Search results for: scientific data mining
26660 Reader Reception of Cultural Context for Chinese Translation of Scientific and Technical Discourse: An Empirical Study
Authors: Caiwen Wang, Yuling Liu
Abstract:
Scientific and technical discourse is non-literary, and so it is often regarded as merely informative, free of the cultural context of both the source and the target language. Thus it is supposed that translators of sci-tech texts do not need to consider cultural factors in the translation process as readers only care for the information conveyed. This paper takes a different standpoint and shows that cultural context plays an important part in scientific and technical texts and thereafter in bridging the gap between different cultural communities of readers. The paper argues that the common cultural context for members of the same cultural community, such as morals, customs, and values, also underpins the sci-tech discourse of various text types, and therefore may pose difficulties for readers of a different cultural community if this is re-presented or translated literally. The research hypothesises that depending on how it is re-presented or translated; cultural context can either encourage or discourage readers’ reading experience and subsequently their interest to read and use translation texts. Drawing upon the Reception Theory by Hans Robert Jauss, the research investigates the relationship between cultural context and scientific and technical translation from English to Chinese. Citing 55 examples of sci-tech translations from magazines, newspapers and the website of Shell, a major international oil and gas company, the research shows that the source texts for these 55 cases all have bearing on the source cultural context, and translators will need to address this in the translation process instead of doing literal translation to be merely correct. The research then interviews 15 research subjects for their views of the translations. By assessing readers’ reception and perception of translated Chinese sci-tech discourse, the research concludes that cultural context contributes to the quality of scientific and technical translation in an important way and then discusses the implications of the findings for training scientific and technical translators.Keywords: Chinese translation, cultural context, reception theory, scientific and technical texts
Procedia PDF Downloads 33526659 Financial Assessment of the Hard Coal Mining in the Chosen Region in the Czech Republic: Real Options Methodology Application
Authors: Miroslav Čulík, Petr Gurný
Abstract:
This paper is aimed at the financial assessment of the hard coal mining in a given region by real option methodology application. Hard coal mining in this mine makes net loss for the owner during the last years due to the long-term unfavourable mining conditions and significant drop in the coal prices during the last years. Management is going to shut down the operation and abandon the project to reduce the loss of the company. The goal is to assess whether the shutting down the operation is the only and correct solution of the problem. Due to the uncertainty in the future hard coal price evolution, the production might be again restarted if the price raises enough to cover the cost of the production. For the assessment, real option methodology is applied, which captures two important aspect of the financial decision-making: risk and flexibility. The paper is structured as follows: first, current state is described and problem is analysed. Next, methodology of real options is described. At last, project is evaluated by applying real option methodology. The results are commented and recommendations are provided.Keywords: real option, investment, option to abandon, option to shut down and restart, risk, flexibility
Procedia PDF Downloads 54926658 Data Mining to Capture User-Experience: A Case Study in Notebook Product Appearance Design
Authors: Rhoann Kerh, Chen-Fu Chien, Kuo-Yi Lin
Abstract:
In the era of rapidly increasing notebook market, consumer electronics manufacturers are facing a highly dynamic and competitive environment. In particular, the product appearance is the first part for user to distinguish the product from the product of other brands. Notebook product should differ in its appearance to engage users and contribute to the user experience (UX). The UX evaluates various product concepts to find the design for user needs; in addition, help the designer to further understand the product appearance preference of different market segment. However, few studies have been done for exploring the relationship between consumer background and the reaction of product appearance. This study aims to propose a data mining framework to capture the user’s information and the important relation between product appearance factors. The proposed framework consists of problem definition and structuring, data preparation, rules generation, and results evaluation and interpretation. An empirical study has been done in Taiwan that recruited 168 subjects from different background to experience the appearance performance of 11 different portable computers. The results assist the designers to develop product strategies based on the characteristics of consumers and the product concept that related to the UX, which help to launch the products to the right customers and increase the market shares. The results have shown the practical feasibility of the proposed framework.Keywords: consumers decision making, product design, rough set theory, user experience
Procedia PDF Downloads 31426657 Modeling Activity Pattern Using XGBoost for Mining Smart Card Data
Authors: Eui-Jin Kim, Hasik Lee, Su-Jin Park, Dong-Kyu Kim
Abstract:
Smart-card data are expected to provide information on activity pattern as an alternative to conventional person trip surveys. The focus of this study is to propose a method for training the person trip surveys to supplement the smart-card data that does not contain the purpose of each trip. We selected only available features from smart card data such as spatiotemporal information on the trip and geographic information system (GIS) data near the stations to train the survey data. XGboost, which is state-of-the-art tree-based ensemble classifier, was used to train data from multiple sources. This classifier uses a more regularized model formalization to control the over-fitting and show very fast execution time with well-performance. The validation results showed that proposed method efficiently estimated the trip purpose. GIS data of station and duration of stay at the destination were significant features in modeling trip purpose.Keywords: activity pattern, data fusion, smart-card, XGboost
Procedia PDF Downloads 24826656 Effect of Problem Based Learning (PBL) Activities to Thai Undergraduate Student Teachers Attitude and Their Achievement
Authors: Thanawit Tongmai, Chatchawan Saewor
Abstract:
Learning management is very important for students’ development. To promote students’ potential, the teacher should design appropriate learning activity that brings their students potential out. Problem based learning has been using worldwide and it has presented numerous of success. This research aims to study third year students’ attitude and their achievement in scientific research course. To find the results, mix method was used to design research conduction. The researcher used PBL and reflection activity in the class. The students had to choose a topic, reviewed information, designed experimental, wrote academic report and presented their research by themselves. The researcher was only a facilitator. Reflection activity was used to progressing and consulting their research. The data was collected along with research conduction by questionnaire and test, including attitude, opinion and their achievement. The result of this study showed that 74.71% from all of students (n = 87) benefited from PBL and reflection activity, while 25.19% were just satisfied. 100% of students had a positive reflection toward PBL activity and they believed that PBL was the best pedagogy method for scientific research course. The achievements of these students were higher than the previous study (P < 0.05). The student’s learning achievement, A, B+ and B, was 48.28, 28.74 and 22.98% respectively. Therefore, it can conclude that PBL activity is appropriate for scientific research course and it can also promote student’s achievement.Keywords: reflection, attitude, learning, achievement, PBL
Procedia PDF Downloads 28226655 A Framework of Product Information Service System Using Mobile Image Retrieval and Text Mining Techniques
Authors: Mei-Yi Wu, Shang-Ming Huang
Abstract:
The online shoppers nowadays often search the product information on the Internet using some keywords of products. To use this kind of information searching model, shoppers should have a preliminary understanding about their interesting products and choose the correct keywords. However, if the products are first contact (for example, the worn clothes or backpack of passengers which you do not have any idea about the brands), these products cannot be retrieved due to insufficient information. In this paper, we discuss and study the applications in E-commerce using image retrieval and text mining techniques. We design a reasonable E-commerce application system containing three layers in the architecture to provide users product information. The system can automatically search and retrieval similar images and corresponding web pages on Internet according to the target pictures which taken by users. Then text mining techniques are applied to extract important keywords from these retrieval web pages and search the prices on different online shopping stores with these keywords using a web crawler. Finally, the users can obtain the product information including photos and prices of their favorite products. The experiments shows the efficiency of proposed system.Keywords: mobile image retrieval, text mining, product information service system, online marketing
Procedia PDF Downloads 36026654 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education
Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue
Abstract:
In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education
Procedia PDF Downloads 10926653 Customer Preference in the Textile Market: Fabric-Based Analysis
Authors: Francisca Margarita Ocran
Abstract:
Underwear, and more particularly bras and panties, are defined as intimate clothing. Strictly speaking, they enhance the place of women in the public or private satchel. Therefore, women's lingerie is a complex garment with a high involvement profile, motivating consumers to buy it not only by its functional utility but also by the multisensory experience it provides them. Customer behavior models are generally based on customer data mining, and each model is designed to answer questions at a specific time. Predicting the customer experience is uncertain and difficult. Thus, knowledge of consumers' tastes in lingerie deserves to be treated as an experiential product, where the dimensions of the experience motivating consumers to buy a lingerie product and to remain faithful to it must be analyzed in detail by the manufacturers and retailers to engage and retain consumers, which is why this research aims to identify the variables that push consumers to choose their lingerie product, based on an in-depth analysis of the types of fabrics used to make lingerie. The data used in this study comes from online purchases. Machine learning approach with the use of Python programming language and Pycaret gives us a precision of 86.34%, 85.98%, and 84.55% for the three algorithms to use concerning the preference of a buyer in front of a range of lingerie. Gradient Boosting, random forest, and K Neighbors were used in this study; they are very promising and rich in the classification of preference in the textile industry.Keywords: consumer behavior, data mining, lingerie, machine learning, preference
Procedia PDF Downloads 9126652 Virtual Dimension Analysis of Hyperspectral Imaging to Characterize a Mining Sample
Authors: L. Chevez, A. Apaza, J. Rodriguez, R. Puga, H. Loro, Juan Z. Davalos
Abstract:
Virtual Dimension (VD) procedure is used to analyze Hyperspectral Image (HIS) treatment-data in order to estimate the abundance of mineral components of a mining sample. Hyperspectral images coming from reflectance spectra (NIR region) are pre-treated using Standard Normal Variance (SNV) and Minimum Noise Fraction (MNF) methodologies. The endmember components are identified by the Simplex Growing Algorithm (SVG) and after adjusted to the reflectance spectra of reference-databases using Simulated Annealing (SA) methodology. The obtained abundance of minerals of the sample studied is very near to the ones obtained using XRD with a total relative error of 2%.Keywords: hyperspectral imaging, minimum noise fraction, MNF, simplex growing algorithm, SGA, standard normal variance, SNV, virtual dimension, XRD
Procedia PDF Downloads 15826651 Mining Coupled to Agriculture: Systems Thinking in Scalable Food Production
Authors: Jason West
Abstract:
Low profitability in agriculture production along with increasing scrutiny over environmental effects is limiting food production at scale. In contrast, the mining sector offers access to resources including energy, water, transport and chemicals for food production at low marginal cost. Scalable agricultural production can benefit from the nexus of resources (water, energy, transport) offered by mining activity in remote locations. A decision support bioeconomic model for controlled environment vertical farms was used. Four submodels were used: crop structure, nutrient requirements, resource-crop integration, and economic. They escalate to a macro mathematical model. A demonstrable dynamic systems framework is needed to prove productive outcomes are feasible. We demonstrate a generalized bioeconomic macro model for controlled environment production systems in minesites using systems dynamics modeling methodology. Despite the complexity of bioeconomic modelling of resource-agricultural dynamic processes and interactions, the economic potential greater than general economic models would assume. Scalability of production as an input becomes a key success feature.Keywords: crop production systems, mathematical model, mining, agriculture, dynamic systems
Procedia PDF Downloads 7726650 Development of Instructional Material Using Scientific Approach to Make the Nature of Science (NOS) and Critical Thinking Explicit on Chemical Bonding and Intermolecular Forces Topics
Authors: Ivan Ashif Ardhana, Intan Mahanani
Abstract:
Chemistry education tends to change from triplet representation among macroscopic, microscopic, and symbolic to tetrahedron shape. This change set the aspect of human element on the top of learning. Meaning that students are expected to solve the problems involving the ethic, morality, and humanity through the class. Ability to solve the problems connecting either theories or applications is called scientific literacy which have been implemented in curriculum 2013 implicitly. Scientific literacy has an aspect of nature science and critical thinking. Both can be integrated to learning using scientific approach and scientific inquiry. Unfortunately, students’ ability of scientific literacy in Indonesia is far from expectation. A survey from PISA had proven it. Scientific literacy of Indonesian students is always at bottom five position from 2002 till 2012. Improving a scientific literacy needs many efforts against them. Developing an instructional material based on scientific approach is one kind of that efforts. Instructional material contains both aspect of nature of science and critical thinking which is instructed explicitly to improve the students’ understanding about science. Developing goal is to produce a prototype and an instructional material using scientific approach whose chapter is chemical bonding and intermolecular forces for high school students grade ten. As usual, the material is subjected to get either quantitative mark or suggestion through validation process using validation sheet instrument. Development model is adapted from 4D model containing four steps. They are define, design, develop, and disseminate. Nevertheless, development of instructional material had only done until third step. The final step wasn’t done because of time, cost, and energy limitations. Developed instructional material had been validated by four validators. They are coming from chemistry lecture and high school’s teacher which two at each. The result of this development research shown the average of quantitative mark of students’ book is 92.75% with very proper in criteria. Given at same validation process, teacher’s guiding book got the average mark by 96.98%, similar criteria with students’ book. Qualitative mark including both comments and suggestions resulted from validation process were used as consideration for the revision. The result concluded us how the instructional materials using scientific approach to explicit nature of science and critical thinking on the topic of chemical bonding and intermolecular forces are very proper if they are used at learning activity.Keywords: critical thinking, instructional material, nature of science, scientific literacy
Procedia PDF Downloads 26526649 A Data-Mining Model for Protection of FACTS-Based Transmission Line
Authors: Ashok Kalagura
Abstract:
This paper presents a data-mining model for fault-zone identification of flexible AC transmission systems (FACTS)-based transmission line including a thyristor-controlled series compensator (TCSC) and unified power-flow controller (UPFC), using ensemble decision trees. Given the randomness in the ensemble of decision trees stacked inside the random forests model, it provides an effective decision on the fault-zone identification. Half-cycle post-fault current and voltage samples from the fault inception are used as an input vector against target output ‘1’ for the fault after TCSC/UPFC and ‘1’ for the fault before TCSC/UPFC for fault-zone identification. The algorithm is tested on simulated fault data with wide variations in operating parameters of the power system network, including noisy environment providing a reliability measure of 99% with faster response time (3/4th cycle from fault inception). The results of the presented approach using the RF model indicate the reliable identification of the fault zone in FACTS-based transmission lines.Keywords: distance relaying, fault-zone identification, random forests, RFs, support vector machine, SVM, thyristor-controlled series compensator, TCSC, unified power-flow controller, UPFC
Procedia PDF Downloads 42426648 Realization of a (GIS) for Drilling (DWS) through the Adrar Region
Authors: Djelloul Benatiallah, Ali Benatiallah, Abdelkader Harouz
Abstract:
Geographic Information Systems (GIS) include various methods and computer techniques to model, capture digitally, store, manage, view and analyze. Geographic information systems have the characteristic to appeal to many scientific and technical field, and many methods. In this article we will present a complete and operational geographic information system, following the theoretical principles of data management and adapting to spatial data, especially data concerning the monitoring of drinking water supply wells (DWS) Adrar region. The expected results of this system are firstly an offer consulting standard features, updating and editing beneficiaries and geographical data, on the other hand, provides specific functionality contractors entered data, calculations parameterized and statistics.Keywords: GIS, DWS, drilling, Adrar
Procedia PDF Downloads 31026647 Methods for Distinction of Cattle Using Supervised Learning
Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl
Abstract:
Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.Keywords: genetic data, Pinzgau cattle, supervised learning, machine learning
Procedia PDF Downloads 55226646 Application of Ontologies to Contract for Difference Documents
Authors: Renato Figueira Franco
Abstract:
This paper aims to create a representational information system applied to the securities market, particularly the development of an ontology applied to the analysis of the Key Information Documents of Contracts for Difference. The process of obtaining knowledge and its proper formal representation has raised the attention both from the scientific literature and the capital markets supervisory authorities. The formal knowledge representation is embodied in the construction of ontologies, which are responsible for defining a knowledge base structure of a given scientific domain, facilitating its understanding, and allowing its sharing among the scientific community. The scope of this study is restricted to the analysis of capital markets ontologies in order to capture its structure, semantics and knowledge sharing between people and systems.Keywords: ontology, financial markets, CFD, PRIIPs, key information documents
Procedia PDF Downloads 6726645 The Imagined Scientific Drawing as a Representative of the Content Provided by Emotions to Scientific Rationality
Authors: Dení Stincer Gómez, Zuraya Monroy Nasr
Abstract:
From the epistemology of emotions, one of the topics of current reflection is the function that emotions fulfill in the rational processes involved in scientific activity. So far, three functions have been assigned to them: selective, heuristic, and carriers of content. In this last function, it is argued that emotions, like our perceptual organs, contribute relevant content to reasoning, which is then converted into linguistic statements or graphic representations. In this paper, of a qualitative and philosophical nature, arguments are provided for two hypotheses 1) if emotions provide content to the mind, which then translates it into language or representations, then it is important to take up the idea of the Saussurean linguistic sign to understand this process. This sign has two elements: the signified and the signifier. Emotions would provide meanings, and reasoning creates the signifier, and 2) the meanings provided by emotions are properties and qualities of phenomena generally not accessible to the sense organs. These meanings must be imagined, and the imagination is nurtured by the feeling that "maybe this is the way." One way to access the content provided by emotions can be through imagined scientific drawings. The atomic models created since Thomson, the structure of crystals by René Just, the representations of lunar eclipses by Johannes, fractal geometry, and the structure of DNA, among others, have resulted fundamentally from the imagination. These representations, not provided by the sense organs, seem to come from the emotional involvement of scientists in their desire to understand, explain and discover.Keywords: emotions, epistemic functions of emotions, scientific drawing, linguistic sign
Procedia PDF Downloads 7426644 Safety-critical Alarming Strategy Based on Statistically Defined Slope Deformation Behaviour Model Case Study: Upright-dipping Highwall in a Coal Mining Area
Authors: Lintang Putra Sadewa, Ilham Prasetya Budhi
Abstract:
Slope monitoring program has now become a mandatory campaign for any open pit mines around the world to operate safely. Utilizing various slope monitoring instruments and strategies, miners are now able to deliver precise decisions in mitigating the risk of slope failures which can be catastrophic. Currently, the most sophisticated slope monitoring technology available is the Slope Stability Radar (SSR), whichcan measure wall deformation in submillimeter accuracy. One of its eminent features is that SSRcan provide a timely warning by automatically raise an alarm when a predetermined rate-of-movement threshold is reached. However, establishing proper alarm thresholds is arguably one of the onerous challenges faced in any slope monitoring program. The difficulty mainly lies in the number of considerations that must be taken when generating a threshold becausean alarm must be effectivethat it should limit the occurrences of false alarms while alsobeing able to capture any real wall deformations. In this sense, experience shows that a site-specific alarm thresholdtendsto produce more reliable results because it considers site distinctive variables. This study will attempt to determinealarming thresholds for safety-critical monitoring based on an empirical model of slope deformation behaviour that is defined statistically fromdeformation data captured by the Slope Stability Radar (SSR). The study area comprises of upright-dipping highwall setting in a coal mining area with intense mining activities, andthe deformation data used for the study were recorded by the SSR throughout the year 2022. The model is site-specific in nature thus, valuable information extracted from the model (e.g., time-to-failure, onset-of-acceleration, and velocity) will be applicable in setting up site-specific alarm thresholds and will give a clear understanding of how deformation trends evolve over the area.Keywords: safety-critical monitoring, alarming strategy, slope deformation behaviour model, coal mining
Procedia PDF Downloads 9126643 Case Study about Women Driving in Saudi Arabia Announced in 2018: Netnographic and Data Mining Study
Authors: Majdah Alnefaie
Abstract:
The ‘netnographic study’ and data mining have been used to monitor the public interaction on Social Media Sites (SMSs) to understand what the motivational factors influence the Saudi intentions regarding allowing women driving in Saudi Arabia in 2018. The netnographic study monitored the publics’ textual and visual communications in Twitter, Snapchat, and YouTube. SMSs users’ communications method is also known as electronic word of mouth (eWOM). Netnography methodology is still in its initial stages as it depends on manual extraction, reading and classification of SMSs users text. On the other hand, data mining is come from the computer and physical sciences background, therefore it is much harder to extract meaning from unstructured qualitative data. In addition, the new development in data mining software does not support the Arabic text, especially local slang in Saudi Arabia. Therefore, collaborations between social and computer scientists such as ‘netnographic study’ and data mining will enhance the efficiency of this study methodology leading to comprehensive research outcome. The eWOM communications between individuals on SMSs can promote a sense that sharing their preferences and experiences regarding politics and social government regulations is a part of their daily life, highlighting the importance of using SMSs as assistance in promoting participation in political and social. Therefore, public interactions on SMSs are important tools to comprehend people’s intentions regarding the new government regulations in the country. This study aims to answer this question, "What factors influence the Saudi Arabians' intentions of Saudi female's car-driving in 2018". The study utilized qualitative method known as netnographic study. The study used R studio to collect and analyses 27000 Saudi users’ comments from 25th May until 25th June 2018. The study has developed data collection model that support importing and analysing the Arabic text in the local slang. The data collection model in this study has been clustered based on different type of social networks, gender and the study main factors. The social network analysis was employed to collect comments from SMSs owned by governments’ originations, celebrities, vloggers, social activist and news SMSs accounts. The comments were collected from both males and females SMSs users. The sentiment analysis shows that the total number of positive comments Saudi females car driving was higher than negative comments. The data have provided the most important factors influenced the Saudi Arabians’ intention of Saudi females car driving including, culture and environment, freedom of choice, equal opportunities, security and safety. The most interesting finding indicted that women driving would play a role in increasing the individual freedom of choice. Saudi female will be able to drive cars to fulfill her daily life and family needs without being stressed due to the lack of transportation. The study outcome will help Saudi government to improve woman quality of life by increasing the ability to find more jobs and studies, increasing income through decreasing the spending on transport means such as taxi and having more freedom of choice in woman daily life needs. The study enhances the importance of using use marketing research to measure the public opinions on the new government regulations in the country. The study has explained the limitations and suggestions for future research.Keywords: netnographic study, data mining, social media, Saudi Arabia, female driving
Procedia PDF Downloads 15526642 Modelling of Recovery and Application of Low-Grade Thermal Resources in the Mining and Mineral Processing Industry
Authors: S. McLean, J. A. Scott
Abstract:
The research topic is focusing on improving sustainable operation through recovery and reuse of waste heat in process water streams, an area in the mining industry that is often overlooked. There are significant advantages to the application of this topic, including economic and environmental benefits. The smelting process in the mining industry presents an opportunity to recover waste heat and apply it to alternative uses, thereby enhancing the overall process. This applied research has been conducted at the Sudbury Integrated Nickel Operations smelter site, in particular on the water cooling towers. The aim was to determine and optimize methods for appropriate recovery and subsequent upgrading of thermally low-grade heat lost from the water cooling towers in a manner that makes it useful for repurposing in applications, such as within an acid plant. This would be valuable to mining companies as it would be an opportunity to reduce the cost of the process, as well as decrease environmental impact and primary fuel usage. The waste heat from the cooling towers needs to be upgraded before it can be beneficially applied, as lower temperatures result in a decrease of the number of potential applications. Temperature and flow rate data were collected from the water cooling towers at an acid plant over two years. The research includes process control strategies and the development of a model capable of determining if the proposed heat recovery technique is economically viable, as well as assessing any environmental impact with the reduction in net energy consumption by the process. Therefore, comprehensive cost and impact analyses are carried out to determine the best area of application for the recovered waste heat. This method will allow engineers to easily identify the value of thermal resources available to them and determine if a full feasibility study should be carried out. The rapid scoping model developed will be applicable to any site that generates large amounts of waste heat. Results show that heat pumps are an economically viable solution for this application, allowing for reduced cost and CO₂ emissions.Keywords: environment, heat recovery, mining engineering, sustainability
Procedia PDF Downloads 11126641 Industrial Process Mining Based on Data Pattern Modeling and Nonlinear Analysis
Authors: Hyun-Woo Cho
Abstract:
Unexpected events may occur with serious impacts on industrial process. This work utilizes a data representation technique to model and to analyze process data pattern for the purpose of diagnosis. In this work, the use of triangular representation of process data is evaluated using simulation process. Furthermore, the effect of using different pre-treatment techniques based on such as linear or nonlinear reduced spaces was compared. This work extracted the fault pattern in the reduced space, not in the original data space. The results have shown that the non-linear technique based diagnosis method produced more reliable results and outperforms linear method.Keywords: process monitoring, data analysis, pattern modeling, fault, nonlinear techniques
Procedia PDF Downloads 38826640 Determining of the Performance of Data Mining Algorithm Determining the Influential Factors and Prediction of Ischemic Stroke: A Comparative Study in the Southeast of Iran
Authors: Y. Mehdipour, S. Ebrahimi, A. Jahanpour, F. Seyedzaei, B. Sabayan, A. Karimi, H. Amirifard
Abstract:
Ischemic stroke is one of the common reasons for disability and mortality. The fourth leading cause of death in the world and the third in some other sources. Only 1/3 of the patients with ischemic stroke fully recover, 1/3 of them end in permanent disability and 1/3 face death. Thus, the use of predictive models to predict stroke has a vital role in reducing the complications and costs related to this disease. Thus, the aim of this study was to specify the effective factors and predict ischemic stroke with the help of DM methods. The present study was a descriptive-analytic study. The population was 213 cases from among patients referring to Ali ibn Abi Talib (AS) Hospital in Zahedan. Data collection tool was a checklist with the validity and reliability confirmed. This study used DM algorithms of decision tree for modeling. Data analysis was performed using SPSS-19 and SPSS Modeler 14.2. The results of the comparison of algorithms showed that CHAID algorithm with 95.7% accuracy has the best performance. Moreover, based on the model created, factors such as anemia, diabetes mellitus, hyperlipidemia, transient ischemic attacks, coronary artery disease, and atherosclerosis are the most effective factors in stroke. Decision tree algorithms, especially CHAID algorithm, have acceptable precision and predictive ability to determine the factors affecting ischemic stroke. Thus, by creating predictive models through this algorithm, will play a significant role in decreasing the mortality and disability caused by ischemic stroke.Keywords: data mining, ischemic stroke, decision tree, Bayesian network
Procedia PDF Downloads 17626639 The Role of Strategic Alliances, Innovation Capability, Cost Reduction in Enhancing Customer Loyalty and Firm’s Competitive Advantage
Authors: Soebowo Musa
Abstract:
Mining industries are known to be very volatile due to their sensitive nature toward changes in the environment, particularly coal mining. Heavy equipment distributors and coal mining contractors are among heavily affected by such volatility. They are facing more uncertainty on the sustainability of the coal mining industry. Strategic alliances and organizational capabilities such as innovation capability have long been seen as ways to stay competitive with a focus more on the strategic alliances partner-to-partner in serving their customers. In today’s rapid change in the environment, a shift in consumer behaviors, and the human-centric business approach, this study looks at the strategic alliance partner-to-customer relationship in both the industrial organization and resource-based theories. This study was conducted based on 250 respondents from the strategic alliances partner-to-customer between heavy equipment distributors and coal mining contractors in Indonesia. This study finds strategic alliances have the highest association toward cost reduction, a proxy of operational efficiency followed by its association toward innovation capability. Further, strategic alliances and innovation capability have a positive relationship with customer loyalty, while innovation capability and customer loyalty have no significant relationships toward the firm’s competitive advantage. This study also indicates that cost reduction is not a condition to develop customer loyalty in the strategic alliance partner-to-customer relationship. It confirms strategic alliances are a strategy that creates a firm’s operational efficiency, innovation capability that develops customer loyalty, and competitive advantage.Keywords: strategic alliance, innovation capability, cost reduction, customer loyalty, competitive advantage
Procedia PDF Downloads 11926638 Copyright Clearance for Artificial Intelligence Training Data: Challenges and Solutions
Authors: Erva Akin
Abstract:
– The use of copyrighted material for machine learning purposes is a challenging issue in the field of artificial intelligence (AI). While machine learning algorithms require large amounts of data to train and improve their accuracy and creativity, the use of copyrighted material without permission from the authors may infringe on their intellectual property rights. In order to overcome copyright legal hurdle against the data sharing, access and re-use of data, the use of copyrighted material for machine learning purposes may be considered permissible under certain circumstances. For example, if the copyright holder has given permission to use the data through a licensing agreement, then the use for machine learning purposes may be lawful. It is also argued that copying for non-expressive purposes that do not involve conveying expressive elements to the public, such as automated data extraction, should not be seen as infringing. The focus of such ‘copy-reliant technologies’ is on understanding language rules, styles, and syntax and no creative ideas are being used. However, the non-expressive use defense is within the framework of the fair use doctrine, which allows the use of copyrighted material for research or educational purposes. The questions arise because the fair use doctrine is not available in EU law, instead, the InfoSoc Directive provides for a rigid system of exclusive rights with a list of exceptions and limitations. One could only argue that non-expressive uses of copyrighted material for machine learning purposes do not constitute a ‘reproduction’ in the first place. Nevertheless, the use of machine learning with copyrighted material is difficult because EU copyright law applies to the mere use of the works. Two solutions can be proposed to address the problem of copyright clearance for AI training data. The first is to introduce a broad exception for text and data mining, either mandatorily or for commercial and scientific purposes, or to permit the reproduction of works for non-expressive purposes. The second is that copyright laws should permit the reproduction of works for non-expressive purposes, which opens the door to discussions regarding the transposition of the fair use principle from the US into EU law. Both solutions aim to provide more space for AI developers to operate and encourage greater freedom, which could lead to more rapid innovation in the field. The Data Governance Act presents a significant opportunity to advance these debates. Finally, issues concerning the balance of general public interests and legitimate private interests in machine learning training data must be addressed. In my opinion, it is crucial that robot-creation output should fall into the public domain. Machines depend on human creativity, innovation, and expression. To encourage technological advancement and innovation, freedom of expression and business operation must be prioritised.Keywords: artificial intelligence, copyright, data governance, machine learning
Procedia PDF Downloads 8526637 Data Analysis Tool for Predicting Water Scarcity in Industry
Authors: Tassadit Issaadi Hamitouche, Nicolas Gillard, Jean Petit, Valerie Lavaste, Celine Mayousse
Abstract:
Water is a fundamental resource for the industry. It is taken from the environment either from municipal distribution networks or from various natural water sources such as the sea, ocean, rivers, aquifers, etc. Once used, water is discharged into the environment, reprocessed at the plant or treatment plants. These withdrawals and discharges have a direct impact on natural water resources. These impacts can apply to the quantity of water available, the quality of the water used, or to impacts that are more complex to measure and less direct, such as the health of the population downstream from the watercourse, for example. Based on the analysis of data (meteorological, river characteristics, physicochemical substances), we wish to predict water stress episodes and anticipate prefectoral decrees, which can impact the performance of plants and propose improvement solutions, help industrialists in their choice of location for a new plant, visualize possible interactions between companies to optimize exchanges and encourage the pooling of water treatment solutions, and set up circular economies around the issue of water. The development of a system for the collection, processing, and use of data related to water resources requires the functional constraints specific to the latter to be made explicit. Thus the system will have to be able to store a large amount of data from sensors (which is the main type of data in plants and their environment). In addition, manufacturers need to have 'near-real-time' processing of information in order to be able to make the best decisions (to be rapidly notified of an event that would have a significant impact on water resources). Finally, the visualization of data must be adapted to its temporal and geographical dimensions. In this study, we set up an infrastructure centered on the TICK application stack (for Telegraf, InfluxDB, Chronograf, and Kapacitor), which is a set of loosely coupled but tightly integrated open source projects designed to manage huge amounts of time-stamped information. The software architecture is coupled with the cross-industry standard process for data mining (CRISP-DM) data mining methodology. The robust architecture and the methodology used have demonstrated their effectiveness on the study case of learning the level of a river with a 7-day horizon. The management of water and the activities within the plants -which depend on this resource- should be considerably improved thanks, on the one hand, to the learning that allows the anticipation of periods of water stress, and on the other hand, to the information system that is able to warn decision-makers with alerts created from the formalization of prefectoral decrees.Keywords: data mining, industry, machine Learning, shortage, water resources
Procedia PDF Downloads 12226636 Investigation of Topic Modeling-Based Semi-Supervised Interpretable Document Classifier
Authors: Dasom Kim, William Xiu Shun Wong, Yoonjin Hyun, Donghoon Lee, Minji Paek, Sungho Byun, Namgyu Kim
Abstract:
There have been many researches on document classification for classifying voluminous documents automatically. Through document classification, we can assign a specific category to each unlabeled document on the basis of various machine learning algorithms. However, providing labeled documents manually requires considerable time and effort. To overcome the limitations, the semi-supervised learning which uses unlabeled document as well as labeled documents has been invented. However, traditional document classifiers, regardless of supervised or semi-supervised ones, cannot sufficiently explain the reason or the process of the classification. Thus, in this paper, we proposed a methodology to visualize major topics and class components of each document. We believe that our methodology for visualizing topics and classes of each document can enhance the reliability and explanatory power of document classifiers.Keywords: data mining, document classifier, text mining, topic modeling
Procedia PDF Downloads 40326635 Multicriteria for Optimal Land Use after Mining
Authors: Carla Idely Palencia-Aguilar
Abstract:
Mining in Colombia represents around 2% of the GDP (USD 8 billion in 2018), with main productions represented by coal, nickel, gold, silver, emeralds, iron, limestone, gypsum, among others. Sand and Gravel had been decreasing its participation of the GDP with a reduction of 33.2 million m3 in 2015, to 27.4 in 2016, 22.7 in 2017 and 15.8 in 2018, with a consumption of approximately 3 tons/inhabitant. However, with the new government policies it is expected to increase in the following years. Mining causes temporary environmental impacts, once restoration and rehabilitation takes place, social, environmental and economic benefits are higher than the initial state. A way to demonstrate how the mining interventions had contributed to improve the characteristics of the region after sand and gravel mining, the NDVI (Normalized Difference Vegetation Index) from MODIS and ASTER were employed. The histograms show not only increments of vegetation in the area (8 times higher), but also topographies similar to the ones before the intervention, according to the application for sustainable development selected: either agriculture, forestry, cattle raising, artificial wetlands or do nothing. The decision was based upon a Multicriteria analysis for optimal land use, with three main variables: geostatistics, evapotranspiration and groundwater characteristics. The use of remote sensing, meteorological stations, piezometers, sunphotometers, geoelectric analysis among others; provide the information required for the multicriteria decision. For cattle raising and agricultural applications (where various crops were implemented), conservation of products were tested by means of nanotechnology. The results showed a duration of 2 years with no chemicals added for preservation and concentration of vitamins of the tested products.Keywords: ASTER, Geostatistics, MODIS, Multicriteria
Procedia PDF Downloads 12626634 Searching Linguistic Synonyms through Parts of Speech Tagging
Authors: Faiza Hussain, Usman Qamar
Abstract:
Synonym-based searching is recognized to be a complicated problem as text mining from unstructured data of web is challenging. Finding useful information which matches user need from bulk of web pages is a cumbersome task. In this paper, a novel and practical synonym retrieval technique is proposed for addressing this problem. For replacement of semantics, user intent is taken into consideration to realize the technique. Parts-of-Speech tagging is applied for pattern generation of the query and a thesaurus for this experiment was formed and used. Comparison with Non-Context Based Searching, Context Based searching proved to be a more efficient approach while dealing with linguistic semantics. This approach is very beneficial in doing intent based searching. Finally, results and future dimensions are presented.Keywords: natural language processing, text mining, information retrieval, parts-of-speech tagging, grammar, semantics
Procedia PDF Downloads 30826633 Studying the Effectiveness of Using Narrative Animation on Students’ Understanding of Complex Scientific Concepts
Authors: Atoum Abdullah
Abstract:
The purpose of this research is to determine the extent to which computer animation and narration affect students’ understanding of complex scientific concepts and improve their exam performance, this is compared to traditional lectures that include PowerPoints with texts and static images. A mixed-method design in data collection was used, including quantitative and qualitative data. Quantitative data was collected using a pre and post-test method and a close-ended questionnaire. Qualitative data was collected through an open-ended questionnaire. A pre and posttest strategy was used to measure the level of students’ understanding with and without the use of animation. The test included multiple-choice questions to test factual knowledge, open-ended questions to test conceptual knowledge, and to label the diagram questions to test application knowledge. The results showed that students on average, performed significantly higher on the posttest as compared to the pretest on all areas of acquired knowledge. However, the increase in the posttest score with respect to the acquisition of conceptual and application knowledge was higher compared to the increase in the posttest score with respect to the acquisition of factual knowledge. This result demonstrates that animation is more beneficial when acquiring deeper, conceptual, and cognitive knowledge than when only factual knowledge is acquired.Keywords: animation, narration, science, teaching
Procedia PDF Downloads 17026632 Planning for Enviromental and Social Sustainability in Coastal Areas: A Case of Alappad
Authors: K. Vrinda
Abstract:
Coastal ecosystems across the world are facing a lot of challenges due to natural phenomena as well as from uncontrolled human interventions. Here, Alappad, a coastal island situated in Kerala, India is undergoing significant damage and is gradually losing its environmental and social sustainability. The area is blessed with very rare and precious black mineral sand deposits. Sand mining for these minerals started in 1911 and is still continuing. But, unfortunately all the problems that Alappad faces now, have its root on mining of this mineral sand. The land area is continuously diminishing due to sea erosion. The mining has also caused displacement of people and environmental degradation. Marine life also is getting affected by mining on beach and pollution. The inhabitants are fishermen who are largely dependent on the eco-system for a living. So loss of environmental sustainability subsequently affects social sustainability too. Now the damage has reached a point beyond which our actions may not be able to make any impact. This was one of the most affected areas of the 2004 tsunami and the environmental degradation has further increased the vulnerability. So this study focuses on understanding the concerns related to the resource utilization, environment and the indigenous community staying there, and on formulating suitable strategies to restore the sustainability of the area. An extensive study was conducted on site, to find out the physical, social, and economical characteristics of the area. A focus group discussion with the inhabitants shed light on different issues they face in their day-to-day life. The analysis of all these data, led to the formation of a new development vision for the area which focuses on environmental restoration and socio-economic development while allowing controlled exploitation of resources. A participatory approach is formulated which enables these three aspects through community based programs.Keywords: Community development, Disaster resilience, Ecological restoration, Environmental sustainability, Social-environmental planning, Social Sustainability
Procedia PDF Downloads 11226631 Availability of Safety Measures and Knowledge Towards Hazardous Waste Management among Workers in Scientific Laboratories of Two Universities in Lebanon
Authors: Inaam Nasrallah, Pascale Salameh, Abbas El-Outa, Assem Alkak, Rihab Nasr, Wafa Toufic Bawab
Abstract:
Background: Hazardous Waste Management(HWM). is critical to human health outcomes and environmental protection. This study evaluated the knowledge regarding safety measures to be applied when collecting and storing waste in scientific laboratories of two universities in Lebanon.Method: A survey-based observational study was conducted in scientific laboratories of the public university and that of a private university, where a total of 309 participants were recruited.Result: The mean total knowledge score on safety measures of HWM was 9.02±4.34 (maximum attainable score, 13). Significant association (p<0.05) was found between knowledge score and job function, years of experience, educational level, professional status, work schedule, and training on proper HWM. Participants had adequate perceptions regarding the impact of HWM on health and the environment. Linear regression modeling revealed that knowledge score was significantly higher among bachelor level lab workers compared to those with doctoral degrees (p=0.043), full-time schedule workers versus part-timers (p=0.03), and among public university participants as compared to those of the private university (p<0.001).Conclusion: This study showed good knowledge concerning HWM in the scientific laboratoriesof the studied universities in Lebanon and a good awareness of the HWM on health and the environment. It highlights the importance of culture, attitude, and practice on proper HWM in the academic scientific laboratory.Keywords: hasardous waste, safety measures, waste management, knwoledge score, scientific laboratory workers
Procedia PDF Downloads 211