to an appropriate expression considering a distribution in particle size following a least square fit procedure. The computer codes are written in PYTHON. The presented analysis is found to be very useful for estimating the particle size distribution present in the samples. The estimated distributions are compared with those determined from transmission electron micrographs.

Keywords: anisotropy, magnetization, nanoparticles, superparamagnetism

Procedia PDF Downloads 148
21204 Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques

Authors: Gizem Eser Erdek

Abstract:

This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation.

Keywords: classification, convolutional neural network, deep learning, remaining life of industrial cutting tools, ResNet, support vector machine, VggNet

Procedia PDF Downloads 83
21203 Digital Geomatics Trends for Production and Updating Topographic Map by Using Digital Generalization Procedures

Authors: O. Z. Jasim

Abstract:

An accuracy digital map must satisfy the users for two main requirements, first, map must be visually readable and second, all the map elements must be in a good representation. These two requirements hold especially true for map generalization which aims at simplifying the representation of cartographic data. Different scales of maps are very important for any decision in any maps with different scales such as master plan and all the infrastructures maps in civil engineering. Cartographer cannot project the data onto a piece of paper, but he has to worry about its readability. The map layout of any geodatabase is very important, this layout is help to read, analyze or extract information from the map. There are many principles and guidelines of generalization that can be find in the cartographic literature. A manual reduction method for generalization depends on experience of map maker and therefore produces incompatible results. Digital generalization, rooted from conventional cartography, has become an increasing concern in both Geographic Information System (GIS) and mapping fields. This project is intended to review the state of the art of the new technology and help to understand the needs and plans for the implementation of digital generalization capability as well as increase the knowledge of production topographic maps.

Keywords: cartography, digital generalization, mapping, GIS

Procedia PDF Downloads 309
21202 Cotton Crops Vegetative Indices Based Assessment Using Multispectral Images

Authors: Muhammad Shahzad Shifa, Amna Shifa, Muhammad Omar, Aamir Shahzad, Rahmat Ali Khan

Abstract:

Many applications of remote sensing to vegetation and crop response depend on spectral properties of individual leaves and plants. Vegetation indices are usually determined to estimate crop biophysical parameters like crop canopies and crop leaf area indices with the help of remote sensing. Cotton crops assessment is performed with the help of vegetative indices. Remotely sensed images from an optical multispectral radiometer MSR5 are used in this study. The interpretation is based on the fact that different materials reflect and absorb light differently at different wavelengths. Non-normalized and normalized forms of these datasets are analyzed using two complementary data mining algorithms; K-means and K-nearest neighbor (KNN). Our analysis shows that the use of normalized reflectance data and vegetative indices are suitable for an automated assessment and decision making.

Keywords: cotton, condition assessment, KNN algorithm, clustering, MSR5, vegetation indices

Procedia PDF Downloads 338
21201 Municipal Asset Management Planning 2.0 – A New Framework For Policy And Program Design In Ontario

Authors: Scott R. Butler

Abstract:

Ontario, Canada’s largest province, is in the midst of an interesting experiment in mandated asset management planning for local governments. At the beginning of 2021, Ontario’s 444 municipalities were responsible for the management of 302,864 lane kilometers of roads that have a replacement cost of $97.545 billion CDN. Roadways are by far the most complex, expensive, and extensive assets that a municipality is responsible for overseeing. Since adopting Ontario Regulation 588/47: Asset Management Planning for Municipal Infrastructure in 2017, the provincial government has established prescriptions for local road authorities regarding asset category and levels of service being provided. This provincial regulation further stipulates that asset data such as extent, condition, and life cycle costing are to be captured in manner compliant with qualitative descriptions and technical metrics. The Ontario Good Roads Association undertook an exercise to aggregate the road-related data contained within the 444 asset management plans that municipalities have filed with the provincial government. This analysis concluded that collectively Ontario municipal roadways have a $34.7 billion CDN in deferred maintenance. The ill-state of repair of Ontario municipal roads has lasting implications for province’s economic competitiveness and has garnered considerable political attention. Municipal efforts to address the maintenance backlog are stymied by the extremely limited fiscal parameters municipalities must operate within in Ontario. Further exacerbating the program are provincially designed programs that are ineffective, administratively burdensome, and not necessarily aligned with local priorities or strategies. This paper addresses how municipal asset management plans – and more specifically, the data contained in these plans – can be used to design innovative policy frameworks, flexible funding programs, and new levels of service that respond to these funding challenges, as well as emerging issues such as local economic development and climate change. To fully unlock the potential that Ontario Regulation 588/17 has imposed will require a resolute commitment to data standardization and horizontal collaboration between municipalities within regions.

Keywords: transportation, municipal asset management, subnational policy design, subnational funding program design

Procedia PDF Downloads 98
21200 Wind Power Density and Energy Conversion in Al-Adwas Ras-Huwirah Area, Hadhramout, Yemen

Authors: Bawadi M. A., Abbad J. A., Baras E. A.

Abstract:

This study was conducted to assess wind energy resources in the area of Al-Adwas Ras-Huwirah Hadhramout Governorate, Yemen, through using statistical calculations, the Weibull model and SPSS program were used in the monthly and the annual to analyze the wind energy resource; the convergence of wind energy; turbine efficiency in the selected area. Wind speed data was obtained from NASA over a period of ten years (2010-2019) and at heights of 50 m above ground level. Probability distributions derived from wind data and their distribution parameters are determined. The density probability function is fitted to the measured probability distributions on an annual basis. This study also involves locating preliminary sites for wind farms using Geographic Information System (GIS) technology. This further leads to maximizing the output energy from the most suitable wind turbines in the proposed site.

Keywords: wind speed analysis, Yemen wind energy, wind power density, Weibull distribution model

Procedia PDF Downloads 88
21199 The Targeting Logic of Terrorist Groups in the Sahel

Authors: Mathieu Bere

Abstract:

Al-Qaeda and Islamic State-affiliated groups such as Ja’amat Nusra al Islam Wal Muslimim (JNIM) and the Islamic State-Greater Sahara Faction, which is now part of the Boko Haram splinter group, Islamic State in West Africa, were responsible, between 2018 and 2020, for at least 1.333 violent incidents against both military and civilian targets, including the assassination and kidnapping for ransom of Western citizens in Mali, Burkina Faso and Niger, the Central Sahel. Protecting civilians from the terrorist violence that is now spreading from the Sahel to the coastal countries of West Africa has been very challenging, mainly because of the many unknowns that surround the perpetrators. To contribute to a better protection of civilians in the region, this paper aims to shed light on the motivations and targeting logic of jihadist perpetrators of terrorist violence against civilians in the central Sahel region. To that end, it draws on relevant secondary data retrieved from datasets, the media, and the existing literature, but also on primary data collected through interviews and surveys in Burkina Faso. An analysis of the data with the support of qualitative and statistical analysis software shows that military and rational strategic motives, more than purely ideological or religious motives, have been the main drivers of terrorist violence that strategically targeted government symbols and representatives as well as local leaders in the central Sahel. Behind this targeting logic, the jihadist grand strategy emerges: wiping out the Western-inspired legal, education and governance system in order to replace it with an Islamic, sharia-based political, legal, and educational system.

Keywords: terrorism, jihadism, Sahel, targeting logic

Procedia PDF Downloads 96
21198 A Validated Estimation Method to Predict the Interior Wall of Residential Buildings Based on Easy to Collect Variables

Authors: B. Gepts, E. Meex, E. Nuyts, E. Knaepen, G. Verbeeck

Abstract:

The importance of resource efficiency and environmental impact assessment has raised the interest in knowing the amount of materials used in buildings. If no BIM model or energy performance certificate is available, material quantities can be obtained through an estimation or time-consuming calculation. For the interior wall area, no validated estimation method exists. However, in the case of environmental impact assessment or evaluating the existing building stock as future material banks, knowledge of the material quantities used in interior walls is indispensable. This paper presents a validated method for the estimation of the interior wall area for dwellings based on easy-to-collect building characteristics. A database of 4963 residential buildings spread all over Belgium is used. The data are collected through onsite measurements of the buildings during the construction phase (between mid-2010 and mid-2017). The interior wall area refers to the area of all interior walls in the building, including the inner leaf of exterior (party) walls, minus the area of windows and doors, unless mentioned otherwise. The two predictive modelling techniques used are 1) a (stepwise) linear regression and 2) a decision tree. The best estimation method is selected based on the best R² k-fold (5) fit. The research shows that the building volume is by far the most important variable to estimate the interior wall area. A stepwise regression based on building volume per building, building typology, and type of house provides the best fit, with R² k-fold (5) = 0.88. Although the best R² k-fold value is obtained when the other parameters ‘building typology’ and ‘type of house’ are included, the contribution of these variables can be seen as statistically significant but practically irrelevant. Thus, if these parameters are not available, a simplified estimation method based on only the volume of the building can also be applied (R² k-fold = 0.87). The robustness and precision of the method (output) are validated three times. Firstly, the prediction of the interior wall area is checked by means of alternative calculations of the building volume and of the interior wall area; thus, other definitions are applied to the same data. Secondly, the output is tested on an extension of the database, so it has the same definitions but on other data. Thirdly, the output is checked on an unrelated database with other definitions and other data. The validation of the estimation methods demonstrates that the methods remain accurate when underlying data are changed. The method can support environmental as well as economic dimensions of impact assessment, as it can be used in early design. As it allows the prediction of the amount of interior wall materials to be produced in the future or that might become available after demolition, the presented estimation method can be part of material flow analyses on input and on output.

Keywords: buildings as material banks, building stock, estimation method, interior wall area

Procedia PDF Downloads 38