Search results for: speech signal analysis
29105 Adaptive Filtering in Subbands for Supervised Source Separation
Authors: Bruna Luisa Ramos Prado Vasques, Mariane Rembold Petraglia, Antonio Petraglia
Abstract:
This paper investigates MIMO (Multiple-Input Multiple-Output) adaptive filtering techniques for the application of supervised source separation in the context of convolutive mixtures. From the observation that there is correlation among the signals of the different mixtures, an improvement in the NSAF (Normalized Subband Adaptive Filter) algorithm is proposed in order to accelerate its convergence rate. Simulation results with mixtures of speech signals in reverberant environments show the superior performance of the proposed algorithm with respect to the performances of the NLMS (Normalized Least-Mean-Square) and conventional NSAF, considering both the convergence speed and SIR (Signal-to-Interference Ratio) after convergence.Keywords: adaptive filtering, multi-rate processing, normalized subband adaptive filter, source separation
Procedia PDF Downloads 43829104 Theory of the Optimum Signal Approximation Clarifying the Importance in the Recognition of Parallel World and Application to Secure Signal Communication with Feedback
Authors: Takuro Kida, Yuichi Kida
Abstract:
In this paper, it is shown a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detail algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output-signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory, and it is indicated that introducing conversations with feedback do not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.Keywords: matrix filterbank, optimum signal approximation, category theory, simultaneous minimization
Procedia PDF Downloads 14529103 Students’ Speech Anxiety in Blended Learning
Authors: Mary Jane B. Suarez
Abstract:
Public speaking anxiety (PSA), also known as speech anxiety, is innumerably persistent in any traditional communication classes, especially for students who learn English as a second language. The speech anxiety intensifies when communication skills assessments have taken their toll in an online or a remote mode of learning due to the perils of the COVID-19 virus. Both teachers and students have experienced vast ambiguity on how to realize a still effective way to teach and learn speaking skills amidst the pandemic. Communication skills assessments like public speaking, oral presentations, and student reporting have defined their new meaning using Google Meet, Zoom, and other online platforms. Though using such technologies has paved for more creative ways for students to acquire and develop communication skills, the effectiveness of using such assessment tools stands in question. This mixed method study aimed to determine the factors that affected the public speaking skills of students in a communication class, to probe on the assessment gaps in assessing speaking skills of students attending online classes vis-à-vis the implementation of remote and blended modalities of learning, and to recommend ways on how to address the public speaking anxieties of students in performing a speaking task online and to bridge the assessment gaps based on the outcome of the study in order to achieve a smooth segue from online to on-ground instructions maneuvering towards a much better post-pandemic academic milieu. Using a convergent parallel design, both quantitative and qualitative data were reconciled by probing on the public speaking anxiety of students and the potential assessment gaps encountered in an online English communication class under remote and blended learning. There were four phases in applying the convergent parallel design. The first phase was the data collection, where both quantitative and qualitative data were collected using document reviews and focus group discussions. The second phase was data analysis, where quantitative data was treated using statistical testing, particularly frequency, percentage, and mean by using Microsoft Excel application and IBM Statistical Package for Social Sciences (SPSS) version 19, and qualitative data was examined using thematic analysis. The third phase was the merging of data analysis results to amalgamate varying comparisons between desired learning competencies versus the actual learning competencies of students. Finally, the fourth phase was the interpretation of merged data that led to the findings that there was a significantly high percentage of students' public speaking anxiety whenever students would deliver speaking tasks online. There were also assessment gaps identified by comparing the desired learning competencies of the formative and alternative assessments implemented and the actual speaking performances of students that showed evidence that public speaking anxiety of students was not properly identified and processed.Keywords: blended learning, communication skills assessment, public speaking anxiety, speech anxiety
Procedia PDF Downloads 10329102 Comparative Analysis of Single Versus Multi-IRS Assisted Multi-User Wireless Communication System
Authors: Ayalew Tadese Kibret, Belayneh Sisay Alemu, Amare Kassaw Yimer
Abstract:
Intelligent reflecting surfaces (IRSs) are considered to be a key enabling technology for sixth-generation (6G) wireless networks. IRSs are electromagnetic (EM) surfaces that are fabricated and have integrated electronics, electronically controlled processes, and particularly wireless communication features. IRSs operate without the need for complex signal processing and the encoding and decoding steps that improve the signal quality at the receiver. Improving vital performance parameters such as energy efficiency (EE) and spectral efficiency (SE) have frequently been the primary goals of research in order to meet the increasing requirements for advanced services in the future 6G communications. In this research, we conduct a comparative analysis on single and multi-IRS wireless communication networks using energy and spectrum efficiency. The energy efficiency versus user distance, energy efficiency versus signal to noise ratio, and spectral efficiency versus user distance are the basis for our result with 1, 2, 4, and 6 IRSs. According to the results of our simulation, in terms of energy and spectral efficiency, six IRS perform better than four, two, and single IRS. Overall, our results suggest that multi-IRS-assisted wireless communication systems outperform single IRS systems in terms of communication performance.Keywords: sixth-generation (6G), wireless networks, intelligent reflecting surfaces, energy efficiency, spectral efficiency
Procedia PDF Downloads 2829101 Preventive Maintenance of Rotating Machinery Based on Vibration Diagnosis of Rolling Bearing
Authors: T. Bensana, S. Mekhilef
Abstract:
The methodology of vibration based condition monitoring technology has been developing at a rapid stage in the recent years suiting to the maintenance of sophisticated and complicated machines. The ability of wavelet analysis to efficiently detect non-stationary, non-periodic, transient features of the vibration signal makes it a demanding tool for condition monitoring. This paper presents a methodology for fault diagnosis of rolling element bearings based on wavelet envelope power spectrum technique is analysed in both the time and frequency domains. In the time domain the auto-correlation of the wavelet de-noised signal is applied to evaluate the period of the fault pulses. However, in the frequency domain the wavelet envelope power spectrum has been used to identify the fault frequencies with the single sided complex Laplace wavelet as the mother wavelet function. Results show the superiority of the proposed method and its effectiveness in extracting fault features from the raw vibration signal.Keywords: preventive maintenance, fault diagnostics, rolling element bearings, wavelet de-noising
Procedia PDF Downloads 38029100 The Time-Frequency Domain Reflection Method for Aircraft Cable Defects Localization
Authors: Reza Rezaeipour Honarmandzad
Abstract:
This paper introduces an aircraft cable fault detection and location method in light of TFDR keeping in mind the end goal to recognize the intermittent faults adequately and to adapt to the serial and after-connector issues being hard to be distinguished in time domain reflection. In this strategy, the correlation function of reflected and reference signal is used to recognize and find the airplane fault as per the qualities of reflected and reference signal in time-frequency domain, so the hit rate of distinguishing and finding intermittent faults can be enhanced adequately. In the work process, the reflected signal is interfered by the noise and false caution happens frequently, so the threshold de-noising technique in light of wavelet decomposition is used to diminish the noise interference and lessen the shortcoming alert rate. At that point the time-frequency cross connection capacity of the reference signal and the reflected signal based on Wigner-Ville appropriation is figured so as to find the issue position. Finally, LabVIEW is connected to execute operation and control interface, the primary capacity of which is to connect and control MATLAB and LABSQL. Using the solid computing capacity and the bottomless capacity library of MATLAB, the signal processing turn to be effortlessly acknowledged, in addition LabVIEW help the framework to be more dependable and upgraded effectively.Keywords: aircraft cable, fault location, TFDR, LabVIEW
Procedia PDF Downloads 47929099 The Feminine Speech and the Ritual of Death in Albania
Authors: Aida Lamaj
Abstract:
Death is an inevitable phenomenon in our life, in the same way, are also the ritual of death accompanied by the dirge and the keening performed by men. Keening is a phenomenon common among all peoples, the instances in which the ritual of death and keening coincide, as a special phenomenon of its, are numerous given the fact that keening is an outcome of an extremely special emotional state. However, even during the ritual of death, every people try to display through words its qualities, a multitude of characteristics preserved and transmitted with fanaticism from one generation to the other. The ritual of death constitutes an important element of our tradition and at the same time a material always interesting to be studied in minute details. In this study, we have tried to limit ourselves to the feminine speech, since keening, in general in Albania has been carried out by women. Differences and similarities among keening on the national scale, from the diachronic and synchronic point of view, can be seen clearly if we compare the Albanian creations in different regions. The similarities and differences within the Albanian culture serve as a typical paradigm to study how the ancient elements of outlook that the Albanians have had on death, history, and the social organization in these regions have been preserved and transmitted and above all, in what way these feelings have been clothed from the linguistic point of view, the typologies of keening and of all of the ritual of death, which clearly shows archaic forms as well as new developments. These data have been gathered not only by conducting various surveys but also by observing closely the linguistic behavior of women in Albania during the ritual of death. The study has encompassed the popular lyric poetry as well as new entries, whereas from the geographic point of view we focus mainly in the Southern regions, although examples from other regions where Albanian speaking people live are also present. The main results of the study show that women use much more than men dialect form, peripheral language elements and descriptive elements during their speech in the ritual of death.Keywords: feminine speech in Albania, linguistic characteristics of the dirge, ritual of death, the typologies of keening
Procedia PDF Downloads 16729098 Linear Frequency Modulation-Frequency Shift Keying Radar with Compressive Sensing
Authors: Ho Jeong Jin, Chang Won Seo, Choon Sik Cho, Bong Yong Choi, Kwang Kyun Na, Sang Rok Lee
Abstract:
In this paper, a radar signal processing technique using the LFM-FSK (Linear Frequency Modulation-Frequency Shift Keying) is proposed for reducing the false alarm rate based on the compressive sensing. The LFM-FSK method combines FMCW (Frequency Modulation Continuous Wave) signal with FSK (Frequency Shift Keying). This shows an advantage which can suppress the ghost phenomenon without the complicated CFAR (Constant False Alarm Rate) algorithm. Moreover, the parametric sparse algorithm applying the compressive sensing that restores signals efficiently with respect to the incomplete data samples is also integrated, leading to reducing the burden of ADC in the receiver of radars. 24 GHz FMCW signal is applied and tested in the real environment with FSK modulated data for verifying the proposed algorithm along with the compressive sensing.Keywords: compressive sensing, LFM-FSK radar, radar signal processing, sparse algorithm
Procedia PDF Downloads 48529097 Effect of Classroom Acoustic Factors on Language and Cognition in Bilinguals and Children with Mild to Moderate Hearing Loss
Authors: Douglas MacCutcheon, Florian Pausch, Robert Ljung, Lorna Halliday, Stuart Rosen
Abstract:
Contemporary classrooms are increasingly inclusive of children with mild to moderate disabilities and children from different language backgrounds (bilinguals, multilinguals), but classroom environments and standards have not yet been adapted adequately to meet these challenges brought about by this inclusivity. Additionally, classrooms are becoming noisier as a learner-centered as opposed to teacher-centered teaching paradigm is adopted, which prioritizes group work and peer-to-peer learning. Challenging listening conditions with distracting sound sources and background noise are known to have potentially negative effects on children, particularly those that are prone to struggle with speech perception in noise. Therefore, this research investigates two groups vulnerable to these environmental effects, namely children with a mild to moderate hearing loss (MMHLs) and sequential bilinguals learning in their second language. In the MMHL study, this group was assessed on speech-in-noise perception, and a number of receptive language and cognitive measures (auditory working memory, auditory attention) and correlations were evaluated. Speech reception thresholds were found to be predictive of language and cognitive ability, and the nature of correlations is discussed. In the bilinguals study, sequential bilingual children’s listening comprehension, speech-in-noise perception, listening effort and release from masking was evaluated under a number of different ecologically valid acoustic scenarios in order to pinpoint the extent of the ‘native language benefit’ for Swedish children learning in English, their second language. Scene manipulations included target-to-distractor ratios and introducing spatially separated noise. This research will contribute to the body of findings from which educational institutions can draw when designing or adapting educational environments in inclusive schools.Keywords: sequential bilinguals, classroom acoustics, mild to moderate hearing loss, speech-in-noise, release from masking
Procedia PDF Downloads 32629096 Classification of ECG Signal Based on Mixture of Linear and Non-Linear Features
Authors: Mohammad Karimi Moridani, Mohammad Abdi Zadeh, Zahra Shahiazar Mazraeh
Abstract:
In recent years, the use of intelligent systems in biomedical engineering has increased dramatically, especially in the diagnosis of various diseases. Also, due to the relatively simple recording of the electrocardiogram signal (ECG), this signal is a good tool to show the function of the heart and diseases associated with it. The aim of this paper is to design an intelligent system for automatically detecting a normal electrocardiogram signal from abnormal one. Using this diagnostic system, it is possible to identify a person's heart condition in a very short time and with high accuracy. The data used in this article are from the Physionet database, available in 2016 for use by researchers to provide the best method for detecting normal signals from abnormalities. Data is of both genders and the data recording time varies between several seconds to several minutes. All data is also labeled normal or abnormal. Due to the low positional accuracy and ECG signal time limit and the similarity of the signal in some diseases with the normal signal, the heart rate variability (HRV) signal was used. Measuring and analyzing the heart rate variability with time to evaluate the activity of the heart and differentiating different types of heart failure from one another is of interest to the experts. In the preprocessing stage, after noise cancelation by the adaptive Kalman filter and extracting the R wave by the Pan and Tampkinz algorithm, R-R intervals were extracted and the HRV signal was generated. In the process of processing this paper, a new idea was presented that, in addition to using the statistical characteristics of the signal to create a return map and extraction of nonlinear characteristics of the HRV signal due to the nonlinear nature of the signal. Finally, the artificial neural networks widely used in the field of ECG signal processing as well as distinctive features were used to classify the normal signals from abnormal ones. To evaluate the efficiency of proposed classifiers in this paper, the area under curve ROC was used. The results of the simulation in the MATLAB environment showed that the AUC of the MLP and SVM neural network was 0.893 and 0.947, respectively. As well as, the results of the proposed algorithm in this paper indicated that the more use of nonlinear characteristics in normal signal classification of the patient showed better performance. Today, research is aimed at quantitatively analyzing the linear and non-linear or descriptive and random nature of the heart rate variability signal, because it has been shown that the amount of these properties can be used to indicate the health status of the individual's heart. The study of nonlinear behavior and dynamics of the heart's neural control system in the short and long-term provides new information on how the cardiovascular system functions, and has led to the development of research in this field. Given that the ECG signal contains important information and is one of the common tools used by physicians to diagnose heart disease, but due to the limited accuracy of time and the fact that some information about this signal is hidden from the viewpoint of physicians, the design of the intelligent system proposed in this paper can help physicians with greater speed and accuracy in the diagnosis of normal and patient individuals and can be used as a complementary system in the treatment centers.Keywords: neart rate variability, signal processing, linear and non-linear features, classification methods, ROC Curve
Procedia PDF Downloads 26429095 Stability Analysis and Controller Design of Further Development of Miniaturized Mössbauer Spectrometer II for Space Applications with Focus on the Extended Lyapunov Method – Part I –
Authors: Mohammad Beyki, Justus Pawlak, Robert Patzke, Franz Renz
Abstract:
In the context of planetary exploration, the MIMOS II (miniaturized Mössbauer spectrometer) serves as a proven and reliable measuring instrument. The transmission behaviour of the electronics in the Mössbauer spectroscopy is newly developed and optimized. For this purpose, the overall electronics is split into three parts. This elaboration deals exclusively with the first part of the signal chain for the evaluation of photons in experiments with gamma radiation. Parallel to the analysis of the electronics, a new method for the stability consideration of linear and non-linear systems is presented: The extended method of Lyapunov’s stability criteria. The design helps to weigh advantages and disadvantages against other simulated circuits in order to optimize the MIMOS II for the terestric and extraterestric measurment. Finally, after stability analysis, the controller design according to Ackermann is performed, achieving the best possible optimization of the output variable through a skillful pole assignment.Keywords: Mössbauer spectroscopy, electronic signal amplifier, light processing technology, photocurrent, trans-impedance amplifier, extended Lyapunov method
Procedia PDF Downloads 10029094 EEG Diagnosis Based on Phase Space with Wavelet Transforms for Epilepsy Detection
Authors: Mohmmad A. Obeidat, Amjed Al Fahoum, Ayman M. Mansour
Abstract:
The recognition of an abnormal activity of the brain functionality is a vital issue. To determine the type of the abnormal activity either a brain image or brain signal are usually considered. Imaging localizes the defect within the brain area and relates this area with somebody functionalities. However, some functions may be disturbed without affecting the brain as in epilepsy. In this case, imaging may not provide the symptoms of the problem. A cheaper yet efficient approach that can be utilized to detect abnormal activity is the measurement and analysis of the electroencephalogram (EEG) signals. The main goal of this work is to come up with a new method to facilitate the classification of the abnormal and disorder activities within the brain directly using EEG signal processing, which makes it possible to be applied in an on-line monitoring system.Keywords: EEG, wavelet, epilepsy, detection
Procedia PDF Downloads 53829093 Brain Computer Interface Implementation for Affective Computing Sensing: Classifiers Comparison
Authors: Ramón Aparicio-García, Gustavo Juárez Gracia, Jesús Álvarez Cedillo
Abstract:
A research line of the computer science that involve the study of the Human-Computer Interaction (HCI), which search to recognize and interpret the user intent by the storage and the subsequent analysis of the electrical signals of the brain, for using them in the control of electronic devices. On the other hand, the affective computing research applies the human emotions in the HCI process helping to reduce the user frustration. This paper shows the results obtained during the hardware and software development of a Brain Computer Interface (BCI) capable of recognizing the human emotions through the association of the brain electrical activity patterns. The hardware involves the sensing stage and analogical-digital conversion. The interface software involves algorithms for pre-processing of the signal in time and frequency analysis and the classification of patterns associated with the electrical brain activity. The methods used for the analysis and classification of the signal have been tested separately, by using a database that is accessible to the public, besides to a comparison among classifiers in order to know the best performing.Keywords: affective computing, interface, brain, intelligent interaction
Procedia PDF Downloads 39029092 Experimental Study on the Heat Transfer Characteristics of the 200W Class Woofer Speaker
Authors: Hyung-Jin Kim, Dae-Wan Kim, Moo-Yeon Lee
Abstract:
The objective of this study is to experimentally investigate the heat transfer characteristics of 200 W class woofer speaker units with the input voice signals. The temperature and heat transfer characteristics of the 200 W class woofer speaker unit were experimentally tested with the several input voice signals such as 1500 Hz, 2500 Hz, and 5000 Hz respectively. From the experiments, it can be observed that the temperature of the woofer speaker unit including the voice-coil part increases with a decrease in input voice signals. Also, the temperature difference in measured points of the voice coil is increased with decrease of the input voice signals. In addition, the heat transfer characteristics of the woofer speaker in case of the input voice signal of 1500 Hz is 40% higher than that of the woofer speaker in case of the input voice signal of 5000 Hz at the measuring time of 200 seconds. It can be concluded from the experiments that initially the temperature of the voice signal increases rapidly with time, after a certain period of time it increases exponentially. Also during this time dependent temperature change, it can be observed that high voice signal is stable than low voice signal.Keywords: heat transfer, temperature, voice coil, woofer speaker
Procedia PDF Downloads 36029091 Continuous Differential Evolution Based Parameter Estimation Framework for Signal Models
Authors: Ammara Mehmood, Aneela Zameer, Muhammad Asif Zahoor Raja, Muhammad Faisal Fateh
Abstract:
In this work, the strength of bio-inspired computational intelligence based technique is exploited for parameter estimation for the periodic signals using Continuous Differential Evolution (CDE) by defining an error function in the mean square sense. Multidimensional and nonlinear nature of the problem emerging in sinusoidal signal models along with noise makes it a challenging optimization task, which is dealt with robustness and effectiveness of CDE to ensure convergence and avoid trapping in local minima. In the proposed scheme of Continuous Differential Evolution based Signal Parameter Estimation (CDESPE), unknown adjustable weights of the signal system identification model are optimized utilizing CDE algorithm. The performance of CDESPE model is validated through statistics based various performance indices on a sufficiently large number of runs in terms of estimation error, mean squared error and Thiel’s inequality coefficient. Efficacy of CDESPE is examined by comparison with the actual parameters of the system, Genetic Algorithm based outcomes and from various deterministic approaches at different signal-to-noise ratio (SNR) levels.Keywords: parameter estimation, bio-inspired computing, continuous differential evolution (CDE), periodic signals
Procedia PDF Downloads 30429090 The Study about the New Monitoring System of Signal Equipment of Railways Using Radio Communication
Authors: Masahiko Suzuki, Takashi Kato , Masahiro Kobayashi
Abstract:
In our company, the monitoring system for signal equipment has already implemented. So, we can know the state of signal equipment, sitting in the control room or the maintenance center. But this system was installed over 20 years ago, so it cannot stand the needs such as 'more stable operation', 'broadband data transfer', 'easy construction and easy maintenance'. To satisfy these needs, we studied the monitoring system using radio communication as a new method which can realize the operation in the terrible environment along railroads. In these studies, we have developed the terminals and repeaters based on the ZigBee protocol and have implemented the application using two different radio bands simultaneously. At last, we got the good results from the fundamental examinations using the developed equipment.Keywords: monitoring, radio communication, 2 bands, ZigBee
Procedia PDF Downloads 58829089 Category-Base Theory of the Optimum Signal Approximation Clarifying the Importance of Parallel Worlds in the Recognition of Human and Application to Secure Signal Communication with Feedback
Authors: Takuro Kida, Yuichi Kida
Abstract:
We show a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detailed algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory and it is indicated that introducing conversations with feedback does not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.Keywords: signal prediction, pseudo inverse matrix, artificial intelligence, conditional optimization
Procedia PDF Downloads 15829088 High Speed Response Single-Inductor Dual-Output DC-DC Converter with Hysteretic Control
Authors: Y. Kobori, S. Tanaka, N. Tsukiji, N. Takai, H. Kobayashi
Abstract:
This paper proposes two kinds of new single-inductor dual-output (SIDO) DC-DC switching converters with ripple-based hysteretic control. First SIDO converters of type 1 utilize the triangular signal generated by the CR-circuit connected across the inductor. This triangular signal is used for generating the PWM signal instead of the saw-tooth signal used in the conventional converters. Second SIDO converters of type 2 utilize the triangular signal generated by the CR-circuit connected across the voltage error amplifier. This paper describes circuit topologies, Operation principles, simulation results and experimental results of the proposed SIDO converters. In simulation results of both type of SIDO converters, static output voltage ripples are less than 5mVpp and over/under shoots of the dynamic load regulations for the output current step are less than +/- 10mV. In experimental results of single output converter of type 2, static output voltage ripples are about 20mVpp. Output ripples of SIDO type 1 converter are about 80mVpp.Keywords: DC-DC converter, switching converter, SIDO converter, hysteretic control, ripple-based control
Procedia PDF Downloads 57529087 A Stable Method for Determination of the Number of Independent Components
Authors: Yuyan Yi, Jingyi Zheng, Nedret Billor
Abstract:
Independent component analysis (ICA) is one of the most commonly used blind source separation (BSS) techniques for signal pre-processing, such as noise reduction and feature extraction. The main parameter in the ICA method is the number of independent components (IC). Although there have been several methods for the determination of the number of ICs, it has not been given sufficient attentionto this important parameter. In this study, wereview the mostused methods fordetermining the number of ICs and providetheir advantages and disadvantages. Further, wepropose an improved version of column-wise ICAByBlock method for the determination of the number of ICs.To assess the performance of the proposed method, we compare the column-wise ICAbyBlock with several existing methods through different ICA methods by using simulated and real signal data. Results show that the proposed column-wise ICAbyBlock is an effective and stable method for determining the optimal number of components in ICA. This method is simple, and results can be demonstrated intuitively with good visualizations.Keywords: independent component analysis, optimal number, column-wise, correlation coefficient, cross-validation, ICAByblock
Procedia PDF Downloads 9929086 New Segmentation of Piecewise Moving-Average Model by Using Reversible Jump MCMC Algorithm
Authors: Suparman
Abstract:
This paper addresses the problem of the signal segmentation within a Bayesian framework by using reversible jump MCMC algorithm. The signal is modelled by piecewise constant Moving-Average (MA) model where the numbers of segments, the position of change-point, the order and the coefficient of the MA model for each segment are unknown. The reversible jump MCMC algorithm is then used to generate samples distributed according to the joint posterior distribution of the unknown parameters. These samples allow calculating some interesting features of the posterior distribution. The performance of the methodology is illustrated via several simulation results.Keywords: piecewise, moving-average model, reversible jump MCMC, signal segmentation
Procedia PDF Downloads 22729085 Mobile Robot Manipulator Kinematics Motion Control Analysis with MATLAB/Simulink
Authors: Wayan Widhiada, Cok Indra Partha, Gusti Ngurah Nitya Santhiarsa
Abstract:
The purpose of this paper is to investigate the sophistication of the use of Proportional Integral and Derivative Control to control the kinematic motion of the mobile robot manipulator. Simulation and experimental methods will be used to investigate the sophistication of PID control to control the mobile robot arm in the collection and placement of several kinds of objects quickly, accurately and correctly. Mathematical modeling will be done by utilizing the integration of Solidworks and MATLAB / Simmechanics software. This method works by converting the physical model file into the xml file. This method is easy, fast and accurate done in modeling and design robotics. The automatic control design of this robot manipulator will be validated in simulations and experimental in control labs as evidence that the mobile robot manipulator gripper control design can achieve the best performance such as the error signal is lower than 5%, small overshoot and get steady signal response as quickly.Keywords: control analysis, kinematics motion, mobile robot manipulator, performance
Procedia PDF Downloads 41029084 [Keynote Talk]: sEMG Interface Design for Locomotion Identification
Authors: Rohit Gupta, Ravinder Agarwal
Abstract:
Surface electromyographic (sEMG) signal has the potential to identify the human activities and intention. This potential is further exploited to control the artificial limbs using the sEMG signal from residual limbs of amputees. The paper deals with the development of multichannel cost efficient sEMG signal interface for research application, along with evaluation of proposed class dependent statistical approach of the feature selection method. The sEMG signal acquisition interface was developed using ADS1298 of Texas Instruments, which is a front-end interface integrated circuit for ECG application. Further, the sEMG signal is recorded from two lower limb muscles for three locomotions namely: Plane Walk (PW), Stair Ascending (SA), Stair Descending (SD). A class dependent statistical approach is proposed for feature selection and also its performance is compared with 12 preexisting feature vectors. To make the study more extensive, performance of five different types of classifiers are compared. The outcome of the current piece of work proves the suitability of the proposed feature selection algorithm for locomotion recognition, as compared to other existing feature vectors. The SVM Classifier is found as the outperformed classifier among compared classifiers with an average recognition accuracy of 97.40%. Feature vector selection emerges as the most dominant factor affecting the classification performance as it holds 51.51% of the total variance in classification accuracy. The results demonstrate the potentials of the developed sEMG signal acquisition interface along with the proposed feature selection algorithm.Keywords: classifiers, feature selection, locomotion, sEMG
Procedia PDF Downloads 29329083 Tool Wear Monitoring of High Speed Milling Based on Vibratory Signal Processing
Authors: Hadjadj Abdechafik, Kious Mecheri, Ameur Aissa
Abstract:
The objective of this study is to develop a process of treatment of the vibratory signals generated during a horizontal high speed milling process without applying any coolant in order to establish a monitoring system able to improve the machining performance. Thus, many tests were carried out on the horizontal high speed centre (PCI Météor 10), in given cutting conditions, by using a milling cutter with only one insert and measured its frontal wear from its new state that is considered as a reference state until a worn state that is considered as unsuitable for the tool to be used. The results obtained show that the first harmonic follow well the evolution of frontal wear, on another hand a wavelet transform is used for signal processing and is found to be useful for observing the evolution of the wavelet approximations through the cutting tool life. The power and the Root Mean Square (RMS) values of the wavelet transformed signal gave the best results and can be used for tool wear estimation. All this features can constitute the suitable indicators for an effective detection of tool wear and then used for the input parameters of an online monitoring system. Although we noted the remarkable influence of the machining cycle on the quality of measurements by the introduction of a bias on the signal, this phenomenon appears in particular in horizontal milling and in the majority of studies is ignored.Keywords: flank wear, vibration, milling, signal processing, monitoring
Procedia PDF Downloads 59929082 Reconstruction of Signal in Plastic Scintillator of PET Using Tikhonov Regularization
Authors: L. Raczynski, P. Moskal, P. Kowalski, W. Wislicki, T. Bednarski, P. Bialas, E. Czerwinski, A. Gajos, L. Kaplon, A. Kochanowski, G. Korcyl, J. Kowal, T. Kozik, W. Krzemien, E. Kubicz, Sz. Niedzwiecki, M. Palka, Z. Rudy, O. Rundel, P. Salabura, N.G. Sharma, M. Silarski, A. Slomski, J. Smyrski, A. Strzelecki, A. Wieczorek, M. Zielinski, N. Zon
Abstract:
The J-PET scanner, which allows for single bed imaging of the whole human body, is currently under development at the Jagiellonian University. The J-PET detector improves the TOF resolution due to the use of fast plastic scintillators. Since registration of the waveform of signals with duration times of few nanoseconds is not feasible, a novel front-end electronics allowing for sampling in a voltage domain at four thresholds was developed. To take fully advantage of these fast signals a novel scheme of recovery of the waveform of the signal, based on ideas from the Tikhonov regularization (TR) and Compressive Sensing methods, is presented. The prior distribution of sparse representation is evaluated based on the linear transformation of the training set of waveform of the signals by using the Principal Component Analysis (PCA) decomposition. Beside the advantage of including the additional information from training signals, a further benefit of the TR approach is that the problem of signal recovery has an optimal solution which can be determined explicitly. Moreover, from the Bayes theory the properties of regularized solution, especially its covariance matrix, may be easily derived. This step is crucial to introduce and prove the formula for calculations of the signal recovery error. It has been proven that an average recovery error is approximately inversely proportional to the number of samples at voltage levels. The method is tested using signals registered by means of the single detection module of the J-PET detector built out from the 30 cm long BC-420 plastic scintillator strip. It is demonstrated that the experimental and theoretical functions describing the recovery errors in the J-PET scenario are largely consistent. The specificity and limitations of the signal recovery method in this application are discussed. It is shown that the PCA basis offers high level of information compression and an accurate recovery with just eight samples, from four voltage levels, for each signal waveform. Moreover, it is demonstrated that using the recovered waveform of the signals, instead of samples at four voltage levels alone, improves the spatial resolution of the hit position reconstruction. The experiment shows that spatial resolution evaluated based on information from four voltage levels, without a recovery of the waveform of the signal, is equal to 1.05 cm. After the application of an information from four voltage levels to the recovery of the signal waveform, the spatial resolution is improved to 0.94 cm. Moreover, the obtained result is only slightly worse than the one evaluated using the original raw-signal. The spatial resolution calculated under these conditions is equal to 0.93 cm. It is very important information since, limiting the number of threshold levels in the electronic devices to four, leads to significant reduction of the overall cost of the scanner. The developed recovery scheme is general and may be incorporated in any other investigation where a prior knowledge about the signals of interest may be utilized.Keywords: plastic scintillators, positron emission tomography, statistical analysis, tikhonov regularization
Procedia PDF Downloads 44729081 Partial Differential Equation-Based Modeling of Brain Response to Stimuli
Authors: Razieh Khalafi
Abstract:
The brain is the information processing centre of the human body. Stimuli in the form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research, we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modelling of EEG signal in case external stimuli but it can be used for modelling of brain response in case of internal stimuli.Keywords: brain, stimuli, partial differential equation, response, EEG signal
Procedia PDF Downloads 55529080 Vehicle Gearbox Fault Diagnosis Based on Cepstrum Analysis
Authors: Mohamed El Morsy, Gabriela Achtenová
Abstract:
Research on damage of gears and gear pairs using vibration signals remains very attractive, because vibration signals from a gear pair are complex in nature and not easy to interpret. Predicting gear pair defects by analyzing changes in vibration signal of gears pairs in operation is a very reliable method. Therefore, a suitable vibration signal processing technique is necessary to extract defect information generally obscured by the noise from dynamic factors of other gear pairs. This article presents the value of cepstrum analysis in vehicle gearbox fault diagnosis. Cepstrum represents the overall power content of a whole family of harmonics and sidebands when more than one family of sidebands is present at the same time. The concept for the measurement and analysis involved in using the technique are briefly outlined. Cepstrum analysis is used for detection of an artificial pitting defect in a vehicle gearbox loaded with different speeds and torques. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers introduce the load on the flanges of the output joint shafts. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. Also, a method for fault diagnosis of gear faults is presented based on order cepstrum. The procedure is illustrated with the experimental vibration data of the vehicle gearbox. The results show the effectiveness of cepstrum analysis in detection and diagnosis of the gear condition.Keywords: cepstrum analysis, fault diagnosis, gearbox, vibration signals
Procedia PDF Downloads 38029079 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics
Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo
Abstract:
Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.Keywords: communication signal, feature extraction, Holder coefficient, improved cloud model
Procedia PDF Downloads 15729078 Embedded System of Signal Processing on FPGA: Underwater Application Architecture
Authors: Abdelkader Elhanaoui, Mhamed Hadji, Rachid Skouri, Said Agounad
Abstract:
The purpose of this paper is to study the phenomenon of acoustic scattering by using a new method. The signal processing (Fast Fourier Transform FFT Inverse Fast Fourier Transform iFFT and BESSEL functions) is widely applied to obtain information with high precision accuracy. Signal processing has a wider implementation in general-purpose pro-cessors. Our interest was focused on the use of FPGAs (Field-Programmable Gate Ar-rays) in order to minimize the computational complexity in single processor architecture, then be accelerated on FPGA and meet real-time and energy efficiency requirements. Gen-eral-purpose processors are not efficient for signal processing. We implemented the acous-tic backscattered signal processing model on the Altera DE-SOC board and compared it to Odroid xu4. By comparison, the computing latency of Odroid xu4 and FPGA is 60 sec-onds and 3 seconds, respectively. The detailed SoC FPGA-based system has shown that acoustic spectra are performed up to 20 times faster than the Odroid xu4 implementation. FPGA-based system of processing algorithms is realized with an absolute error of about 10⁻³. This study underlines the increasing importance of embedded systems in underwater acoustics, especially in non-destructive testing. It is possible to obtain information related to the detection and characterization of submerged cells. So we have achieved good exper-imental results in real-time and energy efficiency.Keywords: DE1 FPGA, acoustic scattering, form function, signal processing, non-destructive testing
Procedia PDF Downloads 7929077 An Exploratory Study of the Effects of Head Movement on Engagement within a Telepresence Environment
Authors: B. S. Bamoallem, A. J. Wodehouse, G. M. Mair
Abstract:
Communication takes place not only through speech, but also by means of gestures such as facial expressions, gaze, head movements, hand movements and body posture, and though there has been rapid development, communication platforms still lack this type of behavior. We believe communication platforms need to fully achieve this verbal and non-verbal behavior in order to make interactions more engaging and more efficient. In this study we decided to focus our research on the head rather than any other body part as it is a rich source of information for speech-related movement Thus we aim to investigate the value of incorporating head movements into the use of telepresence robots as communication platforms; this will be done by investigating a system that reproduces head movement manually as closely as possible.Keywords: engagement, nonverbal behaviours, head movements, face-to-face interaction, telepresence robot
Procedia PDF Downloads 45529076 High-Resolution ECG Automated Analysis and Diagnosis
Authors: Ayad Dalloo, Sulaf Dalloo
Abstract:
Electrocardiogram (ECG) recording is prone to complications, on analysis by physicians, due to noise and artifacts, thus creating ambiguity leading to possible error of diagnosis. Such drawbacks may be overcome with the advent of high resolution Methods, such as Discrete Wavelet Analysis and Digital Signal Processing (DSP) techniques. This ECG signal analysis is implemented in three stages: ECG preprocessing, features extraction and classification with the aim of realizing high resolution ECG diagnosis and improved detection of abnormal conditions in the heart. The preprocessing stage involves removing spurious artifacts (noise), due to such factors as muscle contraction, motion, respiration, etc. ECG features are extracted by applying DSP and suggested sloping method techniques. These measured features represent peak amplitude values and intervals of P, Q, R, S, R’, and T waves on ECG, and other features such as ST elevation, QRS width, heart rate, electrical axis, QR and QT intervals. The classification is preformed using these extracted features and the criteria for cardiovascular diseases. The ECG diagnostic system is successfully applied to 12-lead ECG recordings for 12 cases. The system is provided with information to enable it diagnoses 15 different diseases. Physician’s and computer’s diagnoses are compared with 90% agreement, with respect to physician diagnosis, and the time taken for diagnosis is 2 seconds. All of these operations are programmed in Matlab environment.Keywords: ECG diagnostic system, QRS detection, ECG baseline removal, cardiovascular diseases
Procedia PDF Downloads 297