Search results for: stock predictions
1052 Evaluating the Relationship between Overconfidence of Senior Managers and Abnormal Cash Fluctuations with Respect to Financial Flexibility in Companies Listed in Tehran Stock Exchange
Authors: Hadi Mousavi, Majid Davoudi Nasr
Abstract:
Executives can maximize profits by recognizing the factors that affect investment and using them to obtain the optimal level of investment. Inefficient markets have shortcomings that can impact the optimal level of investment, leading to the process of over-investment or under-investment. In the present study, the relationship between the overconfidence of senior managers and abnormal cash fluctuations with respect to financial flexibility in companies listed in the Tehran stock exchange from 2009 to 2013 were evaluated. In this study, the sample consists of 84 companies selected by a systematic elimination method and 420 year-companies in total. In this research, EVIEWS software was used to test the research hypotheses by linear regression and correlation coefficient and after designing and testing the research hypothesis. After designing and testing research hypotheses that have been used to each hypothesis, it was concluded that there was a significant relationship between the overconfidence of senior managers and abnormal cash fluctuations, and this relationship was not significant at any level of financial flexibility. Moreover, the findings of the research showed that there was a significant relationship between senior manager’s overconfidence and positive abnormal cash flow fluctuations in firms, and this relationship is significant only at the level of companies with high financial flexibility. Finally, the results indicate that there is no significant relationship between senior managers 'overconfidence and negative cash flow abnormalities, and the relationship between senior managers' overconfidence and negative cash flow fluctuations at the level of companies with high financial flexibility was confirmed.Keywords: abnormal cash fluctuations, overconfidence of senior managers, financial flexibility, accounting
Procedia PDF Downloads 1301051 Empirical Analysis of the Relationship between Voluntary Accounting Disclosures and Mongolian Stock Exchange Listed Companies’ Characteristics
Authors: Ernest Nweke
Abstract:
Mongolia has made giant strides in the development of its auditing and accounting system from Soviet-style to a market-oriented system. High levels of domestic and foreign investment desired by the Mongolian government require that better and improved quality of corporate information and disclosure consistent with international standards be made available to investors. However, the Mongolian Certified Public Accountants (CPA) profession is still developing, and the quality of services provided by accounting firms in most cases do not comply with International Financial Reporting Standards (IFRS) framework approved by the government for use in financial reporting. Against this backdrop, Accounting and audit reforms, liberalization and deregulation, establishment of an efficient and effective professional monitoring and supervision regime are policy necessities. These will further enhance the Mongolian business environment, eliminate incompetence in the system, make the economy more attractive to investors and ultimately lift reporting standards and bring about improved accounting, auditing and disclosure practices among Mongolian firms. This paper examines the fundamental issues in the accounting and auditing environment in Mongolia and investigates the relationship between selected characteristics of Mongolian Stock Exchange (MSE) listed firms (profitability, leverage, firm size, firm auditor size, firm listing age, board size and proportion of independent directors) and voluntary accounting disclosures in their annual reports and accounts. The selected sample of firms for the research purpose consists of the top 20 indexes of the MSE, representing over 95% of the market capitalization. An empirical analysis of the hypothesized relationship was carried out using multiple regression in EViews analytical software. Research results lend credence to the fact that only a few of the company attributes positively impact voluntary accounting disclosures in Mongolian Stock Exchange-listed firms. The research is motivated by the absence of empirical evidence on the correlation between the quality of voluntary accounting disclosures made by listed companies in Mongolia and company characteristics and the findings thereof significantly useful to both firms and regulatory authorities. The concluding part of the paper precisely consists of useful research-based recommendations for listed firms and regulatory agencies on measures to put in place in order to enhance the quality of corporate financial reporting and disclosures in Mongolia.Keywords: accounting, auditing, corporate disclosure, listed firms
Procedia PDF Downloads 1011050 The Impact of the Enron Scandal on the Reputation of Corporate Social Responsibility Rating Agencies
Authors: Jaballah Jamil
Abstract:
KLD (Peter Kinder, Steve Lydenberg and Amy Domini) research & analytics is an independent intermediary of social performance information that adopts an investor-pay model. KLD rating agency does not have an explicit monitoring on the rated firm which suggests that KLD ratings may not include private informations. Moreover, the incapacity of KLD to predict accurately the extra-financial rating of Enron casts doubt on the reliability of KLD ratings. Therefore, we first investigate whether KLD ratings affect investors' perception by studying the effect of KLD rating changes on firms' financial performances. Second, we study the impact of the Enron scandal on investors' perception of KLD rating changes by comparing the effect of KLD rating changes on firms' financial performances before and after the failure of Enron. We propose an empirical study that relates a number of equally-weighted portfolios returns, excess stock returns and book-to-market ratio to different dimensions of KLD social responsibility ratings. We first find that over the last two decades KLD rating changes influence significantly and negatively stock returns and book-to-market ratio of rated firms. This finding suggests that a raise in corporate social responsibility rating lowers the firm's risk. Second, to assess the Enron scandal's effect on the perception of KLD ratings, we compare the effect of KLD rating changes before and after the Enron scandal. We find that after the Enron scandal this significant effect disappears. This finding supports the view that the Enron scandal annihilates the KLD's effect on Socially Responsible Investors. Therefore, our findings may question results of recent studies that use KLD ratings as a proxy for Corporate Social Responsibility behavior.Keywords: KLD social rating agency, investors' perception, investment decision, financial performance
Procedia PDF Downloads 4391049 Retail Strategy to Reduce Waste Keeping High Profit Utilizing Taylor's Law in Point-of-Sales Data
Authors: Gen Sakoda, Hideki Takayasu, Misako Takayasu
Abstract:
Waste reduction is a fundamental problem for sustainability. Methods for waste reduction with point-of-sales (POS) data are proposed, utilizing the knowledge of a recent econophysics study on a statistical property of POS data. Concretely, the non-stationary time series analysis method based on the Particle Filter is developed, which considers abnormal fluctuation scaling known as Taylor's law. This method is extended for handling incomplete sales data because of stock-outs by introducing maximum likelihood estimation for censored data. The way for optimal stock determination with pricing the cost of waste reduction is also proposed. This study focuses on the examination of the methods for large sales numbers where Taylor's law is obvious. Numerical analysis using aggregated POS data shows the effectiveness of the methods to reduce food waste maintaining a high profit for large sales numbers. Moreover, the way of pricing the cost of waste reduction reveals that a small profit loss realizes substantial waste reduction, especially in the case that the proportionality constant of Taylor’s law is small. Specifically, around 1% profit loss realizes half disposal at =0.12, which is the actual value of processed food items used in this research. The methods provide practical and effective solutions for waste reduction keeping a high profit, especially with large sales numbers.Keywords: food waste reduction, particle filter, point-of-sales, sustainable development goals, Taylor's law, time series analysis
Procedia PDF Downloads 1301048 Evaluating the Capability of the Flux-Limiter Schemes in Capturing the Turbulence Structures in a Fully Developed Channel Flow
Authors: Mohamed Elghorab, Vendra C. Madhav Rao, Jennifer X. Wen
Abstract:
Turbulence modelling is still evolving, and efforts are on to improve and develop numerical methods to simulate the real turbulence structures by using the empirical and experimental information. The monotonically integrated large eddy simulation (MILES) is an attractive approach for modelling turbulence in high Re flows, which is based on the solving of the unfiltered flow equations with no explicit sub-grid scale (SGS) model. In the current work, this approach has been used, and the action of the SGS model has been included implicitly by intrinsic nonlinear high-frequency filters built into the convection discretization schemes. The MILES solver is developed using the opensource CFD OpenFOAM libraries. The role of flux limiters schemes namely, Gamma, superBee, van-Albada and van-Leer, is studied in predicting turbulent statistical quantities for a fully developed channel flow with a friction Reynolds number, ReT = 180, and compared the numerical predictions with the well-established Direct Numerical Simulation (DNS) results for studying the wall generated turbulence. It is inferred from the numerical predictions that Gamma, van-Leer and van-Albada limiters produced more diffusion and overpredicted the velocity profiles, while superBee scheme reproduced velocity profiles and turbulence statistical quantities in good agreement with the reference DNS data in the streamwise direction although it deviated slightly in the spanwise and normal to the wall directions. The simulation results are further discussed in terms of the turbulence intensities and Reynolds stresses averaged in time and space to draw conclusion on the flux limiter schemes performance in OpenFOAM context.Keywords: flux limiters, implicit SGS, MILES, OpenFOAM, turbulence statistics
Procedia PDF Downloads 1891047 Real-Time Inventory Management and Operational Efficiency in Manufacturing
Authors: Tom Wanyama
Abstract:
We have developed a weight-based parts inventory monitoring system utilizing the Industrial Internet of Things (IIoT) to enhance operational efficiencies in manufacturing. The system addresses various challenges, including eliminating downtimes caused by stock-outs, preventing human errors in parts delivery and product assembly, and minimizing motion waste by reducing unnecessary worker movements. The system incorporates custom QR codes for simplified inventory tracking and retrieval processes. The generated data serves a dual purpose by enabling real-time optimization of parts flow within manufacturing facilities and facilitating retroactive optimization of stock levels for informed decision-making in inventory management. The pilot implementation at SEPT Learning Factory successfully eradicated data entry errors, optimized parts delivery, and minimized workstation downtimes, resulting in a remarkable increase of over 10% in overall equipment efficiency across all workstations. Leveraging the IIoT features, the system seamlessly integrates information into the process control system, contributing to the enhancement of product quality. This approach underscores the importance of effective tracking of parts inventory in manufacturing to achieve transparency, improved inventory control, and overall profitability. In the broader context, our inventory monitoring system aligns with the evolving focus on optimizing supply chains and maintaining well-managed warehouses to ensure maximum efficiency in the manufacturing industry.Keywords: industrial Internet of things, industrial systems integration, inventory monitoring, inventory control in manufacturing
Procedia PDF Downloads 321046 Reproductive Biology and Lipid Content of Albacore Tuna (Thunnus alalunga) in the Western Indian Ocean
Authors: Zahirah Dhurmeea, Iker Zudaire, Heidi Pethybridge, Emmanuel Chassot, Maria Cedras, Natacha Nikolic, Jerome Bourjea, Wendy West, Chandani Appadoo, Nathalie Bodin
Abstract:
Scientific advice on the status of fish stocks relies on indicators that are based on strong assumptions on biological parameters such as condition, maturity and fecundity. Currently, information on the biology of albacore tuna, Thunnus alalunga, in the Indian Ocean is scarce. Consequently, many parameters used in stock assessment models for Indian Ocean albacore originate largely from other studied stocks or species of tuna. Inclusion of incorrect biological data in stock assessment models would lead to inappropriate estimates of stock status used by fisheries manager’s to establish future catch allowances. The reproductive biology of albacore tuna in the western Indian Ocean was examined through analysis of the sex ratio, spawning season, length-at-maturity (L50), spawning frequency, fecundity and fish condition. In addition, the total lipid content (TL) and lipid class composition in the gonads, liver and muscle tissues of female albacore during the reproductive cycle was investigated. A total of 923 female and 867 male albacore were sampled from 2013 to 2015. A bias in sex-ratio was found in favour of females with fork length (LF) <100 cm. Using histological analyses and gonadosomatic index, spawning was found to occur between 10°S and 30°S, mainly to the east of Madagascar from October to January. Large females contributed more to reproduction through their longer spawning period compared to small individuals. The L50 (mean ± standard error) of female albacore was estimated at 85.3 ± 0.7 cm LF at the vitellogenic 3 oocyte stage maturity threshold. Albacore spawn on average every 2.2 days within the spawning region and spawning months from November to January. Batch fecundity varied between 0.26 and 2.09 million eggs and the relative batch fecundity (mean standard deviation) was estimated at 53.4 ± 23.2 oocytes g-1 of somatic-gutted weight. Depending on the maturity stage, TL in ovaries ranged from 7.5 to 577.8 mg g-1 of wet weight (ww) with different proportions of phospholipids (PL), wax esters (WE), triacylglycerol (TAG) and sterol (ST). The highest TL were observed in immature (mostly TAG and PL) and spawning capable ovaries (mostly PL, WE and TAG). Liver TL varied from 21.1 to 294.8 mg g-1 (ww) and acted as an energy (mainly TAG and PL) storage prior to reproduction when the lowest TL was observed. Muscle TL varied from 2.0 to 71.7 g-1 (ww) in mature females without a clear pattern between maturity stages, although higher values of up to 117.3 g-1 (ww) was found in immature females. TL results suggest that albacore could be viewed predominantly as a capital breeder relying mostly on lipids stored before the onset of reproduction and with little additional energy derived from feeding. This study is the first one to provide new information on the reproductive development and classification of albacore in the western Indian Ocean. The reproductive parameters will reduce uncertainty in current stock assessment models which will eventually promote sustainability of the fishery.Keywords: condition, size-at-maturity, spawning behaviour, temperate tuna, total lipid content
Procedia PDF Downloads 2591045 Seed Quality Aspects of Nightshade (Solanum Nigrum) as Influenced by Gibberellins (GA3) on Seed
Authors: Muga Moses
Abstract:
Plant growth regulators are actively involved in the growth and yield of plants. However, limited information is available on the combined effect of gibberellic acid (GA3) on growth attributes and yield of African nightshade. This experiment will be designed to fill this gap by studying the performance of African nightshade under the application of hormones. Gibberellic acid is a plant growth hormone that promotes cell expansion and division. A greenhouse and laboratory experiment will be conducted at the University of Sussex biotechnology greenhouse and Agriculture laboratory using a growth chamber to study the effect of GA3 on the growth and development attributes of African nightshade. The experiment consists of three replications and 5 treatments and is laid out in a randomized complete block design consisting of various concentrations of GA3. 0ppm, 50ppm, 100ppm, 150ppm and 200ppm. local farmer seed was grown in plastic pots, 6 seeds then hardening off to remain with four plants per pot at the greenhouse to attain purity of germplasm, proper management until maturity of berries then harvesting and squeezing to get seeds, paper dry on the sun for 7 days. In a laboratory, place 5 Whatman filter paper on glass petri-dish subject to different concentrations of stock solution, count 50 certified and clean, healthy seeds, then arrange on the moist filter paper and mark respectively. Spray with the stock solution twice a day and protrusion of radicle termed as germination count and discard to increase the accuracy of precision. Data will be collected on the application of GA3 to compare synergistic effects on the growth, yield, and nutrient contents on African nightshade.Keywords: African nightshade, growth, yield, shoot, gibberellins
Procedia PDF Downloads 861044 Forecast Financial Bubbles: Multidimensional Phenomenon
Authors: Zouari Ezzeddine, Ghraieb Ikram
Abstract:
From the results of the academic literature which evokes the limitations of previous studies, this article shows the reasons for multidimensionality Prediction of financial bubbles. A new framework for modeling study predicting financial bubbles by linking a set of variable presented on several dimensions dictating its multidimensional character. It takes into account the preferences of financial actors. A multicriteria anticipation of the appearance of bubbles in international financial markets helps to fight against a possible crisis.Keywords: classical measures, predictions, financial bubbles, multidimensional, artificial neural networks
Procedia PDF Downloads 5751043 Ground Surface Temperature History Prediction Using Long-Short Term Memory Neural Network Architecture
Authors: Venkat S. Somayajula
Abstract:
Ground surface temperature history prediction model plays a vital role in determining standards for international nuclear waste management. International standards for borehole based nuclear waste disposal require paleoclimate cycle predictions on scale of a million forward years for the place of waste disposal. This research focuses on developing a paleoclimate cycle prediction model using Bayesian long-short term memory (LSTM) neural architecture operated on accumulated borehole temperature history data. Bayesian models have been previously used for paleoclimate cycle prediction based on Monte-Carlo weight method, but due to limitations pertaining model coupling with certain other prediction networks, Bayesian models in past couldn’t accommodate prediction cycle’s over 1000 years. LSTM has provided frontier to couple developed models with other prediction networks with ease. Paleoclimate cycle developed using this process will be trained on existing borehole data and then will be coupled to surface temperature history prediction networks which give endpoints for backpropagation of LSTM network and optimize the cycle of prediction for larger prediction time scales. Trained LSTM will be tested on past data for validation and then propagated for forward prediction of temperatures at borehole locations. This research will be beneficial for study pertaining to nuclear waste management, anthropological cycle predictions and geophysical featuresKeywords: Bayesian long-short term memory neural network, borehole temperature, ground surface temperature history, paleoclimate cycle
Procedia PDF Downloads 1281042 Applying Multiplicative Weight Update to Skin Cancer Classifiers
Authors: Animish Jain
Abstract:
This study deals with using Multiplicative Weight Update within artificial intelligence and machine learning to create models that can diagnose skin cancer using microscopic images of cancer samples. In this study, the multiplicative weight update method is used to take the predictions of multiple models to try and acquire more accurate results. Logistic Regression, Convolutional Neural Network (CNN), and Support Vector Machine Classifier (SVMC) models are employed within the Multiplicative Weight Update system. These models are trained on pictures of skin cancer from the ISIC-Archive, to look for patterns to label unseen scans as either benign or malignant. These models are utilized in a multiplicative weight update algorithm which takes into account the precision and accuracy of each model through each successive guess to apply weights to their guess. These guesses and weights are then analyzed together to try and obtain the correct predictions. The research hypothesis for this study stated that there would be a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The SVMC model had an accuracy of 77.88%. The CNN model had an accuracy of 85.30%. The Logistic Regression model had an accuracy of 79.09%. Using Multiplicative Weight Update, the algorithm received an accuracy of 72.27%. The final conclusion that was drawn was that there was a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The conclusion was made that using a CNN model would be the best option for this problem rather than a Multiplicative Weight Update system. This is due to the possibility that Multiplicative Weight Update is not effective in a binary setting where there are only two possible classifications. In a categorical setting with multiple classes and groupings, a Multiplicative Weight Update system might become more proficient as it takes into account the strengths of multiple different models to classify images into multiple categories rather than only two categories, as shown in this study. This experimentation and computer science project can help to create better algorithms and models for the future of artificial intelligence in the medical imaging field.Keywords: artificial intelligence, machine learning, multiplicative weight update, skin cancer
Procedia PDF Downloads 781041 Gas Flow, Time, Distance Dynamic Modelling
Authors: A. Abdul-Ameer
Abstract:
The equations governing the distance, pressure- volume flow relationships for the pipeline transportation of gaseous mixtures, are considered. A derivation based on differential calculus, for an element of this system model, is addressed. Solutions, yielding the input- output response following pressure changes, are reviewed. The technical problems associated with these analytical results are identified. Procedures resolving these difficulties providing thereby an attractive, simple, analysis route are outlined. Computed responses, validating thereby calculated predictions, are presented.Keywords: pressure, distance, flow, dissipation, models
Procedia PDF Downloads 4721040 Egg Hatching Inhibition Activity of Volatile Oils Extracted from Some Medicinal and Aromatic Plants against Root-Knot Nematode Meloidogyne hapla
Authors: Anil F. Felek, Mehmet M. Ozcan, Faruk Akyazi
Abstract:
Volatile oils of medicinal and aromatic plants are important for managing nematological problems in agriculture. In present study, volatile oils extracted from five medicinal and aromatic plants including Origanum onites (flower+steam+leaf), Salvia officinalis (leaf), Lippia citriodora (leaf+seed), Mentha spicata (leaf) and Mentha longifolia (leaf) were tested for egg hatching inhibition activity against root-knot nematode Meloidogyne hapla under laboratory conditions. The essential oils were extracted using water distillation method with a Clevenger system. For the homogenisation process of the oils, 2% gum arabic solution was used and 4 µl oils was added into 1ml filtered gum arabic solution to prepare the last stock solution. 5 ml of stock solution and 1 ml of M. hapla egg suspension (about 100 eggs) were added into petri dishes. Gum arabic solution was used as control. Seven days after exposure to oils at room temperature (26±2 °C), the cumulative hatched and unhatched eggs were counted under 40X inverted light microscope and Abbott’s formula was used to calculate egg hatching inhibition rates. As a result, the highest inhibition rate was found as 54% for O. onites. In addition, the other inhibition rates varied as 31.4%, 21.6%, 23.8%, 25.67% for the other plants, S. officinalis, M. longifolia, M. spicata and L. citriodora, respectively. Carvacrol was found as the main component (68.8%) of O. onites followed by Thujone 27.77% for S. officinalis, I-Menthone 76.92% for M. longifolia, Carvone 27.05% for M. spicata and Citral 19.32% for L. citriodora.Keywords: egg hatching, Meloidogyne hapla, medicinal and aromatic plants, root-knot nematodes, volatile oils
Procedia PDF Downloads 2651039 Application of Artificial Neural Network for Single Horizontal Bare Tube and Bare Tube Bundles (Staggered) of Large Particles: Heat Transfer Prediction
Authors: G. Ravindranath, S. Savitha
Abstract:
This paper presents heat transfer analysis of single horizontal bare tube and heat transfer analysis of staggered arrangement of bare tube bundles bare tube bundles in gas-solid (air-solid) fluidized bed and predictions are done by using Artificial Neural Network (ANN) based on experimental data. Fluidized bed provide nearly isothermal environment with high heat transfer rate to submerged objects i.e. due to through mixing and large contact area between the gas and the particle, a fully fluidized bed has little temperature variation and gas leaves at a temperature which is close to that of the bed. Measurement of average heat transfer coefficient was made by local thermal simulation technique in a cold bubbling air-fluidized bed of size 0.305 m. x 0.305 m. Studies were conducted for single horizontal Bare Tube of length 305mm and 28.6mm outer diameter and for bare tube bundles of staggered arrangement using beds of large (average particle diameter greater than 1 mm) particle (raagi and mustard). Within the range of experimental conditions influence of bed particle diameter ( Dp), Fluidizing Velocity (U) were studied, which are significant parameters affecting heat transfer. Artificial Neural Networks (ANNs) have been receiving an increasing attention for simulating engineering systems due to some interesting characteristics such as learning capability, fault tolerance, and non-linearity. Here, feed-forward architecture and trained by back-propagation technique is adopted to predict heat transfer analysis found from experimental results. The ANN is designed to suit the present system which has 3 inputs and 2 out puts. The network predictions are found to be in very good agreement with the experimental observed values of bare heat transfer coefficient (hb) and nusselt number of bare tube (Nub).Keywords: fluidized bed, large particles, particle diameter, ANN
Procedia PDF Downloads 3641038 The Shannon Entropy and Multifractional Markets
Authors: Massimiliano Frezza, Sergio Bianchi, Augusto Pianese
Abstract:
Introduced by Shannon in 1948 in the field of information theory as the average rate at which information is produced by a stochastic set of data, the concept of entropy has gained much attention as a measure of uncertainty and unpredictability associated with a dynamical system, eventually depicted by a stochastic process. In particular, the Shannon entropy measures the degree of order/disorder of a given signal and provides useful information about the underlying dynamical process. It has found widespread application in a variety of fields, such as, for example, cryptography, statistical physics and finance. In this regard, many contributions have employed different measures of entropy in an attempt to characterize the financial time series in terms of market efficiency, market crashes and/or financial crises. The Shannon entropy has also been considered as a measure of the risk of a portfolio or as a tool in asset pricing. This work investigates the theoretical link between the Shannon entropy and the multifractional Brownian motion (mBm), stochastic process which recently is the focus of a renewed interest in finance as a driving model of stochastic volatility. In particular, after exploring the current state of research in this area and highlighting some of the key results and open questions that remain, we show a well-defined relationship between the Shannon (log)entropy and the memory function H(t) of the mBm. In details, we allow both the length of time series and time scale to change over analysis to study how the relation modify itself. On the one hand, applications are developed after generating surrogates of mBm trajectories based on different memory functions; on the other hand, an empirical analysis of several international stock indexes, which confirms the previous results, concludes the work.Keywords: Shannon entropy, multifractional Brownian motion, Hurst–Holder exponent, stock indexes
Procedia PDF Downloads 1101037 The Fefe Indices: The Direction of Donal Trump’s Tweets Effect on the Stock Market
Authors: Sergio Andres Rojas, Julian Benavides Franco, Juan Tomas Sayago
Abstract:
An increasing amount of research demonstrates how market mood affects financial markets, but their primary goal is to demonstrate how Trump's tweets impacted US interest rate volatility. Following that lead, this work evaluates the effect that Trump's tweets had during his presidency on local and international stock markets, considering not just volatility but the direction of the movement. Three indexes for Trump's tweets were created relating his activity with movements in the S&P500 using natural language analysis and machine learning algorithms. The indexes consider Trump's tweet activity and the positive or negative market sentiment they might inspire. The first explores the relationship between tweets generating negative movements in the S&P500; the second explores positive movements, while the third explores the difference between up and down movements. A pseudo-investment strategy using the indexes produced statistically significant above-average abnormal returns. The findings also showed that the pseudo strategy generated a higher return in the local market if applied to intraday data. However, only a negative market sentiment caused this effect on daily data. These results suggest that the market reacted primarily to a negative idea reflected in the negative index. In the international market, it is not possible to identify a pervasive effect. A rolling window regression model was also performed. The result shows that the impact on the local and international markets is heterogeneous, time-changing, and differentiated for the market sentiment. However, the negative sentiment was more prone to have a significant correlation most of the time.Keywords: market sentiment, Twitter market sentiment, machine learning, natural dialect analysis
Procedia PDF Downloads 621036 Delisting Wave: Corporate Financial Distress, Institutional Investors Perception and Performance of South African Listed Firms
Authors: Adebiyi Sunday Adeyanju, Kola Benson Ajeigbe, Fortune Ganda
Abstract:
In the past three decades, there has been a notable increase in the number of firms delisting from the Johannesburg Stock Exchange (JSE) in South Africa. The recent increasing rate of delisting waves of corporate listed firms motivated this study. This study aims to explore the influence of institutional investor perceptions on the financial distress experienced by delisted firms within the South African market. The study further examined the impact of financial distress on the corporate performance of delisted firms. Using the data of delisted firms spanning from 2000 to 2023 and the FGLS (Feasible Generalized Least Squares) for the short run and PCSE (Panel-Corrected Standard Errors) for the long run effects of the relationship. The finding indicated that a decline in institutional investors’ perceptions was associated with the corporate financial distress of the delisted firms, particularly during the delisting year and the few years preceding the announcement of the delisting. This study addressed the importance of investor recognition in corporate financial distress and the delisting wave among listed firms- a finding supporting the stakeholder theory. This study is an insight for companies’ managements, investors, governments, policymakers, stockbrokers, lending institutions, bankers, the stock market, and other stakeholders in their various decision-making endeavours. Based on the above findings, it was recommended that corporate managements should improve their governance strategies that can help companies’ financial performances. Accountability and transparency through governance must also be improved upon with government support through the introduction of policies and strategies and enabling an easy environment that can help companies perform better.Keywords: delisting wave, institutional investors, financial distress, corporate performance, investors’ perceptions
Procedia PDF Downloads 441035 A Deep Learning Approach to Real Time and Robust Vehicular Traffic Prediction
Authors: Bikis Muhammed, Sehra Sedigh Sarvestani, Ali R. Hurson, Lasanthi Gamage
Abstract:
Vehicular traffic events have overly complex spatial correlations and temporal interdependencies and are also influenced by environmental events such as weather conditions. To capture these spatial and temporal interdependencies and make more realistic vehicular traffic predictions, graph neural networks (GNN) based traffic prediction models have been extensively utilized due to their capability of capturing non-Euclidean spatial correlation very effectively. However, most of the already existing GNN-based traffic prediction models have some limitations during learning complex and dynamic spatial and temporal patterns due to the following missing factors. First, most GNN-based traffic prediction models have used static distance or sometimes haversine distance mechanisms between spatially separated traffic observations to estimate spatial correlation. Secondly, most GNN-based traffic prediction models have not incorporated environmental events that have a major impact on the normal traffic states. Finally, most of the GNN-based models did not use an attention mechanism to focus on only important traffic observations. The objective of this paper is to study and make real-time vehicular traffic predictions while incorporating the effect of weather conditions. To fill the previously mentioned gaps, our prediction model uses a real-time driving distance between sensors to build a distance matrix or spatial adjacency matrix and capture spatial correlation. In addition, our prediction model considers the effect of six types of weather conditions and has an attention mechanism in both spatial and temporal data aggregation. Our prediction model efficiently captures the spatial and temporal correlation between traffic events, and it relies on the graph attention network (GAT) and Bidirectional bidirectional long short-term memory (Bi-LSTM) plus attention layers and is called GAT-BILSTMA.Keywords: deep learning, real time prediction, GAT, Bi-LSTM, attention
Procedia PDF Downloads 701034 A Neural Network for the Prediction of Contraction after Burn Injuries
Authors: Ginger Egberts, Marianne Schaaphok, Fred Vermolen, Paul van Zuijlen
Abstract:
A few years ago, a promising morphoelastic model was developed for the simulation of contraction formation after burn injuries. Contraction can lead to a serious reduction in physical mobility, like a reduction in the range-of-motion of joints. If this is the case in a healing burn wound, then this is referred to as a contracture that needs medical intervention. The morphoelastic model consists of a set of partial differential equations describing both a chemical part and a mechanical part in dermal wound healing. These equations are solved with the numerical finite element method (FEM). In this method, many calculations are required on each of the chosen elements. In general, the more elements, the more accurate the solution. However, the number of elements increases rapidly if simulations are performed in 2D and 3D. In that case, it not only takes longer before a prediction is available, the computation also becomes more expensive. It is therefore important to investigate alternative possibilities to generate the same results, based on the input parameters only. In this study, a surrogate neural network has been designed to mimic the results of the one-dimensional morphoelastic model. The neural network generates predictions quickly, is easy to implement, and there is freedom in the choice of input and output. Because a neural network requires extensive training and a data set, it is ideal that the one-dimensional FEM code generates output quickly. These feed-forward-type neural network results are very promising. Not only can the network give faster predictions, but it also has a performance of over 99%. It reports on the relative surface area of the wound/scar, the total strain energy density, and the evolutions of the densities of the chemicals and mechanics. It is, therefore, interesting to investigate the applicability of a neural network for the two- and three-dimensional morphoelastic model for contraction after burn injuries.Keywords: biomechanics, burns, feasibility, feed-forward NN, morphoelasticity, neural network, relative surface area wound
Procedia PDF Downloads 541033 Modeling of the Dynamic Characteristics of a Spindle with Experimental Validation
Authors: Jhe-Hao Huang, Kun-Da Wu, Wei-Cheng Shih, Jui-Pin Hung
Abstract:
This study presented the investigation on the dynamic characteristics of a spindle tool system by experimental and finite element modeling approaches. As well known facts, the machining stability is greatly determined by the dynamic characteristics of the spindle tool system. Therefore, understanding the factors affecting dynamic behavior of a spindle tooling system is a prerequisite in dominating the final machining performance of machine tool system. To this purpose, a physical spindle unit was employed to assess the dynamic characteristics by vibration tests. Then, a three-dimensional finite element model of a high-speed spindle system integrated with tool holder was created to simulate the dynamic behaviors. For modeling the angular contact bearings, a series of spring elements were introduced between the inner and outer rings. The spring constant can be represented by the contact stiffness of the rolling bearing based on Hertz theory. The interface characteristic between spindle nose and tool holder taper can be quantified from the comparison of the measurements and predictions. According to the results obtained from experiments and finite element predictions, the vibration behavior of the spindle is dominated by the bending deformation of the spindle shaft in different modes, which is further determined by the stiffness of the bearings in spindle housing. Also, the spindle unit with tool holder shows a different dynamic behavior from that of spindle without tool holder. This indicates the interface property between tool holder and spindle nose plays an dominance on the dynamic characteristics the spindle tool system. Overall, the dynamic behaviors the spindle with and without tool holder can be successfully investigated through the finite element model proposed in this study. The prediction accuracy is determined by the modeling of the rolling interface of ball bearings in spindles and the interface characteristics between tool holder and spindle nose. Besides, identifications of the interface characteristics of a ball bearing and spindle tool holder are important for the refinement of the spindle tooling system to achieve the optimum machining performance.Keywords: contact stiffness, dynamic characteristics, spindle, tool holder interface
Procedia PDF Downloads 2981032 Using Convolutional Neural Networks to Distinguish Different Sign Language Alphanumerics
Authors: Stephen L. Green, Alexander N. Gorban, Ivan Y. Tyukin
Abstract:
Within the past decade, using Convolutional Neural Networks (CNN)’s to create Deep Learning systems capable of translating Sign Language into text has been a breakthrough in breaking the communication barrier for deaf-mute people. Conventional research on this subject has been concerned with training the network to recognize the fingerspelling gestures of a given language and produce their corresponding alphanumerics. One of the problems with the current developing technology is that images are scarce, with little variations in the gestures being presented to the recognition program, often skewed towards single skin tones and hand sizes that makes a percentage of the population’s fingerspelling harder to detect. Along with this, current gesture detection programs are only trained on one finger spelling language despite there being one hundred and forty-two known variants so far. All of this presents a limitation for traditional exploitation for the state of current technologies such as CNN’s, due to their large number of required parameters. This work aims to present a technology that aims to resolve this issue by combining a pretrained legacy AI system for a generic object recognition task with a corrector method to uptrain the legacy network. This is a computationally efficient procedure that does not require large volumes of data even when covering a broad range of sign languages such as American Sign Language, British Sign Language and Chinese Sign Language (Pinyin). Implementing recent results on method concentration, namely the stochastic separation theorem, an AI system is supposed as an operate mapping an input present in the set of images u ∈ U to an output that exists in a set of predicted class labels q ∈ Q of the alphanumeric that q represents and the language it comes from. These inputs and outputs, along with the interval variables z ∈ Z represent the system’s current state which implies a mapping that assigns an element x ∈ ℝⁿ to the triple (u, z, q). As all xi are i.i.d vectors drawn from a product mean distribution, over a period of time the AI generates a large set of measurements xi called S that are grouped into two categories: the correct predictions M and the incorrect predictions Y. Once the network has made its predictions, a corrector can then be applied through centering S and Y by subtracting their means. The data is then regularized by applying the Kaiser rule to the resulting eigenmatrix and then whitened before being split into pairwise, positively correlated clusters. Each of these clusters produces a unique hyperplane and if any element x falls outside the region bounded by these lines then it is reported as an error. As a result of this methodology, a self-correcting recognition process is created that can identify fingerspelling from a variety of sign language and successfully identify the corresponding alphanumeric and what language the gesture originates from which no other neural network has been able to replicate.Keywords: convolutional neural networks, deep learning, shallow correctors, sign language
Procedia PDF Downloads 991031 IPO Price Performance and Signaling
Authors: Chih-Hsiang Chang, I-Fan Ho
Abstract:
This study examines the credibility of the signaling as explanation for IPO initial underpricing. Findings reveal the initial underpricing and the long-term underperformance of IPOs in Taiwan. However, we only find weak support for signaling as explanation of IPO underpricing.Keywords: signaling, IPO initial underpricing, IPO long-term underperformance, Taiwan’s stock market
Procedia PDF Downloads 4581030 Modification of Rk Equation of State for Liquid and Vapor of Ammonia by Genetic Algorithm
Authors: S. Mousavian, F. Mousavian, V. Nikkhah Rashidabad
Abstract:
Cubic equations of state like Redlich–Kwong (RK) EOS have been proved to be very reliable tools in the prediction of phase behavior. Despite their good performance in compositional calculations, they usually suffer from weaknesses in the predictions of saturated liquid density. In this research, RK equation was modified. The result of this study shows that modified equation has good agreement with experimental data.Keywords: equation of state, modification, ammonia, genetic algorithm
Procedia PDF Downloads 3791029 The Influence of the Intellectual Capital on the Firms’ Market Value: A Study of Listed Firms in the Tehran Stock Exchange (TSE)
Authors: Bita Mashayekhi, Seyed Meisam Tabatabaie Nasab
Abstract:
Intellectual capital is one of the most valuable and important parts of the intangible assets of enterprises especially in knowledge-based enterprises. With respect to increasing gap between the market value and the book value of the companies, intellectual capital is one of the components that can be placed in this gap. This paper uses the value added efficiency of the three components, capital employed, human capital and structural capital, to measure the intellectual capital efficiency of Iranian industries groups, listed in the Tehran Stock Exchange (TSE), using a 8 years period data set from 2005 to 2012. In order to analyze the effect of intellectual capital on the market-to-book value ratio of the companies, the data set was divided into 10 industries, Banking, Pharmaceutical, Metals & Mineral Nonmetallic, Food, Computer, Building, Investments, Chemical, Cement and Automotive, and the panel data method was applied to estimating pooled OLS. The results exhibited that value added of capital employed has a positive significant relation with increasing market value in the industries, Banking, Metals & Mineral Nonmetallic, Food, Computer, Chemical and Cement, and also, showed that value added efficiency of structural capital has a positive significant relation with increasing market value in the Banking, Pharmaceutical and Computer industries groups. The results of the value added showed a negative relation with the Banking and Pharmaceutical industries groups and a positive relation with computer and Automotive industries groups. Among the studied industries, computer industry has placed the widest gap between the market value and book value in its intellectual capital.Keywords: capital employed, human capital, intellectual capital, market-to-book value, structural capital, value added efficiency
Procedia PDF Downloads 3761028 Improvement of Electric Aircraft Endurance through an Optimal Propeller Design Using Combined BEM, Vortex and CFD Methods
Authors: Jose Daniel Hoyos Giraldo, Jesus Hernan Jimenez Giraldo, Juan Pablo Alvarado Perilla
Abstract:
Range and endurance are the main limitations of electric aircraft due to the nature of its source of power. The improvement of efficiency on this kind of systems is extremely meaningful to encourage the aircraft operation with less environmental impact. The propeller efficiency highly affects the overall efficiency of the propulsion system; hence its optimization can have an outstanding effect on the aircraft performance. An optimization method is applied to an aircraft propeller in order to maximize its range and endurance by estimating the best combination of geometrical parameters such as diameter and airfoil, chord and pitch distribution for a specific aircraft design at a certain cruise speed, then the rotational speed at which the propeller operates at minimum current consumption is estimated. The optimization is based on the Blade Element Momentum (BEM) method, additionally corrected to account for tip and hub losses, Mach number and rotational effects; furthermore an airfoil lift and drag coefficients approximation is implemented from Computational Fluid Dynamics (CFD) simulations supported by preliminary studies of grid independence and suitability of different turbulence models, to feed the BEM method, with the aim of achieve more reliable results. Additionally, Vortex Theory is employed to find the optimum pitch and chord distribution to achieve a minimum induced loss propeller design. Moreover, the optimization takes into account the well-known brushless motor model, thrust constraints for take-off runway limitations, maximum allowable propeller diameter due to aircraft height and maximum motor power. The BEM-CFD method is validated by comparing its predictions for a known APC propeller with both available experimental tests and APC reported performance curves which are based on Vortex Theory fed with the NASA Transonic Airfoil code, showing a adequate fitting with experimental data even more than reported APC data. Optimal propeller predictions are validated by wind tunnel tests, CFD propeller simulations and a study of how the propeller will perform if it replaces the one of on known aircraft. Some tendency charts relating a wide range of parameters such as diameter, voltage, pitch, rotational speed, current, propeller and electric efficiencies are obtained and discussed. The implementation of CFD tools shows an improvement in the accuracy of BEM predictions. Results also showed how a propeller has higher efficiency peaks when it operates at high rotational speed due to the higher Reynolds at which airfoils present lower drag. On the other hand, the behavior of the current consumption related to the propulsive efficiency shows counterintuitive results, the best range and endurance is not necessary achieved in an efficiency peak.Keywords: BEM, blade design, CFD, electric aircraft, endurance, optimization, range
Procedia PDF Downloads 1061027 Impact of Financial Performance Indicators on Share Price of Listed Pharmaceutical Companies in India
Authors: Amit Das
Abstract:
Background and significance of the study: Generally investors and market forecasters use financial statement for investigation while it awakens contribute to investing. The main vicinity of financial accounting and reporting practices recommends a few basic financial performance indicators, namely, return on capital employed, return on assets and earnings per share, which is associated considerably with share prices. It is principally true in case of Indian pharmaceutical companies also. Share investing is intriguing a financial risk in addition to investors look for those financial evaluations which have noteworthy shock on share price. A crucial intention of financial statement analysis and reporting is to offer information which is helpful predominantly to exterior clients in creating credit as well as investment choices. Sound financial performance attracts the investors automatically and it will increase the share price of the respective companies. Keeping in view of this, this research work investigates the impact of financial performance indicators on share price of pharmaceutical companies in India which is listed in the Bombay Stock Exchange. Methodology: This research work is based on secondary data collected from moneycontrol database on September 28, 2015 of top 101 pharmaceutical companies in India. Since this study selects four financial performance indicators purposively and availability in the database, that is, earnings per share, return on capital employed, return on assets and net profits as independent variables and one dependent variable, share price of 101 pharmaceutical companies. While analysing the data, correlation statistics, multiple regression technique and appropriate test of significance have been used. Major findings: Correlation statistics show that four financial performance indicators of 101 pharmaceutical companies are associated positively and negatively with its share price and it is very much significant that more than 80 companies’ financial performances are related positively. Multiple correlation test results indicate that financial performance indicators are highly related with share prices of the selected pharmaceutical companies. Furthermore, multiple regression test results illustrate that when financial performances are good, share prices have been increased steadily in the Bombay stock exchange and all results are statistically significant. It is more important to note that sensitivity indices were changed slightly through financial performance indicators of selected pharmaceutical companies in India. Concluding statements: The share prices of pharmaceutical companies depend on the sound financial performances. It is very clear that share prices are changed with the movement of two important financial performance indicators, that is, earnings per share and return on assets. Since 101 pharmaceutical companies are listed in the Bombay stock exchange and Sensex are changed with this, it is obvious that Government of India has to take important decisions regarding production and exports of pharmaceutical products so that financial performance of all the pharmaceutical companies are improved and its share price are increased positively.Keywords: financial performance indicators, share prices, pharmaceutical companies, India
Procedia PDF Downloads 3051026 The Systems Biology Verification Endeavor: Harness the Power of the Crowd to Address Computational and Biological Challenges
Authors: Stephanie Boue, Nicolas Sierro, Julia Hoeng, Manuel C. Peitsch
Abstract:
Systems biology relies on large numbers of data points and sophisticated methods to extract biologically meaningful signal and mechanistic understanding. For example, analyses of transcriptomics and proteomics data enable to gain insights into the molecular differences in tissues exposed to diverse stimuli or test items. Whereas the interpretation of endpoints specifically measuring a mechanism is relatively straightforward, the interpretation of big data is more complex and would benefit from comparing results obtained with diverse analysis methods. The sbv IMPROVER project was created to implement solutions to verify systems biology data, methods, and conclusions. Computational challenges leveraging the wisdom of the crowd allow benchmarking methods for specific tasks, such as signature extraction and/or samples classification. Four challenges have already been successfully conducted and confirmed that the aggregation of predictions often leads to better results than individual predictions and that methods perform best in specific contexts. Whenever the scientific question of interest does not have a gold standard, but may greatly benefit from the scientific community to come together and discuss their approaches and results, datathons are set up. The inaugural sbv IMPROVER datathon was held in Singapore on 23-24 September 2016. It allowed bioinformaticians and data scientists to consolidate their ideas and work on the most promising methods as teams, after having initially reflected on the problem on their own. The outcome is a set of visualization and analysis methods that will be shared with the scientific community via the Garuda platform, an open connectivity platform that provides a framework to navigate through different applications, databases and services in biology and medicine. We will present the results we obtained when analyzing data with our network-based method, and introduce a datathon that will take place in Japan to encourage the analysis of the same datasets with other methods to allow for the consolidation of conclusions.Keywords: big data interpretation, datathon, systems toxicology, verification
Procedia PDF Downloads 2771025 Microbubbles Enhanced Synthetic Phorbol Ester Degradation by Ozonolysis
Authors: D. Kuvshinov, A. Siswanto, W. Zimmerman
Abstract:
A phorbol-12-myristate-13-acetate (TPA) is a synthetic analogue of phorbol ester (PE), a natural toxic compound of Euphorbiaceae plant. The oil extracted from plants of this family is useful source for primarily biofuel. However this oil can also be used as a food stock due to its significant nutrition content. The limitations for utilizing the oil as a food stock are mainly due to a toxicity of PE. Nowadays a majority of PE detoxification processes are expensive as include multi steps alcohol extraction sequence. Ozone is considered as a strong oxidative agent. It reaction with PE it attacks the carbon double bond of PE. This modification of PE molecular structure results into nontoxic ester with high lipid content. This report presents data on development of simple and cheap PE detoxification process with water application as a buffer and ozone as reactive component. The core of this new technique is a simultaneous application of new microscale plasma unit for ozone production and patented gas oscillation technology. In combination with a reactor design the technology permits ozone injection to the water-TPA mixture in form of microbubbles. The efficacy of a heterogeneous process depends on diffusion coefficient which can be controlled by contact time and interface area. The low velocity of rising microbubbles and high surface to volume ratio allow fast mass transfer to be achieved during the process. Direct injection of ozone is the most efficient process for a highly reactive and short lived chemical. Data on the plasma unit behavior are presented and influence of the gas oscillation technology to the microbubbles production mechanism has been discussed. Data on overall process efficacy for TPA degradation is shown.Keywords: microbubble, ozonolysis, synthetic phorbol ester, chemical engineering
Procedia PDF Downloads 2141024 Modeling and Design of a Solar Thermal Open Volumetric Air Receiver
Authors: Piyush Sharma, Laltu Chandra, P. S. Ghoshdastidar, Rajiv Shekhar
Abstract:
Metals processing operations such as melting and heat treatment of metals are energy-intensive, requiring temperatures greater than 500oC. The desired temperature in these industrial furnaces is attained by circulating electrically-heated air. In most of these furnaces, electricity produced from captive coal-based thermal power plants is used. Solar thermal energy could be a viable heat source in these furnaces. A retrofitted solar convective furnace (SCF) concept, which uses solar thermal generated hot air, has been proposed. Critical to the success of a SCF is the design of an open volumetric air receiver (OVAR), which can heat air in excess of 800oC. The OVAR is placed on top of a tower and receives concentrated solar radiation from a heliostat field. Absorbers, mixer assembly, and the return air flow chamber (RAFC) are the major components of an OVAR. The absorber is a porous structure that transfers heat from concentrated solar radiation to ambient air, referred to as primary air. The mixer ensures uniform air temperature at the receiver exit. Flow of the relatively cooler return air in the RAFC ensures that the absorbers do not fail by overheating. In an earlier publication, the detailed design basis, fabrication, and characterization of a 2 kWth open volumetric air receiver (OVAR) based laboratory solar air tower simulator was presented. Development of an experimentally-validated, CFD based mathematical model which can ultimately be used for the design and scale-up of an OVAR has been the major objective of this investigation. In contrast to the published literature, where flow and heat transfer have been modeled primarily in a single absorber module, the present study has modeled the entire receiver assembly, including the RAFC. Flow and heat transfer calculations have been carried out in ANSYS using the LTNE model. The complex return air flow pattern in the RAFC requires complicated meshes and is computational and time intensive. Hence a simple, realistic 1-D mathematical model, which circumvents the need for carrying out detailed flow and heat transfer calculations, has also been proposed. Several important results have emerged from this investigation. Circumferential electrical heating of absorbers can mimic frontal heating by concentrated solar radiation reasonably well in testing and characterizing the performance of an OVAR. Circumferential heating, therefore, obviates the need for expensive high solar concentration simulators. Predictions suggest that the ratio of power on aperture (POA) and mass flow rate of air (MFR) is a normalizing parameter for characterizing the thermal performance of an OVAR. Increasing POA/MFR increases the maximum temperature of air, but decreases the thermal efficiency of an OVAR. Predictions of the 1-D mathematical are within 5% of ANSYS predictions and computation time is reduced from ~ 5 hours to a few seconds.Keywords: absorbers, mixer assembly, open volumetric air receiver, return air flow chamber, solar thermal energy
Procedia PDF Downloads 1961023 The Opportunities and Challenges of Adopting International Financial Reporting Standards in Saudi Capital Market
Authors: Abdullah Almulhim
Abstract:
The International Accounting Standards Board (IASB) was established in 2001 to develop International Financial Reporting Standards (IFRS) that bring transparency, accountability, and efficiency to financial markets around the world. In addition, the IFRS provide a unified accounting language, which is especially important in the era of globalization. However, the establishment of a single set of high-quality international accounting standards is a matter of growing importance, as participants in the increasingly integrated world capital market demand comparability and transparency of financial reporting worldwide. Saudi Arabia became the 149th member of the World Trade Organization (WTO) on 11 December 2005, which has increased the need to convert to IFRS. Currently, the Saudi Arabian Monetary Authority (SAMA) requires banks and insurance companies in Saudi Arabia to report under IFRS Standards. However, until the end of 2016, SOCPA standards were applied to all other companies, listed and unlisted. From 2017, listed Saudi companies would be required to report under IFRS Standards as adopted by SOCPA effective 2017. This paper is to investigate the expected benefits gained and highlight the challenges faced by adopting IFRS by the listed companies in the Saudi Stock Exchange. Questionnaires were used as the main method of data collection. They were distributed to listed companies in the Saudi Capital Market. Data obtained through the questionnaires have been imported into SPSS statistical software for analysis. The expected results of this study will show the benefits of adopting IFRS by Saudi Listed Companies. However, this study will investigate the challenges faced by adopting IFRS by the listed companies in the Saudi Arabian Stock Market. Findings will be discussed later upon completion of initial analysis.Keywords: challenges, IAS, IFRS, opportunities, Saudi, SOCPA
Procedia PDF Downloads 244