Search results for: vegetation changes
209 Evaluating the Impact of Expansion on Urban Thermal Surroundings: A Case Study of Lahore Metropolitan City, Pakistan
Authors: Usman Ahmed Khan
Abstract:
Urbanization directly affects the existing infrastructure, landscape modification, environmental contamination, and traffic pollution, especially if there is a lack of urban planning. Recently, the rapid urban sprawl has resulted in less developed green areas and has devastating environmental consequences. This study was aimed to study the past urban expansion rates and measure LST from satellite data. The land use land cover (LULC) maps of years 1996, 2010, 2013, and 2017 were generated using landsat satellite images. Four main classes, i.e., water, urban, bare land, and vegetation, were identified using unsupervised classification with iterative self-organizing data analysis (isodata) technique. The LST from satellite thermal data can be derived from different procedures: atmospheric, radiometric calibrations and surface emissivity corrections, classification of spatial changeability in land-cover. Different methods and formulas were used in the algorithm that successfully retrieves the land surface temperature to help us study the thermal environment of the ground surface. To verify the algorithm, the land surface temperature and the near-air temperature were compared. The results showed that, From 1996-2017, urban areas increased to about a considerable increase of about 48%. Few areas of the city also shown in a reduction in LST from the year 1996-2017 that actually began their transitional phase from rural to urban LULC. The mean temperature of the city increased averagely about 1ºC each year in the month of October. The green and vegetative areas witnessed a decrease in the area while a higher number of pixels increased in urban class.Keywords: LST, LULC, isodata, urbanization
Procedia PDF Downloads 100208 Geographic Information System and Dynamic Segmentation of Very High Resolution Images for the Semi-Automatic Extraction of Sandy Accumulation
Authors: A. Bensaid, T. Mostephaoui, R. Nedjai
Abstract:
A considerable area of Algerian lands is threatened by the phenomenon of wind erosion. For a long time, wind erosion and its associated harmful effects on the natural environment have posed a serious threat, especially in the arid regions of the country. In recent years, as a result of increases in the irrational exploitation of natural resources (fodder) and extensive land clearing, wind erosion has particularly accentuated. The extent of degradation in the arid region of the Algerian Mecheria department generated a new situation characterized by the reduction of vegetation cover, the decrease of land productivity, as well as sand encroachment on urban development zones. In this study, we attempt to investigate the potential of remote sensing and geographic information systems for detecting the spatial dynamics of the ancient dune cords based on the numerical processing of LANDSAT images (5, 7, and 8) of three scenes 197/37, 198/36 and 198/37 for the year 2020. As a second step, we prospect the use of geospatial techniques to monitor the progression of sand dunes on developed (urban) lands as well as on the formation of sandy accumulations (dune, dunes fields, nebkha, barkhane, etc.). For this purpose, this study made use of the semi-automatic processing method for the dynamic segmentation of images with very high spatial resolution (SENTINEL-2 and Google Earth). This study was able to demonstrate that urban lands under current conditions are located in sand transit zones that are mobilized by the winds from the northwest and southwest directions.Keywords: land development, GIS, segmentation, remote sensing
Procedia PDF Downloads 155207 Band Characterization and Development of Hyperspectral Indices for Retrieving Chlorophyll Content
Authors: Ramandeep Kaur M. Malhi, Prashant K. Srivastava, G.Sandhya Kiran
Abstract:
Quantitative estimates of foliar biochemicals, namely chlorophyll content (CC), serve as key information for the assessment of plant productivity, stress, and the availability of nutrients. This also plays a critical role in predicting the dynamic response of any vegetation to altering climate conditions. The advent of hyperspectral data with an enhanced number of available wavelengths has increased the possibility of acquiring improved information on CC. Retrieval of CC is extensively carried through well known spectral indices derived from hyperspectral data. In the present study, an attempt is made to develop hyperspectral indices by identifying optimum bands for CC estimation in Butea monosperma (Lam.) Taub growing in forests of Shoolpaneshwar Wildlife Sanctuary, Narmada district, Gujarat State, India. 196 narrow bands of EO-1 Hyperion images were screened, and the best optimum wavelength from blue, green, red, and near infrared (NIR) regions were identified based on the coefficient of determination (R²) between band reflectance and laboratory estimated CC. The identified optimum wavelengths were then employed for developing 12 hyperspectral indices. These spectral index values and CC values were then correlated to investigate the relation between laboratory measured CC and spectral indices. Band 15 of blue range and Band 22 of green range, Band 40 of the red region, and Band 79 of NIR region were found to be optimum bands for estimating CC. The optimum band based combinations on hyperspectral data proved to be the most effective indices for quantifying Butea CC with NDVI and TVI identified as the best (R² > 0.7, p < 0.01). The study demonstrated the significance of band characterization in the development of the best hyperspectral indices for the chlorophyll estimation, which can aid in monitoring the vitality of forests.Keywords: band, characterization, chlorophyll, hyperspectral, indices
Procedia PDF Downloads 155206 The Response of the Accumulated Biomass and the Efficiency of Water Use in Five Varieties of Durum Wheat Lines under Water Stress
Authors: Fellah Sihem
Abstract:
The optimal use of soil moisture by culture, is related to the leaf area index, which stood in the cycle and its modulation according to the prevailing stress intensity. For a given stock of water in the soil, cultivar adapted and saving water is one that is no luxury consumption during the preanthesis. It modulates the leaf area index to regulate sweating in the degree of its water supply. In plants water saving, avoidance of dehydration is related to the reduction of water loss by cuticular and stomatal pathways. Muchow and Sinclair reported that the test of relative water content (TRE) is considered the best indicator of leaf water status. The search for indicators of the ability of the plant to make good use of the water, under water stress is a prerequisite for progress in improving performance under water stress. This experiment aims to characterize a set of durum wheat varieties, tested jars and vegetation under different levels of water stress to the surface of the leaf, relative water content, cell integrity, the accumulated biomass and efficiency of water use. The experiment was conducted during the 2005/2006 academic year, at the Agricultural Research Station of the Field Crop Institute of Setif, under semi-controlled conditions. Five genotypes of durum wheat (Triticum durum Desf) were evaluated for their ability to tolerate moderate and severe water stress. The results showed that geno types respond differently to water stress. Dry matter accumulation and growth rate varied among geno types and were significantly reduced. At severe water stress biomass accumulated by Boussalam was the least affected.Keywords: water stress, triticum durum, biomass, cell membrane integrity, relative water content
Procedia PDF Downloads 469205 Eco-Parcel As a Semi-Qualitative Approach to Support Environmental Impacts Assessments in Nature-Based Tourism Destinations
Authors: Halima Kilungu, Pantaleo, K. T. Munishi
Abstract:
Climate and land-cover change affect nature-based tourism (NBT) due to its attractions' close connection to natural environments and climate. Thus, knowledge of how each attraction reacts to the changing environments and devising simple yet science based approaches to respond to these changes from a tourism perspective in space and time is timely. Nevertheless, no specific approaches exist to address the knowledge gap. The eco-parcel approach is devised to address the gap and operationalized in Serengeti and Kilimanjaro National Parks: the most climate-sensitive NBT destinations in Africa. The approach is partly descriptive and has three simple steps: (1) to identify and define tourist attractions (i.e. biotic and abiotic attractions). This creates an important database of the most poorly kept information on attractions' types in NBT destinations. (2) To create a spatial and temporal link of each attraction and describe its characteristic environments (e.g. vegetation, soil, water and rock outcrops). This is the most limited attractions' information yet important as a proxy of changes in attractions. (3) To assess the importance of individual attractions for tourism based on tourists' preferences. This information enables an accurate assessment of the value of individual attractions for tourism. The importance of the eco-parcel approach is that it describes how each attraction emerges from and is connected to specific environments, which define its attractiveness in space and time. This information allows accurate assessment of the likely losses or gains of individual attractions when climate or environment changes in specific destinations and equips tourism stakeholders with informed responses.Keywords: climate change, environmental change, nature-based tourism, Serengeti National Park, Kilimanjaro National Park
Procedia PDF Downloads 121204 The Role of Cornulaca aucheri in Stabilization of Degraded Sandy Soil in Kuwait
Authors: Modi M. Ahmed, Noor Al-Dousari, Ali M. Al-Dousari
Abstract:
Cornulaca aucheri is an annual herb consider as disturbance indicator currently visible and widely distributed in disturbed lands in Liyah area. Such area is suffered from severe land degradation due to multiple interacting factors such as, overgrazing, gravel and sand quarrying, military activities and natural process. The restoration program is applied after refilled quarries sites and levelled the surface irregularities in order to rehabilitate the natural vegetation and wildlife to its original shape. During the past 10 years of rehabilitation, noticeable greenery healthy cover of Cornulaca sp. are shown specially around artificial lake and playas. The existence of such species in high density it means that restoration program has succeeded and transit from bare ground state to Cornulaca and annual forb state. This state is lower state of Range State Transition Succession model, but it is better than bare soil. Cornulaca spp is native desert plant grows in arid conditions on sandy, stony ground, near oasis, on sand dunes and in sandy depressions. The sheep and goats are repulsive of it. Despite its spiny leaves, it provides good grazing for camels and is said to increase the milk supply produced by lactating females. It is about 80 cm tall and has stems that branched from the base with new faster greenery growth in the summer. It shows good environmental potential to be managed as natural types used for the restoration of degraded lands in desert areas.Keywords: land degradation, range state transition succession model, rehabilitation, restoration program
Procedia PDF Downloads 370203 Quantifying the Rapid Urbanization Impact on Potential Stormwater Runoff of Dhaka City, Bangladesh
Authors: Md. Kumruzzaman, Anutosh Das, Md. Mosharraf Hossain
Abstract:
Historically, rapid urban growth activities are considered one of the main culprits behind urban floods or waterlogging. The increased unplanned urbanization of many areas of Dhaka has resulted in waterlogging, urban floods, and increasing groundwater depth. To determine potential groundwater recharge from precipitation, the study is being conducted to examine the changes in land use/land cover (LULC) and urban runoff extent based on the NRCS-CN from 2005–2021. Four kinds of land use are used to examine the LULC change: built-up, bare land, vegetation, and water body. These categories are used for the years 2005, 2010, 2015, and 2021. The built-up area is growing at a relatively fast rate: 7.43%, 17.4%, and 5.21%, respectively, between the years 2005 and 2010, 2010 and 2015, and 2015 and 2021. As the amount of impervious surface rose in Dhaka city, stormwater discharge increased from 2005 to 2021. In 2005, 2010, 2015, and 2021, heavy stormwater runoff regions made up around 24.873%, 32.616%, 49.118%, and 55.986% of the entire Dhaka city. Stormwater runoff accounted for around 53.738%, 55.092%, 63.472%, and 67.061% of the total rainfall in 2005, 2010, 2015, and 2021, respectively. Between 2005 and 2021, a significant portion of the natural land cover was altered because of the expanding impervious surface, which also harmed the natural drainage system. Due to careless growth, the potential for stormwater runoff and groundwater recharge in Dhaka city worsens every year. Concerning this situation, a sustainable urban drainage system (SUDS) can be the best possible solution for minimizing the stormwater runoff and groundwater recharge problem.Keywords: LULC, impervious surface, stormwater runoff, groundwater recharge, SUDS
Procedia PDF Downloads 80202 Remote Sensing through Deep Neural Networks for Satellite Image Classification
Authors: Teja Sai Puligadda
Abstract:
Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss
Procedia PDF Downloads 159201 Utility of Geospatial Techniques in Delineating Groundwater-Dependent Ecosystems in Arid Environments
Authors: Mangana B. Rampheri, Timothy Dube, Farai Dondofema, Tatenda Dalu
Abstract:
Identifying and delineating groundwater-dependent ecosystems (GDEs) is critical to the well understanding of the GDEs spatial distribution as well as groundwater allocation. However, this information is inadequately understood due to limited available data for the most area of concerns. Thus, this study aims to address this gap using remotely sensed, analytical hierarchy process (AHP) and in-situ data to identify and delineate GDEs in Khakea-Bray Transboundary Aquifer. Our study developed GDEs index, which integrates seven explanatory variables, namely, Normalized Difference Vegetation Index (NDVI), Modified Normalized Difference Water Index (MNDWI), Land-use and landcover (LULC), slope, Topographic Wetness Index (TWI), flow accumulation and curvature. The GDEs map was delineated using the weighted overlay tool in ArcGIS environments. The map was spatially classified into two classes, namely, GDEs and Non-GDEs. The results showed that only 1,34 % (721,91 km2) of the area is characterised by GDEs. Finally, groundwater level (GWL) data was used for validation through correlation analysis. Our results indicated that: 1) GDEs are concentrated at the northern, central, and south-western part of our study area, and 2) the validation results showed that GDEs classes do not overlap with GWL located in the 22 boreholes found in the given area. However, the results show a possible delineation of GDEs in the study area using remote sensing and GIS techniques along with AHP. The results of this study further contribute to identifying and delineating priority areas where appropriate water conservation programs, as well as strategies for sustainable groundwater development, can be implemented.Keywords: analytical hierarchy process (AHP), explanatory variables, groundwater-dependent ecosystems (GDEs), khakea-bray transboundary aquifer, sentinel-2
Procedia PDF Downloads 108200 Improvement of Water Quality of Al Asfar Lake Using Constructed Wetland System
Authors: Jamal Radaideh
Abstract:
Al-Asfar Lake is located about 14 km east of Al-Ahsa and is one of the most important wetland lakes in the Al Ahsa/Eastern Province of Saudi Arabia. Al-Ahsa is may be the largest oasis in the world, having an area of 20,000 hectares, in addition, it is of the largest and oldest agricultural centers in the region. The surplus farm irrigation water beside additional water supplied by treated wastewater from Al-Hofuf sewage station is collected by a drainage network and discharged into Al-Asfar Lake. The lake has good wetlands, sand dunes as well as large expanses of open and shallow water. Salt tolerant vegetation is present in some of the shallow areas around the lake, and huge stands of Phragmites reeds occur around the lake. The lake presents an important habitat for wildlife and birds, something not expected to find in a large desert. Although high evaporation rates in the range of 3250 mm are common, the water remains in the evaporation lakes during all seasons of the year is used to supply cattle with drinking water and for aquifer recharge. Investigations showed that high concentrations of nitrogen (N), phosphorus (P), biological oxygen demand (BOD), chemical oxygen demand (COD) and salinity discharge to Al Asfar Lake from the D2 drain exist. It is expected that the majority of BOD, COD and N originates from wastewater discharge and leachate from surplus irrigation water which also contribute to the majority of P and salinity. The significant content of nutrients and biological oxygen demand reduces available oxygen in the water. The present project aimed to improve the water quality of the lake using constructed wetland trains which will be built around the lake. Phragmites reeds, which already occur around the lake, will be used.Keywords: Al Asfar lake, constructed wetland, water quality, water treatment
Procedia PDF Downloads 449199 Application of RayMan Model in Quantifying the Impacts of the Built Environment and Surface Properties on Surrounding Temperature
Authors: Maryam Karimi, Rouzbeh Nazari
Abstract:
Introduction: Understanding thermal distribution in the micro-urban climate has now been necessary for urban planners or designers due to the impact of complex micro-scale features of Urban Heat Island (UHI) on the built environment and public health. Hence, understanding the interrelation between urban components and thermal pattern can assist planners in the proper addition of vegetation to build-environment, which can minimize the UHI impact. To characterize the need for urban green infrastructure (UGI) through better urban planning, this study proposes the use of RayMan model to measure the impact of air quality and increased temperature based on urban morphology in the selected metropolitan cities. This project will measure the impact of build environment for urban and regional planning using human biometeorological evaluations (Tmrt). Methods: We utilized the RayMan model to estimate the Tmrt in an urban environment incorporating location and height of buildings and trees as a supplemental tool in urban planning and street design. The estimated Tmrt value will be compared with existing surface and air temperature data to find the actual temperature felt by pedestrians. Results: Our current results suggest a strong relationship between sky-view factor (SVF) and increased surface temperature in megacities based on current urban morphology. Conclusion: This study will help with Quantifying the impacts of the built environment and surface properties on surrounding temperature, identifying priority urban neighborhoods by analyzing Tmrt and air quality data at the pedestrian level, and characterizing the need for urban green infrastructure cooling potential.Keywords: built environment, urban planning, urban cooling, extreme heat
Procedia PDF Downloads 123198 Optimizing Nitrogen Fertilizer Application in Rice Cultivation: A Decision Model for Top and Ear Dressing Dosages
Authors: Ya-Li Tsai
Abstract:
Nitrogen is a vital element crucial for crop growth, significantly influencing crop yield. In rice cultivation, farmers often apply substantial nitrogen fertilizer to maximize yields. However, excessive nitrogen application increases the risk of lodging and pest infestation, leading to yield losses. Additionally, conventional flooded irrigation methods consume significant water resources, necessitating precise agricultural and intelligent water management systems. In this study, it leveraged physiological data and field images captured by unmanned aerial vehicles, considering fertilizer treatment and irrigation as key factors. Statistical models incorporating rice physiological data, yield, and vegetation indices from image data were developed. Missing physiological data were addressed using multiple imputation and regression methods, and regression models were established using principal component analysis and stepwise regression. Target nitrogen accumulation at key growth stages was identified to optimize fertilizer application, with the difference between actual and target nitrogen accumulation guiding recommendations for ear dressing dosage. Field experiments conducted in 2022 validated the recommended ear dressing dosage, demonstrating no significant difference in final yield compared to traditional fertilizer levels under alternate wetting and drying irrigation. These findings highlight the efficacy of applying recommended dosages based on fertilizer decision models, offering the potential for reduced fertilizer use while maintaining yield in rice cultivation.Keywords: intelligent fertilizer management, nitrogen top and ear dressing fertilizer, rice, yield optimization
Procedia PDF Downloads 82197 Effect of Aging Time and Mass Concentration on the Rheological Behavior of Vase of Dam
Authors: Hammadi Larbi
Abstract:
Water erosion, the main cause of the siltation of a dam, is a natural phenomenon governed by natural physical factors such as aggressiveness, climate change, topography, lithology, and vegetation cover. Currently, a vase from certain dams is released downstream of the dikes during devastation by hydraulic means. The vases are characterized by complex rheological behaviors: rheofluidification, yield stress, plasticity, and thixotropy. In this work, we studied the effect of the aging time of the vase in the dam and the mass concentration of the vase on the flow behavior of a vase from the Fergoug dam located in the Mascara region. In order to test the reproducibility of results, two replicates were performed for most of the experiments. The flow behavior of the vase studied as a function of storage time and mass concentration is analyzed by the Herschel Bulkey model. The increase in the aging time of the vase in the dam causes an increase in the yield stress and the consistency index of the vase. This phenomenon can be explained by the adsorption of the water by the vase and the increase in volume by swelling, which modifies the rheological parameters of the vase. The increase in the mass concentration in the vase leads to an increase in the yield stress and the consistency index as a function of the concentration. This behavior could be explained by interactions between the granules of the vase suspension. On the other hand, the increase in the aging time and the mass concentration of the vase in the dam causes a reduction in the flow index of the vase. The study also showed an exponential decrease in apparent viscosity with the increase in the aging time of the vase in the dam. If a vase is allowed to age long enough for the yield stress to be close to infinity, its apparent viscosity is also close to infinity; then the apparent viscosity also tends towards infinity; this can, for example, subsequently pose problems when dredging dams. For good dam management, it could be then deduced to reduce the dredging time of the dams as much as possible.Keywords: vase of dam, aging time, rheological behavior, yield stress, apparent viscosity, thixotropy
Procedia PDF Downloads 28196 Canopy Temperature Acquired from Daytime and Nighttime Aerial Data as an Indicator of Trees’ Health Status
Authors: Agata Zakrzewska, Dominik Kopeć, Adrian Ochtyra
Abstract:
The growing number of new cameras, sensors, and research methods allow for a broader application of thermal data in remote sensing vegetation studies. The aim of this research was to check whether it is possible to use thermal infrared data with a spectral range (3.6-4.9 μm) obtained during the day and the night to assess the health condition of selected species of deciduous trees in an urban environment. For this purpose, research was carried out in the city center of Warsaw (Poland) in 2020. During the airborne data acquisition, thermal data, laser scanning, and orthophoto map images were collected. Synchronously with airborne data, ground reference data were obtained for 617 studied species (Acer platanoides, Acer pseudoplatanus, Aesculus hippocastanum, Tilia cordata, and Tilia × euchlora) in different health condition states. The results were as follows: (i) healthy trees are cooler than trees in poor condition and dying both in the daytime and nighttime data; (ii) the difference in the canopy temperatures between healthy and dying trees was 1.06oC of mean value on the nighttime data and 3.28oC of mean value on the daytime data; (iii) condition classes significantly differentiate on both daytime and nighttime thermal data, but only on daytime data all condition classes differed statistically significantly from each other. In conclusion, the aerial thermal data can be considered as an alternative to hyperspectral data, a method of assessing the health condition of trees in an urban environment. Especially data obtained during the day, which can differentiate condition classes better than data obtained at night. The method based on thermal infrared and laser scanning data fusion could be a quick and efficient solution for identifying trees in poor health that should be visually checked in the field.Keywords: middle wave infrared, thermal imagery, tree discoloration, urban trees
Procedia PDF Downloads 115195 Modelling the Effect of Biomass Appropriation for Human Use on Global Biodiversity
Authors: Karina Reiter, Stefan Dullinger, Christoph Plutzar, Dietmar Moser
Abstract:
Due to population growth and changing patterns of production and consumption, the demand for natural resources and, as a result, the pressure on Earth’s ecosystems are growing. Biodiversity mapping can be a useful tool for assessing species endangerment or detecting hotspots of extinction risks. This paper explores the benefits of using the change in trophic energy flows as a consequence of the human alteration of the biosphere in biodiversity mapping. To this end, multiple linear regression models were developed to explain species richness in areas where there is no human influence (i.e. wilderness) for three taxonomic groups (birds, mammals, amphibians). The models were then applied to predict (I) potential global species richness using potential natural vegetation (NPPpot) and (II) global ‘actual’ species richness after biomass appropriation using NPP remaining in ecosystems after harvest (NPPeco). By calculating the difference between predicted potential and predicted actual species numbers, maps of estimated species richness loss were generated. Results show that biomass appropriation for human use can indeed be linked to biodiversity loss. Areas for which the models predicted high species loss coincide with areas where species endangerment and extinctions are recorded to be particularly high by the International Union for Conservation of Nature and Natural Resources (IUCN). Furthermore, the analysis revealed that while the species distribution maps of the IUCN Red List of Threatened Species used for this research can determine hotspots of biodiversity loss in large parts of the world, the classification system for threatened and extinct species needs to be revised to better reflect local risks of extinction.Keywords: biodiversity loss, biomass harvest, human appropriation of net primary production, species richness
Procedia PDF Downloads 130194 Plant Growth and Yield Enhancement of Soybean by Inoculation with Symbiotic and Nonsymbiotic Bacteria
Authors: Timea I. Hajnal-Jafari, Simonida S. Đurić, Dragana R. Stamenov
Abstract:
Microbial inoculants from the group of symbiotic-nitrogen-fixing rhizobia are well known and widely used in production of legumes. On the other hand, nonsymbiotic plant growth promoting rhizobacteria (PGPR) are not commonly used in practice. The objective of this study was to examine the effects of soybean inoculation with symbiotic and nonsymbiotic bacteria on plant growth and seed yield of soybean. Microbiological activity in rhizospheric soil was also determined. The experiment was set up using a randomized block system in filed conditions with the following treatments: control-no inoculation; treatment 1-Bradyrhizobium japonicum; treatment 2-Azotobacter sp.; treatment 3-Bacillus sp..In the flowering stage of growth (FS) the number of nodules per plant (NPP), root length (RL), plant height (PH) and weight (PW) were measured. The number of pod per plant (PPP), number of seeds per pod (SPP) and seed weight per plant (SWP) were recorded at the end of vegetation period (EV). Microbiological analyses of soil included the determination of total number of bacteria (TNB), number of fungi (FNG), actinomycetes (ACT) and azotobacters (AZB) as well as the activity of the dehydrogenase enzyme (DHA). The results showed that bacterial inoculation led to the formation of root nodules regardless of the treatments with statistically no significant difference. Strong nodulation was also present in control treatment. RL and PH were positively influenced by inoculation with Azotobacter sp. and Bacillus sp., respectively. Statistical analyses of the number of PPP, SPP, and SWP showed no significant differences among investigated treatments. High average number of microorganisms were determined in all treatments. Most abundant were TNB (log No 8,010) and ACT (log No 6,055) than FNG and AZB with log No 4,867 and log No 4,025, respectively. The highest DHA activity was measured in the FS of soybean in treatment 3. The application of nonsymbiotic bacteria in soybean production can alleviate initial plant growth and help the plant to better overcome different stress conditions caused by abiotic and biotic factors.Keywords: bacteria, inoculation, soybean, microbial activity
Procedia PDF Downloads 153193 Orchids of Coastal Karnataka, India: Diversity, Trends in Population, Threats and Conservation Strategies
Authors: Sankaran Potti Narasimhan
Abstract:
Costal Karnataka is sandwiched between Arabian Sea and the biodiversity hotspot of Western Ghats. This has provided a rich vegetation, canopy and humidity for the sustainable growth and evolution of many orchid populations. Similar to many other biodiversity hostpot regions of India and the world, this region also faces threat from anthropogenic activities and climate change. Hence, there is a need to study the current orchid diversity and trends in population as well as an effective conservation strategy. Costal belt of Karnataka state of India extends over 325 kilometers and an area of 18,000 km2. The region encompasses two national parks such as the Anshi National Park and the Kudremukh National Park. The study regions also include two Wild Life Sanctuaries such as the Someshwara Wildlife Sanctuary and Mookambika Wildlife Sanctuary. The estimated number of orchids in the region includes 30 genera and 45 species. Both terrestrial and epiphytic orchids are found in this region. The region contains many red listed orchids such as Trias stocksii (Critically endangered), Eriad alzellii (Lower risk vulnerable) and Dendrobnium ovatum (Vulnerable). The important terrestrial orchids of the region are Geodorum, Habenaria, Lipparis, Malaxis, Nervilia, Pachystoma, Pectelis, Peristylus, Tropidia and Zeuxine. The epiphytic forms includes Acampe, Aerides, Bulbophyllum, Cleisostoma, Conchidum, Cottonia, Cymbidium, Dendronium, Eria, Flickingeria, Gastrochilus, Kingidium, Luisia, Oberonia, Phalaenopsis, Pholidota, Porpax, Rhynchostylis, Sirhookera and Trias. The current paper discusses the population strength and changes in the population structure of these orchids along with proposed conservation strategies.Keywords: orchid diversity, bulbophyllum, dendrobium, orchid conservation
Procedia PDF Downloads 394192 Distribution and Habitat Preference of Red Panda (Ailurus Fulgens Fulgens) in Jumla District, Nepal
Authors: Saroj Panthi, Sher Singh Thagunna
Abstract:
Reliable and sufficient information regarding status, distribution and habitat preference of red panda (Ailurus fulgens fulgens) is lacking in Nepal. The research activities on red panda in the mid-western Nepal are very limited, so the status of red panda in the region is quite unknown. The study conducted during May, 2013 in three Village Development Committees (VDCs) namely Godhemahadev, Malikathata and Tamti of Jumla district was an important step for providing vital information including distribution and habitat preference of this species. The study included the reconnaissance, key informants survey, interviews, and consultation for the most potential area identification, opportunistic survey comprising the direct observation and indirect sign count method for the presence and distribution, habitat assessment consisting vegetation sampling and ocular estimation. The study revealed the presence of red panda in three forests namely Bahirepatan, Imilchadamar and Tyakot of Godhemahadev, Tamti and Malikathata VDCs respectively. The species was found distributed between 2880 and 3244 m with an average dropping encounter rate of 1.04 per hour of searching effort and 12 pellets per dropping. Red panda mostly preferred the habitat in the elevation range of 2900 - 3000 m with southwest facing steep slopes (36˚ - 45˚), associated with water sources at the distance of ≤100 m. Trees such as Acer spp., Betula utilis and Quercus semecarpifolia, shrub species of Elaeagnus parvifolia, Drepanostachyum spp. and Jasminum humile, and the herbs like Polygonatum cirrhifolium, Fragaria nubicola and Galium asperifolium were found to be the most preferred species by red panda. The red panda preferred the habitat with dense crown coverage ( >20% - 100%) and 31% - 50% ground cover. Fallen logs (39%) were the most preferred substrate used for defecation.Keywords: distribution, habitat preference, jumla, red panda
Procedia PDF Downloads 309191 An Integrated Approach to Assessing Urban Nature as an Indicator to Mitigate Urban Heat Island Effect: A Case Study of Lahore, Pakistan
Authors: Muhammad Nasar-u-Minallah, Dagmar Haase, Salman Qureshi
Abstract:
Rapid urbanization significantly change land use, urban nature, land surface vegetation cover, and heat distribution, leading to the formation of urban heat island (UHI) effect and affecting the healthy growth of cities and the comfort of human living style. Past information and present changes in Land Surface Temperature (LST) and urban landscapes could be useful to geographers, environmentalists, and urban planners in an attempt to shape the urban development process and mitigate the effects of urban heat islands (UHI). This study aims at using Satellite Remote Sensing (SRS) and GIS techniques to develop an approach for assessing the urban nature and UHI effects in Lahore, Pakistan. The study employed the Radiative Transfer Method (RTM) in estimating LST to assess the SUHI effect during the interval of 20 years (2000-2020). The assessment was performed by the available Landsat 7/ETM+ and Landsat 8/OIL_TIRs data for the years 2000, 2010, and 2020 respectively. Pearson’s correlation and normalized mutual information were applied to investigate the relationship between green space characteristics and LST. The result of this work revealed that the influence of urban heat island is not always at the city centers but sometimes in the outskirt where a lot of development activities were going on towards the direction of expansion of Lahore, Pakistan. The present study explores the usage of image processing and spatial analysis in the drive towards achieving urban greening of Lahore and a sustainable urban environment in terms of urban planning, policy, and decision making and promoting the healthy and sustainable urban environment of the city.Keywords: urban nature, urban heat islands, urban green space, land use, Lahore
Procedia PDF Downloads 116190 Environmental Degradation of Natural Resources in Broghil National Park in the High Mountains of Pakistan – Empirical Evidence From Local Community and Geoinformatics
Authors: Siddique Ullah Baig, Alisha Manzoor
Abstract:
The remotest, mountainous, and icy Broghil Valley is a high-profile protected area as a national park, which hosts one of the highest altitude permanent human settlements on the earth. This park hosts a distributed but diverse range of habitats. Due to a lack of infrastructures, higher altitudes, and harsh environmental conditions, poverty-stricken inhabitants mostly rely on its resources, causing ecological dis-balance. This study aims to investigate the environmental degradation of natural resources of the park based on empirical evidence from stakeholders and geoinformatics. The result shows that one-fourth of the park is a gently undulating basin dotted with water bodies / grass, and agricultural land and three fourth is entirely rugged with steep mountains and glaciers. There are virtually no forests as the arid cold tundra climate and high altitude prevent tree growth. Rapid three-decadal land cover changes have led to ecological disequilibrium of the park, narrowing the traditional diverse food base, decreasing the resilience of biodiversity and local livelihoods as crop-land has shifted towards fallow, alpine-grass to peat-land and snow/glacial ice area to bare-soil/rocks. The local community believes in exploiting whatever vegetation or organic material is available for use as food, fodder, and fuel. The permanent presence of the community and limited cost-effective options in the park will be a challenge forever to maintain undisturbed natural processes as the objective of a national park.Keywords: Broghil National Park, natural resources, environmental degradation, land cover
Procedia PDF Downloads 67189 Spatial Interactions Between Earthworm Abundance and Tree Growth Characteristics in Western Niger Delta
Authors: Olatunde Sunday Eludoyin, Charles Obiechina Olisa
Abstract:
The study examined the spatial interactions between earthworm abundance (EA) and tree growth characteristics in ecological belts of Western Niger Delta, Nigeria. Eight 20m x 20m quadrat were delimited in the natural vegetation in each of the rainforest (RF), mangrove (M), fresh water swamp (FWS), and guinea savanna (GS) ecological belts to gather data about the tree species (TS) characteristics which included individual number of tree species (IN), diversity (Di), density (De) and richness (Ri). Three quadrats of 1m x 1m were delineated in each of the 20m x 20m quadrats to collect earthworm species the topsoil (0-15cm), and subsoil (15-30cm) and were taken to laboratory for further analysis. Descriptive statistics and inferential statistics were used for data analysis. Findings showed that a total of 19 earthworm species was found, with 58.5% individual species recorded in the topsoil and 41.5% recorded in the subsoil. The total population ofEudriliuseugeniae was predominantly highest in both topsoil (38.4%) and subsoil (27.1%). The total population of individual species of earthworm was least in GS in the topsoil (11.9%) and subsoil (8.4%). A total of 40 different species of TS was recorded, of which 55.5% were recorded in FWS, while RF was significantly highest in the species diversity(0.5971). Regression analysis revealed that Ri, IN, DBH, Di, and De of trees explained 65.9% of the variability of EA in the topsoil, while 46.9 % of the variability of earthworm abundance was explained by the floristic parameters in the subsoil.Similarly, correlation statistics revealed that in the topsoil, EA is positively and significantly correlated with Ri (r=0.35; p<0.05), IN (r=0.523; p<0.05) and De (r=0.469; p<0.05) while DBH was negatively and significantly correlated with earthworm abundance (r=-0.437; p<0.05). In the subsoil, only Ri and DBH correlated significantly with EA. The study concluded that EA in the study locations was highly influenced by tree growth species especially Ri, IN, DBH, Di, and De. The study recommended that the TSabundance should be improved in the study locations to ensure the survival of earthworms for ecosystem functions.Keywords: interactions, earthworm abundance, tree growth, ecological zones, western niger delta
Procedia PDF Downloads 100188 The Impact of Air Pollution on Health and the Environment: The Case of Cement Beni-Saf, Western Algeria
Authors: N. Hachemi, I. Benmehdi, O. Hasnaoui
Abstract:
The air like water is an essential element for living beings. Each day, a man breathes about 20m3 of air. It originally consists of a set of gas whose presence and concentrations correspond to the needs of life. This study focuses on air pollution by smoke and dust emitted from the chimney of the cement works of Beni Saf, pathological and their impact on the environment. Dust of the cement plant are harmless to permissible levels for living organisms, but the two combined phenomena namely the release of dust and aridity of the climate, which severely marked area of Beni Saf; have contributed adverse effects in on human health and the degradation of vegetation cover and species especially weakened by environmental stress. The most visible impact is certainly the deposition of dust on the surrounding areas of the cement factory, and seriously affecting the aesthetics of the landscape. Health problems are more important inside and outside the factory. Among the diseases notable caused by the cement works are: deafness, heart disease, asthma and mental. The dust of the cement works is mainly composed of fine particles of limestone, clay, free lime, silicates and also loaded of the gases such as carbon dioxide gas CO2. The accumulation of this gas in the atmosphere is directly involved in the phenomenon of increasing of greenhouse effect. Some gases, for example, are directly toxic. They can change the climate, changing precipitation types and become a greater source of stress by drought, etc. The environment also suffers from air pollution indirectly; it is more precisely the acid rain. They are produced by the combustion of non-metals in air. Acid rain has consequences for contaminating the soil, weakening the flora, fauna and acidifies lakes. Finally, the pollution problems are multiple and specific dust. It can worsen and change, it has reached epidemic proportions quantitatively and qualitatively disturbing and unpredictable.Keywords: atmospheric pollution, cement, dust, environment
Procedia PDF Downloads 337187 Comparison of Support Vector Machines and Artificial Neural Network Classifiers in Characterizing Threatened Tree Species Using Eight Bands of WorldView-2 Imagery in Dukuduku Landscape, South Africa
Authors: Galal Omer, Onisimo Mutanga, Elfatih M. Abdel-Rahman, Elhadi Adam
Abstract:
Threatened tree species (TTS) play a significant role in ecosystem functioning and services, land use dynamics, and other socio-economic aspects. Such aspects include ecological, economic, livelihood, security-based, and well-being benefits. The development of techniques for mapping and monitoring TTS is thus critical for understanding the functioning of ecosystems. The advent of advanced imaging systems and supervised learning algorithms has provided an opportunity to classify TTS over fragmenting landscape. Recently, vegetation maps have been produced using advanced imaging systems such as WorldView-2 (WV-2) and robust classification algorithms such as support vectors machines (SVM) and artificial neural network (ANN). However, delineation of TTS in a fragmenting landscape using high resolution imagery has widely remained elusive due to the complexity of the species structure and their distribution. Therefore, the objective of the current study was to examine the utility of the advanced WV-2 data for mapping TTS in the fragmenting Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. The results showed the robustness of the two machine learning algorithms with an overall accuracy (OA) of 77.00% (total disagreement = 23.00%) for SVM and 75.00% (total disagreement = 25.00%) for ANN using all eight bands of WV-2 (8B). This study concludes that SVM and ANN classification algorithms with WV-2 8B have the potential to classify TTS in the Dukuduku indigenous forest. This study offers relatively accurate information that is important for forest managers to make informed decisions regarding management and conservation protocols of TTS.Keywords: artificial neural network, threatened tree species, indigenous forest, support vector machines
Procedia PDF Downloads 515186 Peat Resources, Paleo-Environmental Interpretation as well as Their Utilization, Hakaluki Haor, Moulvibazar and Sylhet District, Bangladesh
Authors: Mohammed Masum, Mohammad Omer Faruk Khan, Md. Nazwanul Haque, Anwar Sadat Md. Sayem, Md. Azhar Hossain
Abstract:
The study area is the Hakaluki Haor which is the second largest wet land of Bangladesh. It spans over the districts of Moulvibazar and Sylhet in southeast Bangladesh. The study was focused in the exploration of peat reserve, reconstruction of the paleo-environment as well as the utilization of the peat resources. Peat is found randomly from 0.5 m to 7 m below the surface and 1 m to 11 m thickness at over 40 beels as well as small plain lands of 90 km2 area of Hakaluki Haor. The total reserve of peat is 282 million ton in wet condition and 112 million ton in dry condition. The peat deposits of Hakaluki Haor area is the largest peat reserves of the Bangladesh. Peat bearing Hakaluki Haor is a low-lying wet land which geological term is synclinal depression. It may be a syncline between two anticlines which was filled with sediments as well as various plant materials derived from the hilly region (anticline) on both sides (west and east) of the Haor. The transportation may be triggered by large natural disasters or any tectonic reason. On the other hand vegetation occurred in this depression as aquatic plants which might have been destroyed by large natural disasters or any tectonic reason. As environment dictates the characteristics and the source of sediments, various aspects of the sediment are indicators of the environment. Peat has mainly industrial importance as a fuel for power production, traditionally used for cooking, domestic heating and in brick fields, also used as insulator in many industries, agricultural purposes, retaining moisture in soil, raw material in horticulture and colour industries etc. Power plants of about 100 MW capacities may be established in this region based on peat of Hakaluki Haor which may be continued more than one hundred years.Keywords: peat, pale environment, Hakaluki Haor, beel, syncline, anticline
Procedia PDF Downloads 421185 Biomass and Carbon Stock Estimates of Woodlands in the Southeastern Escarpment of Ethiopian Rift Valley: An Implication for Climate Change Mitigation
Authors: Sultan Haji Shube
Abstract:
Woodland ecosystems of semiarid rift valley of Ethiopia play a significant role in climate change mitigation by sequestering and storing more carbon. This study was conducted in Gidabo river sub-basins southeastern rift-valley escarpment of Ethiopian. It aims to estimate biomass and carbon stocks of woodlands and its implications for climate change mitigation. A total of 44 sampling plots (900m²each) were systematically laid in the woodland for vegetation and environmental data collection. A composite soil sample was taken from five locations main plot. Both disturbed and undisturbed soil samples were taken at two depths using soil auger and core-ring sampler, respectively. Allometric equation was used to estimate aboveground biomass while root-to-shoot ratio method and Walkley-Black method were used for belowground biomass and SOC, respectively. Result revealed that the totals of the study site was 17.05t/ha, of which 14.21t/ha was belonging for AGB and 2.84t/ha was for BGB. Moreover, 2224.7t/ha total carbon stocks was accumulated with an equivalent carbon dioxide of 8164.65t/ha. This study also revealed that more carbon was accumulated in the soil than the biomass. Both aboveground and belowground carbon stocks were decreased with increase in altitude while SOC stocks were increased. The AGC and BGC stocks were higher in the lower slope classes. SOC stocks were higher in the higher slope classes than in the lower slopes. Higher carbon stock was obtained from woody plants that had a DBH measure of >16cm and situated at plots facing northwest. Overall, study results will add up information about carbon stock potential of the woodland that will serve as a base line scenario for further research, policy makers and land managers.Keywords: allometric equation, climate change mitigation, soil organic carbon, woodland
Procedia PDF Downloads 82184 Wildfire-Related Debris-Flow and Flooding Using 2-D Hydrologic Model
Authors: Cheong Hyeon Oh, Dongho Nam, Byungsik Kim
Abstract:
Due to the recent climate change, flood damage caused by local floods and typhoons has frequently occurred, the incidence rate and intensity of wildfires are greatly increased due to increased temperatures and changes in precipitation patterns. Wildfires cause primary damage, such as loss of forest resources, as well as secondary disasters, such as landslides, floods, and debris flow. In many countries around the world, damage and economic losses from secondary damage are occurring as well as the direct effects of forest fires. Therefore, in this study, the Rainfall-Runoff model(S-RAT) was used for the wildfire affected areas in Gangneung and Goseong, which occurred on April 2019, when the stability of vegetation and soil were destroyed by wildfires. Rainfall data from Typhoon Rusa were used in the S-RAT model, and flood discharge was calculated according to changes in land cover before and after wildfire damage. The results of the calculation showed that flood discharge increased significantly due to changes in land cover, as the increase in flood discharge increases the possibility of the occurrence of the debris flow and the extent of the damage, the debris flow height and range were calculated before and after forest fire using RAMMS. The analysis results showed that the height and extent of damage increased after wildfire, but the result value was underestimated due to the characteristics that using DEM and maximum flood discharge of the RAMMS model. This research was supported by a grant(2017-MOIS31-004) from Fundamental Technology Development Program for Extreme Disaster Response funded by Korean Ministry of Interior and Safety (MOIS). This paper work (or document) was financially supported by Ministry of the Interior and Safety as 'Human resoure development Project in Disaster management'.Keywords: wildfire, debris flow, land cover, rainfall-runoff meodel S-RAT, RAMMS, height
Procedia PDF Downloads 122183 Impacts on Atmospheric Mercury from Changes in Climate, Land Use, Land Cover, and Wildfires
Authors: Shiliang Wu, Huanxin Zhang, Aditya Kumar
Abstract:
There have been increasing concerns on atmospheric mercury as a toxic and bioaccumulative pollutant in the global environment. Global change, including changes in climate change, land use, land cover and wildfires activities can all have significant impacts on atmospheric mercury. In this study, we use a global chemical transport model (GEOS-Chem) to examine the potential impacts from global change on atmospheric mercury. All of these factors in the context of global change are found to have significant impacts on the long-term evolution of atmospheric mercury and can substantially alter the global source-receptor relationships for mercury. We also estimate the global Hg emissions from wildfires for present-day and the potential impacts from the 2000-2050 changes in climate, land use and land cover and Hg anthropogenic emissions by combining statistical analysis with global data on vegetation type and coverage as well as fire activities. Present global Hg wildfire emissions are estimated to be 612 Mg year-1. Africa is the dominant source region (43.8% of global emissions), followed by Eurasia (31%) and South America (16.6%). We find significant perturbations to wildfire emissions of Hg in the context of global change, driven by the projected changes in climate, land use and land cover and Hg anthropogenic emissions. 2000-2050 climate change could increase Hg emissions by 14% globally. Projected changes in land use by 2050 could decrease the global Hg emissions from wildfires by 13% mainly driven by a decline in African emissions due to significant agricultural land expansion. Future land cover changes could lead to significant increases in Hg emissions over some regions (+32% North America, +14% Africa, +13% Eurasia). Potential enrichment of terrestrial ecosystems in 2050 in response to changes in Hg anthropogenic emissions could increase Hg wildfire emissions both globally (+28%) and regionally. Our results indicate that the future evolution of climate, land use and land cover and Hg anthropogenic emissions are all important factors affecting Hg wildfire emissions in the coming decades.Keywords: climate change, land use, land cover, wildfires
Procedia PDF Downloads 326182 Phytolith Analysis of Intrabasaltic Palaeosols (Bole Beds) from the Deccan Volcanic Province of Western India: A Preliminary Study
Authors: Sayyed Mohammed Rafi
Abstract:
Phytolith studies were carried out for the intrabasaltic bole beds occurring in the western part of the Deccan Volcanic Province. This preliminary study indicates the presence of multiform phytoliths both in red and green boles. Red bole indicates well preserved elongate phytoliths from Acanthaceae plants while bulky Bulliform phytoliths mainly from Pleioblastus/ Andropogonea/reeds plants. Degeneration of few phytoliths from red bole indicates either leaching/etching or some other activity that is responsible for such post-preservation conditions. Phytoliths from the green bole, however, seem to be well preserved as compared to those from the red bole. The phytoliths from green bole are mainly of Festucoid types (especially small square and rectangular types) indicating the presence of Chrysobalanaceae type of vegetation followed by elongate phytoliths from Acanthaceae plant types. The Multiform Trichomes seems to be derived from Panicoid/Andropogonoid/Burseraceae/Fabaceae while Bulliforms from Pleioblastus/Andropogonea/reeds. Presences of silicified woody elements from both red and green boles indicate the presence of dicotyledonous plants which could have been in the form of small shrubs. The degenerated phytoliths in red bole suggest leaching/etching or higher intensity of weathering suggesting the existence of well-drained conditions during its formation that enhanced the leaching activity while the presence of well-preserved phytoliths in green bole point towards the existence of damp and desiccated conditions during its formation. The prevalence of dry condition during red bole formation could suggest their formation under higher temperature as compared to green bole. Based on the phytolith analysis it is too early to comment on the palaeoclimates which could have prevailed during the bole bed formations. However a detailed micromorphological, as well as phytolith analysis of more samples, can throw light on the palaeoenvironmental conditions as well as the biological activity during their formation.Keywords: Deccan volcanic province, intrabasaltic bole beds, palaeoclimate, phytoliths
Procedia PDF Downloads 241181 Land Suitability Assessment for Vineyards in Afghanistan Based on Physical and Socio-Economic Criteria
Authors: Sara Tokhi Arab, Tariq Salari, Ryozo Noguchi, Tofael Ahamed
Abstract:
Land suitability analysis is essential for table grape cultivation in order to increase its production and productivity under the dry condition of Afghanistan. In this context, the main aim of this paper was to determine the suitable locations for vineyards based on satellite remote sensing and GIS (geographical information system) in Kabul Province of Afghanistan. The Landsat8 OLI (operational land imager) and thermal infrared sensor (TIRS) and shuttle radar topography mission digital elevation model (SRTM DEM) images were processed to obtain the normalized difference vegetation index (NDVI), normalized difference moisture index (NDMI), land surface temperature (LST), and topographic criteria (elevation, aspect, and slope). Moreover, Jaxa rainfall (mm per hour), soil properties information are also used for the physical suitability of vineyards. Besides, socio-economic criteria were collected through field surveys from Kabul Province in order to develop the socio-economic suitability map. Finally, the suitable classes were determined using weighted overly based on a reclassification of each criterion based on AHP (Analytical Hierarchy Process) weights. The results indicated that only 11.1% of areas were highly suitable, 24.8% were moderately suitable, 35.7% were marginally suitable and 28.4% were not physically suitable for grapes production. However, 15.7% were highly suitable, 17.6% were moderately suitable, 28.4% were marginally suitable and 38.3% were not socio-economically suitable for table grapes production in Kabul Province. This research could help decision-makers, growers, and other stakeholders with conducting precise land assessments by identifying the main limiting factors for the production of table grapes management and able to increase land productivity more precisely.Keywords: vineyards, land physical suitability, socio-economic suitability, AHP
Procedia PDF Downloads 170180 Practices of Waterwise Circular Economy in Water Protection: A Case Study on Pyhäjärvi, SW Finland
Authors: Jari Koskiaho, Teija Kirkkala, Jani Salminen, Sarianne Tikkanen, Sirkka Tattari
Abstract:
Here, phosphorus (P) loading to the lake Pyhäjärvi (SW Finland) was reviewed, load reduction targets were determined, and different measures of waterwise circular economy to reach the targets were evaluated. In addition to the P loading from the lake’s catchment, there is a significant amount of internal P loading occurring in the lake. There are no point source emissions into the lake. Thus, the most important source of external nutrient loading is agriculture. According to the simulations made with LLR-model, the chemical state of the lake is at the border of the classes ‘Satisfactory’ and ‘Good’. The LLR simulations suggest that a reduction of some hundreds of kilograms in annual P loading would be needed to reach an unquestionably ‘Good’ state. Evaluation of the measures of the waterwise circular economy suggested that they possess great potential in reaching the target P load reduction. If they were applied extensively and in a versatile, targeted manner in the catchment, their combined effect would reach the target reduction. In terms of cost-effectiveness, the waterwise measures were ranked as follows: The best: Fishing, 2nd best: Recycling of vegetation of reed beds, wetlands and buffer zones, 3rd best: Recycling field drainage waters stored in wetlands and ponds for irrigation, 4th best: Controlled drainage and irrigation, and 5th best: Recycling of the sediments of wetlands and ponds for soil enrichment. We also identified various waterwise nutrient recycling measures to decrease the P content of arable land. The cost-effectiveness of such measures may be very good. Solutions are needed to Finnish water protection in general, and particularly for regions like lake Pyhäjärvi catchment with intensive domestic animal production, of which the ‘P-hotspots’ are a crucial issue.Keywords: circular economy, lake protection, mitigation measures, phosphorus
Procedia PDF Downloads 106