Search results for: models synthesis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8519

Search results for: models synthesis

8129 Pervaporation of Dimethyl Carbonate / Methanol / Water Mixtures Using Zeolite Membranes

Authors: Jong-Ho Moon, Dong-Ho Lee, Hyunuk Kim, Young Cheol Park, Jong-Seop Lee, Jae-deok Jeon, Hyung-Keun Lee

Abstract:

A novel membrane reactor process for DMC synthesis from carbon dioxide has been developing in Korea Institute of Energy Research. The scheme of direct synthesis of DMC from CO₂ and Methanol is 'CO₂ + 2MeOH ↔ DMC + H₂O'. Among them, reactants are CO₂ and MeOH, product is DMC, and byproduct is H₂O (water). According to Le Chatelier’s principle, removing byproduct (water) can shift the reaction equilibrium to the right (DMC production). The main purpose of this process is removing water during the reaction. For efficient in situ water removal (dehydration) and DMC separation, zeolite 4A membranes with very small pore diameter and hydrophilicity were introduced. In this study, pervaporation performances of binary and ternary DMC / methanol / water mixtures were evaluated.

Keywords: dimehtyl carbonate, methanol, water, zeolite membrane, pervaporation

Procedia PDF Downloads 341
8128 Critical and Strategic Issues in Compensation, Staffing and Personnel Management in Nigeria

Authors: Shonuga Olajumoke Adedoyinsola

Abstract:

Staffing and Compensation are at the core of any employment exchange, and they serve as the defining characteristics of any employment relationship. Most organizations understand the benefits that a longer term approach to staff planning can bring and the answer to this problem lies not in trying to implement the traditional approach more effectively, but in implementing a completely different kind of process for strategic staffing. The study focuses on critical points of compensation, staffing and personnel management. The fundamentals of these programs include the elements of vision, potential, communication and motivation. The aim of the paper is to identify the most important attributes of compensation and incentives, staffing and personnel management. Research method is the analysis and synthesis of scientific literature, logical, comparative and graphic representation. On the basis of analysis, the author presents the models of these systems for positive employee attitudes and behaviors.

Keywords: compensation, employees, incentives, staffing, personnel management

Procedia PDF Downloads 272
8127 Usy-Cui Zeolite: An Efficient and Reusable Catalyst for Derivatives Indole Synthesis

Authors: Hassina Harkat, Samiha Taybe, Salima Loucif, Valérie Beneteau, Patrick Pale

Abstract:

Indole and its derivatives have attracted great interest because of their importance in the synthetic organic and medicinal chemistry. They are widely used as anti hypertension, anti tubercular, anticancer activity, antiviral, Alzheimer's disease, antioxidant properties, and free radical induced lipid peroxidation. Many drugs and natural products contain indole moiety, such as the vinca alkaloids, fungal metabolites and marine natural products. Generally applicable synthetic methods for indole moiety involve ring closure to form the pyrrole. Indole derivatives can also be accessed by further functionalization of the indole nucleus. Therefore we report a mild and efficient protocol for the synthesis of analogues of indole catalyzed via zeolithe USY doped with CuI under solvent-free conditions.

Keywords: indole, zeolithe, USY-CuI, heterogeneous catalysis

Procedia PDF Downloads 552
8126 Lumped Parameter Models for Numerical Simulation of The Dynamic Response of Hoisting Appliances

Authors: Candida Petrogalli, Giovanni Incerti, Luigi Solazzi

Abstract:

This paper describes three lumped parameters models for the study of the dynamic behaviour of a boom crane. The models proposed here allow evaluating the fluctuations of the load arising from the rope and structure elasticity and from the type of the motion command imposed by the winch. A calculation software was developed in order to determine the actual acceleration of the lifted mass and the dynamic overload during the lifting phase. Some application examples are presented, with the aim of showing the correlation between the magnitude of the stress and the type of the employed motion command.

Keywords: crane, dynamic model, overloading condition, vibration

Procedia PDF Downloads 549
8125 Green Synthesis of Silver and Silver-Gold Alloy Nanoparticle Using Cyanobacteria as Bioreagent

Authors: Piya Roychoudhury, Ruma Pal

Abstract:

Cyanobacteria, commonly known as blue green algae were found to be an effective bioreagent for nanoparticle synthesis. Nowadays silver nanoparticles (AgNPs) are very popular due to their antimicrobial and anti-proliferative activity. To exploit these characters in different biotechnological fields, it is very essential to synthesize more stable, non-toxic nano-silver. For this reason silver-gold alloy (Ag-AuNPs) nanoparticles are of great interest as they are more stable, harder and more effective than single metal nanoparticles. In the present communication we described a simple technique for rapid synthesis of biocompatible AgNP and Ag-AuNP employing cyanobacteria, Leptolyngbya and Lyngbya respectively. For synthesis of AgNP the biomass of Leptolyngbya valderiana (200 mg Fresh weight) was exposed to 9 mM AgNO3 solution (pH 4). For synthesis of Ag-AuNP Lyngbya majuscula (200 mg Fresh weight) was exposed to equimolar solution of hydrogen tetra-auro chlorate and silver nitrate (1mM, pH 4). After 72 hrs of exposure thallus of Leptolyngyba turned brown in color and filaments of Lyngbya turned pink in color that indicated synthesis of nanoparticles. The produced particles were extracted from the cyanobacterial biomass using nano-capping agent, sodium citrate. Firstly, extracted brown and pink suspensions were taken for Energy Dispersive X-ray (EDAX) analysis to confirm the presence of silver in brown suspension and presence of both gold and silver in pink suspension. Extracted nanoparticles showed a distinct single plasmon band (AgNP at 411 nm; Ag-Au NP at 481 nm) in Uv-vis spectroscopy. It was revealed from Transmission electron microscopy (TEM) that all the synthesized particles were spherical in nature with a size range of ~2-25 nm. In X-ray powder diffraction (XRD) analysis four intense peaks appeared at 38.2°, 44.5°, 64.8°and 77.8° which confirmed the crystallographic nature of synthesized particles. Presence of different functional groups viz. N-H, C=C, C–O, C=O on the surface of nanoparticles were recorded by Fourier transform infrared spectroscopy (FTIR). Scanning Electron microscopy (SEM) images showed the surface topography of metal treated filaments of cyanobacteria. The stability of the particles was observed by Zeta potential study. Antibiotic property of synthesized particles was tested by Agar well diffusion method against gram negative bacteria Pseudomonas aeruginosa. Overall, this green-technique requires low energy, less manufacturing cost and produces rapidly eco-friendly metal nanoparticles.

Keywords: cyanobacteria, silver nanoparticles, silver-gold alloy nanoparticles, spectroscopy

Procedia PDF Downloads 298
8124 CuFeOx-Based Nano-Rose Electrocatalysts for Oxygen Evolution Reaction

Authors: Hamad Almohamadi, Nabeel H. Alharthi, Abdulrahman Aljabri

Abstract:

In this study, two-dimensional CuFeOx is deposited on nickel foam for the fabrication of electrocatalyst for oxygen evolution reaction (OER). The in-situ hydrothermal synthesis of CuFeOx in presence of aloe vera extract was found to yield unique nano-rose-like morphology which aided to improve the electrochemical surface area of the electrode. The phytochemical assisted synthesis of CuFeOx using 75% aloe vera extract resulted in improved OER electrocatalytic performance by attaining the overpotential of 310 mV for 50 mA cm−2 and 410 mV for 100 mA cm−2. The electrode also sustained robust stability throughout the 50 h of chronopotentiometry studies under alkaline electrolyte conditions, thus proving to be prospective electrode material for efficient OER in electrochemical water splitting.

Keywords: water splitting, phytochemicals, oxygen evaluation reaction, Tafel's slope, stability

Procedia PDF Downloads 92
8123 Synthesis of Ni/Mesopore Silica-Alumina Catalyst for Hydrocracking of Pyrolyzed α-Cellulose

Authors: Wega Trisunaryanti, Hesty Kusumastuti, Iip Izul Falah, Muhammad Fajar Marsuki, Rahmad Nuryanto

Abstract:

Synthesis of Ni supported on mesopore silica-alumina (MSA) for hydrocracking of pyrolyzed α-cellulose had been carried out. The silica and alumina were extracted from Sidoarjo mud. Gelatin from catfish bone was used as a template for the mesopore design. The MSA was synthesized by using hydrothermal method at 100 °C for 24 h and calcined at 550 °C for 4 h then characterized by using X-Ray Diffraction Spectrometer (XRD) and Nitrogen Gas Sorption Analyzer (GAS). The Ni metal was loaded to the MSA by wet impregnation method. The catalytic activity in the hydrocracking reaction of pyrolyzed α-cellulose was carried out at 450 °C for 2 h. The MSA synthesized in this work is an amorphous material with specific surface area, total pore volume, and average pore diameter of 212.29 m²/g, 1.29 cm³/g, and 20.05 nm, respectively. The Ni/MSA catalyst produced 73.02 wt.% of liquid product in hydrocracking of pyrolyzed α-cellulose.

Keywords: catalyst, gelatin, hydrocracking, mesopore silica-alumina, α-cellulose

Procedia PDF Downloads 141
8122 Advances in Artificial intelligence Using Speech Recognition

Authors: Khaled M. Alhawiti

Abstract:

This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.

Keywords: speech recognition, acoustic phonetic, artificial intelligence, hidden markov models (HMM), statistical models of speech recognition, human machine performance

Procedia PDF Downloads 449
8121 Synthesis of SnO Novel Cabbage Nanostructure and Its Electrochemical Property as an Anode Material for Lithium Ion Battery

Authors: Yongkui Cui, Fengping Wang, Hailei Zhao, Muhammad Zubair Iqbal, Ziya Wang, Yan Li, Pengpeng LV

Abstract:

The novel 3D SnO cabbages self-assembled by nanosheets were successfully synthesized via template-free hydrothermal growth method under facile conditions.The XRD results manifest that the as-prepared SnO is tetragonal phase. The TEM and HRTEM results show that the cabbage nanosheets are polycrystalline structure consisted of considerable single-crystalline nanoparticles. Two typical Raman modes A1g=210 and Eg=112 cm-1 of SnO are observed by Raman spectroscopy. Moreover, galvanostatic cycling tests has been performed using the SnO cabbages as anode material of lithium ion battery and the electrochemical results suggest that the synthesized SnO cabbage structures are a promising anode material for lithium ion batteries.

Keywords: electrochemical property, hydrothermal synthesis, lithium ion battery, stannous oxide

Procedia PDF Downloads 435
8120 Synthesis and Anti-Cancer Evaluation of Uranyle Complexes

Authors: Abdol-Hassan Doulah

Abstract:

In this research, some of the inorganic complexes of uranyl with N- donor ligands were synthesized. Complexes were characteriezed by FT-IR and UV spectra, ¹HNMR, ¹³CNMR and some physical properties. The uranyl unit (UO2) is composed of a center of uranium atom with the charge (+6) and two oxygen atom by forming two U=O double bonds. The structure is linear (O=U=O, 180) and usually stable. So other ligands often coordinate to the U atom in the plane perpendicularly to the O=U=O axis. The antitumor activity of some of ligand and their complexes against a panel of human tumor cell lines (HT29: Haman colon adenocarcinoma cell line T47D: human breast adenocarcinoma cell line) were determined by MTT(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay. These data suggest that some of these compounds provide good models for the further design of potent antitumor compounds.

Keywords: inorganic, uranyl complex-donor ligands, Schiff bases, anticancer activity

Procedia PDF Downloads 430
8119 Synthesis and Molecular Docking of Isonicotinohydrazide Derivatives as Anti-Tuberculosis Candidates

Authors: Ruswanto Ruswanto, Richa Mardianingrum, Tita Nofianti, Nur Rahayuningsih

Abstract:

Tuberculosis (TB) is a chronic disease as a result of Mycobacterium tuberculosis. It can affect all age groups, and hence, is a global health problem that causes the death of millions of people every year. One of the drugs used in tuberculosis treatment is isonicotinohydrazide. In this study, N'-benzoylisonicotinohydrazide derivative compounds (a-l) were prepared using acylation reactions between isonicotinohydrazide and benzoyl chloride derivatives, through the reflux method. Molecular docking studies suggested that all of the compounds had better interaction with Mycobacterium tuberculosis enoyl-acyl carrier protein reductase (InhA) than isonicotinohydrazide. It can be concluded that N'-benzoylisonicotinohydrazide derivatives (a-l) could be used as anti-tuberculosis candidates. From the docking results revealed that all of the compounds interact well with InhA, with compound g (N'-(3-nitrobenzoyl)isonicotinohydrazide) exhibiting the best interaction.

Keywords: anti-tuberculosis , docking, InhA, N'-benzoylisonicotinohydrazide, synthesis

Procedia PDF Downloads 279
8118 Optimization and Simulation Models Applied in Engineering Planning and Management

Authors: Abiodun Ladanu Ajala, Wuyi Oke

Abstract:

Mathematical simulation and optimization models packaged within interactive computer programs provide a common way for planners and managers to predict the behaviour of any proposed water resources system design or management policy before it is implemented. Modeling presents a principal technique of predicting the behaviour of the proposed infrastructural designs or management policies. Models can be developed and used to help identify specific alternative plans that best meet those objectives. This study discusses various types of models, their development, architecture, data requirements, and applications in the field of engineering. It also outlines the advantages and limitations of each the optimization and simulation models presented. The techniques explored in this review include; dynamic programming, linear programming, fuzzy optimization, evolutionary algorithms and finally artificial intelligence techniques. Previous studies carried out using some of the techniques mentioned above were reviewed, and most of the results from different researches showed that indeed optimization and simulation provides viable alternatives and predictions which form a basis for decision making in building engineering structures and also in engineering planning and management.

Keywords: linear programming, mutation, optimization, simulation

Procedia PDF Downloads 562
8117 Return to Work after a Mental Health Problem: Analysis of Two Different Management Models

Authors: Lucie Cote, Sonia McFadden

Abstract:

Mental health problems in the workplace are currently one of the main causes of absences. Research work has highlighted the importance of a collaborative process involving the stakeholders in the return-to-work process and has established the best management practices to ensure a successful return-to-work. However, very few studies have specifically explored the combination of various management models and determined whether they could satisfy the needs of the stakeholders. The objective of this study is to analyze two models for managing the return to work: the ‘medical-administrative’ and the ‘support of the worker’ in order to understand the actions and actors involved in these models. The study also aims to explore whether these models meet the needs of the actors involved in the management of the return to work. A qualitative case study was conducted in a Canadian federal organization. An abundant internal documentation and semi-directed interviews with six managers, six workers and four human resources professionals involved in the management of records of employees returning to work after a mental health problem resulted in a complete picture of the return to work management practices used in this organization. The triangulation of this data facilitated the examination of the benefits and limitations of each approach. The results suggest that the actions of management for employee return to work from both models of management ‘support of the worker’ and ‘medical-administrative’ are compatible and can meet the needs of the actors involved in the return to work. More research is needed to develop a structured model integrating best practices of the two approaches to ensure the success of the return to work.

Keywords: return to work, mental health, management models, organizations

Procedia PDF Downloads 194
8116 Effect of Traffic Volume and Its Composition on Vehicular Speed under Mixed Traffic Conditions: A Kriging Based Approach

Authors: Subhadip Biswas, Shivendra Maurya, Satish Chandra, Indrajit Ghosh

Abstract:

Use of speed prediction models sometimes appears as a feasible alternative to laborious field measurement particularly, in case when field data cannot fulfill designer’s requirements. However, developing speed models is a challenging task specifically in the context of developing countries like India where vehicles with diverse static and dynamic characteristics use the same right of way without any segregation. Here the traffic composition plays a significant role in determining the vehicular speed. The present research was carried out to examine the effects of traffic volume and its composition on vehicular speed under mixed traffic conditions. Classified traffic volume and speed data were collected from different geometrically identical six lane divided arterials in New Delhi. Based on these field data, speed prediction models were developed for individual vehicle category adopting Kriging approximation technique, an alternative for commonly used regression. These models are validated with the data set kept aside earlier for validation purpose. The predicted speeds showed a great deal of agreement with the observed values and also the model outperforms all other existing speed models. Finally, the proposed models were utilized to evaluate the effect of traffic volume and its composition on speed.

Keywords: speed, Kriging, arterial, traffic volume

Procedia PDF Downloads 333
8115 Synthesis of Magnesium Oxide in Spinning Disk Reactor and Its Applications in Cycloaddition of Carbon Dioxide to Epoxides

Authors: Tzu-Wen Liu, Yi-Feng Lin, Yu-Shao Chen

Abstract:

CO_2 is believed to be partly responsible for changes to the global climates. Carbon capture and storage (CCS) is one way to reduce carbon dioxide emissions in the past. Recently, how to convert the captured CO_2 into fine chemicals gets lots of attention owing to reducing carbon dioxide emissions and providing greener feedstock for the chemicals industry. A variety of products can be manufactured from carbon dioxide and the most attractive products are cyclic carbonates. Therefore, the kind of catalyst plays an important role in cycloaddition of carbon dioxide to epoxides. Magnesium oxide can be an efficiency heterogeneous catalyst for the cycloaddition of carbon dioxide to epoxides because magnesium oxide has both acid and base active sites and can provide the adsorption of carbon dioxide, promoting ring-opening reaction. Spinning disk reactor (SDR) is one of the device of high-gravity technique and has successfully used for synthesis of nanoparticles by precipitation methods because of the high mass transfer rate. Synthesis of nanoparticles in SDR has advantages of low energy consumption and easy to scale up. The aim of this research is to synthesize magnesium hydroxide nanoparticles in SDR as precursors for magnesium oxide. Experimental results showed that the calcination temperature of magnesium hydroxide to magnesium oxide, and the pressure and temperature of cycloaddition reaction had significantly effect on the conversion and selectivity of the reaction.

Keywords: magnesium oxide, catalyst, cycloaddition, spinning disk reactor, carbon dioxide

Procedia PDF Downloads 271
8114 Chiral Amine Synthesis and Recovery by Using High Molecular Weight Amine Donors

Authors: Claudia Matassa, Matthias Hohne, Dominic Ormerod, Yamini Satyawali

Abstract:

Chiral amines integrate the backbone of several active pharmaceutical ingredients (APIs) used in modern medicine for the treatment of a vast range of diseases. Despite the demand, their synthesis remains challenging. Besides a range of chemicals and enzymatical methods, chiral amine synthesis using transaminases (EC 2.6.1.W) represents a useful alternative to access this important class of compounds. Even though transaminases exhibit excellent stereo and regioselectivity and the potential for high yield, the reaction suffers from a number of challenges, including the thermodynamic equilibrium, product inhibition, and low substrate solubility. In this work, we demonstrate a membrane assisted strategy for addressing these challenges. It involves the use of high molecular weight (HMW) amine donors for the transaminase-catalyzed synthesis of 4-phenyl-2-butylamine in both aqueous and organic solvent media. In contrast to common amine donors such as alanine or isopropylamine, these large molecules, provided in excess for thermodynamic equilibrium shifting, are easily retained by commercial nanofiltration membranes; thus a selective permeation of the desired smaller product amine is possible. The enzymatic transamination in aqueous media, combined with selective product removal shifted the equilibrium enhancing substrate conversion by an additional 25% compared to the control reaction. Along with very efficient amine product removal, there was undesirable loss of ketone substrate and low product concentration was achieved. The system was therefore further improved by performing the reaction in organic solvent (n-heptane). Coupling the reaction system with membrane-assisted product removal resulted in a highly concentrated and relatively pure ( > 97%) product solution. Moreover, a product yield of 60% was reached, compared to 15% without product removal.

Keywords: amine donor, chiral amines, in situ product removal, transamination

Procedia PDF Downloads 123
8113 Artificial Intelligence for Generative Modelling

Authors: Shryas Bhurat, Aryan Vashistha, Sampreet Dinakar Nayak, Ayush Gupta

Abstract:

As the technology is advancing more towards high computational resources, there is a paradigm shift in the usage of these resources to optimize the design process. This paper discusses the usage of ‘Generative Design using Artificial Intelligence’ to build better models that adapt the operations like selection, mutation, and crossover to generate results. The human mind thinks of the simplest approach while designing an object, but the intelligence learns from the past & designs the complex optimized CAD Models. Generative Design takes the boundary conditions and comes up with multiple solutions with iterations to come up with a sturdy design with the most optimal parameter that is given, saving huge amounts of time & resources. The new production techniques that are at our disposal allow us to use additive manufacturing, 3D printing, and other innovative manufacturing techniques to save resources and design artistically engineered CAD Models. Also, this paper discusses the Genetic Algorithm, the Non-Domination technique to choose the right results using biomimicry that has evolved for current habitation for millions of years. The computer uses parametric models to generate newer models using an iterative approach & uses cloud computing to store these iterative designs. The later part of the paper compares the topology optimization technology with Generative Design that is previously being used to generate CAD Models. Finally, this paper shows the performance of algorithms and how these algorithms help in designing resource-efficient models.

Keywords: genetic algorithm, bio mimicry, generative modeling, non-dominant techniques

Procedia PDF Downloads 127
8112 The Effect of Arbutin Powder and Arctostaphylos uvaursi Aqueous Leaf Extract on Synthesis of Melanin by Madurella mycetomatis

Authors: Amina Omer, Ikram Elsiddig

Abstract:

Arctostaphylos uvaursi is a plant of the family Ericaceae, it’s used in skin care products mostly for its depigmenting action, due to the presence of hydroquinones that are well known inhibitors of tyrosinase, an enzyme involved in melanin biosynthesis in humans. The main hydroquinone found within the A. uvaursi is arbutin, which is found with varying percentage within the plant depending on the season, and area from which the plant is harvested. An in vitro experiment has shown that the arbutin found within the bearberry leaf extract inhibited the biosynthesis of melanin in human melanoma cells and in three-dimensional human skin model. Madurella mycetomatis is filamentous fungus that causes the fungal form of mycetoma known as eumycetoma, with existing anti-fungals and surgery, only 35% of people living eumycetoma are treated, M. mycetomatis has been found to shield itself against the antifungal therapy through the production of melanin decreasing the effectiveness of the therapy, therefore there is a need for a new and more effective therapy. The aim of the study was to investigate and compare the effect of arbutin powder and aqueous extract of A. uvaursi containing arbutin on the biosynthesis of melanin by M. mycetomatis. The experiment was carried out by culturing M. mycetomatis on minimal media composed of 2% agar, 15 mM glucose, 10 mM MgSO4, 29.4 mM KH2PO4, 13 mM glycin and 80mg/l gentamicin, the media was supplied with different concentration of arbutin solution (5, 25 50,and 75mg) and aqueous extract of A. uvaursi to contain arbutin with concentrations (5, 25 50,and 75mg), the plates were incubated for two month and the result was observed by the naked eye. The results revealed that the arbutin powder had an inhibitory effect on melanin synthesis by M. mycetomatis that correlated with its established inhibitory effect on melanin synthesis in humans. The inhibitory effect of arbutin on melanin synthesis by M. mycetomatis was found to be dose dependent. A. uvaursi aqueous leaf extract containing arbutin was also found to decrease melanin production by M. mycetomatis, however plates containing high concentrations of aqueous extract couldn’t be assessed for its melanin inhibitory effect due to the high content of carbohydrates in the extract that promoted the growth of fungi Asperigullus niger rendering the plates unsuitable for visual inspection. In conclusion inhibition of melanin synthesis was observed on the arbutin powder as well as the aqueous extract containing arbutin. A. uvaursi is known to exhibit anti-inflammatory activity, which can aid in wound healing that is beneficial in the chronic inflammation caused by M. mycetomatis.

Keywords: arbutin, arctostaphylos, Madurella, melanin

Procedia PDF Downloads 147
8111 Mixed Effects Models for Short-Term Load Forecasting for the Spanish Regions: Castilla-Leon, Castilla-La Mancha and Andalucia

Authors: C. Senabre, S. Valero, M. Lopez, E. Velasco, M. Sanchez

Abstract:

This paper focuses on an application of linear mixed models to short-term load forecasting. The challenge of this research is to improve a currently working model at the Spanish Transport System Operator, programmed by us, and based on linear autoregressive techniques and neural networks. The forecasting system currently forecasts each of the regions within the Spanish grid separately, even though the behavior of the load in each region is affected by the same factors in a similar way. A load forecasting system has been verified in this work by using the real data from a utility. In this research it has been used an integration of several regions into a linear mixed model as starting point to obtain the information from other regions. Firstly, the systems to learn general behaviors present in all regions, and secondly, it is identified individual deviation in each regions. The technique can be especially useful when modeling the effect of special days with scarce information from the past. The three most relevant regions of the system have been used to test the model, focusing on special day and improving the performance of both currently working models used as benchmark. A range of comparisons with different forecasting models has been conducted. The forecasting results demonstrate the superiority of the proposed methodology.

Keywords: short-term load forecasting, mixed effects models, neural networks, mixed effects models

Procedia PDF Downloads 164
8110 Effect of the Nature of Silica Precursor in Zeolite ZSM-22 Synthesis

Authors: Nyiko M. Chauke, James Ramontja, Richard M. Moutloali

Abstract:

The zeolite ZSM-22 material demonstrated effective hydrophilic character as a nanoadditive filler in the preparation of nanocomposite membranes. In this study, nanorods ZSM-22 zeolite materials were hydrothermally synthesised from a homogenous gel mixture prepared using different silica precursors: colloidal silica, fumed silica, tetraethylorthosilicate (TEOS), and aluminium precursor: aluminium sulphate octadecahydrate (Al₂(SO₄)₃.18H₂O to Si/Al of 60. This was focused on developing a defect-free zeolite framework for effective use in applications such as membrane separation process, adsorption, and catalysis. The obtained ZSM-22 zeolite materials with 60 Si/Al ratio exhibits high crystallinity, hydrophilicity, and needle-like morphologies, suggesting successful synthesis as shown by X-ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Fourier-Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) physicochemical analysis. It was revealed that the use of different nature of silica precursors significantly influenced the properties of the final product and contributed to the development of defect-free zeolite material. As such, the crystalline nanorods of Theta-1 (TON) ZSM-22 obtained from TEOS silica showed high phase purity, defect-free, and narrow particle size distribution. Morphological analysis exhibited that the use of TEOS as silica precursor was effective than its counterparts and produced high crystalline need-like agglomerated particles.

Keywords: silica precursor, hydrothermal synthesis, zeolite material, ZSM-22

Procedia PDF Downloads 112
8109 In vitro Cytotoxicity Study on Silver Powders Synthesized via Different Routes

Authors: Otilia Ruxandra Vasile, Ecaterina Andronescu, Cristina Daniela Ghitulica, Bogdan Stefan Vasile, Roxana Trusca, Eugeniu Vasile, Alina Maria Holban, Carmen Mariana Chifiriuc, Florin Iordache, Horia Maniu

Abstract:

Engineered powders offer great promise in several applications, but little information is known about cytotoxicity effects. The aim of the current study was the synthesis and cytotoxicity examination of silver powders using pyrosol method at temperatures of 600°C, 650°C and 700°C, respectively sol-gel method and calcinations at 500°C, 600°C, 700°C and 800°C. We have chosen to synthesize and examine silver particles cytotoxicity due to its use in biological applications. The synthesized Ag powders were characterized from the structural, compositional and morphological point of view by using XRD, SEM, and TEM with SAED. In order to determine the influence of the synthesis route on Ag particles cytotoxicity, different sizes of micro and nanosilver synthesized powders were evaluated for their potential toxicity. For the study of their cytotoxicity, cell cycle and apoptosis have been done analysis through flow cytometry on human colon carcinoma cells and mesenchymal stem cells and through the MTT assay, while the viability and the morphological changes of the cells have been evaluated by using cloning studies. The results showed that the synthesized silver nanoparticles have displayed significant cytotoxicity effects on cell cultures. Our synthesized silver powders were found to present toxicity in a synthesis route and time-dependent manners for pyrosol synthesized nanoparticles; whereas a lower cytotoxicity has been measured after cells were treated with silver nanoparticles synthesized through sol-gel method.

Keywords: Ag, cytotoxicity, pyrosol method, sol-gel method

Procedia PDF Downloads 565
8108 Predominance of Teaching Models Used by Math Teachers in Secondary Education

Authors: Verónica Diaz Quezada

Abstract:

This research examines the teaching models used by secondary math teachers when teaching logarithmic, quadratic and exponential functions. For this, descriptive case studies have been carried out on 5 secondary teachers. These teachers have been chosen from 3 scientific-humanistic and technical schools, in Chile. Data have been obtained through non-participant class observation and the application of a questionnaire and a rubric to teachers. According to the results, the didactic model that prevails is the one that starts with an interactive strategy, moves to a more content-based structure, and ends with a reinforcement stage. Nonetheless, there is always influence from teachers, their methods, and the group of students.

Keywords: teaching models, math teachers, functions, secondary education

Procedia PDF Downloads 171
8107 Turmeric Mediated Synthesis and Characterization of Cerium Oxide Nanoparticles

Authors: Nithin Krisshna Gunasekaran, Prathima Prabhu Tumkur, Nicole Nazario Bayon, Krishnan Prabhakaran, Joseph C. Hall, Govindarajan T. Ramesh

Abstract:

Cerium oxide and turmeric have antioxidant properties, which have gained interest among researchers to study their applications in the field of biomedicine, such asanti-inflammatory, anticancer, and antimicrobial applications. In this study, the turmeric extract was prepared and mixed with cerium nitrate hexahydrate, stirred continuously to obtain a homogeneous solution and then heated on a hot plate to get the supernatant evaporated, then calcinated at 600°C to obtain the cerium oxide nanoparticles. Characterization of synthesized cerium oxide nanoparticles through Scanning Electron Microscopy determined the particle size to be in the range of 70 nm to 250 nm. Energy Dispersive X-Ray Spectroscopy determined the elemental composition of cerium and oxygen. Individual particles were identified through the characterization of cerium oxide nanoparticles using Field Emission Scanning Electron Microscopy, in which the particles were determined to be spherical and in the size of around 70 nm. The presence of cerium oxide was assured by analyzing the spectrum obtained through the characterization of cerium oxide nanoparticles by Fourier Transform Infrared Spectroscopy. The crystal structure of cerium oxide nanoparticles was determined to be face-centered cubic by analyzing the peaks obtained through theX-Ray Diffraction method. The crystal size of cerium oxide nanoparticles was determined to be around 13 nm by using the Debye Scherer equation. This study confirmed the synthesis of cerium oxide nanoparticles using turmeric extract.

Keywords: antioxidant, characterization, cerium oxide, synthesis, turmeric

Procedia PDF Downloads 133
8106 Cdk1 Gates Cell Cycle-Dependent tRNA Synthesis by Regulating RNA Polymerase III Activity

Authors: Maricarmen Herrera, Pierre Chymkowitch, Joe Robertson, Jens Eriksson, Jorrit Enserink

Abstract:

tRNA genes are transcribed by RNA polymerase III. During recent years, it has become clear that tDNA transcription fluctuates during the cell cycle. However, the mechanism by which the cell cycle controls the amplitude of tDNA transcription remains unknown. We found that the cyclin Clb5 recruits the cyclin dependent kinase Cdk1 to tRNA genes to sharply increase tRNA synthesis during a brief interval in the cell cycle. We show that Cdk1 promotes the interaction of TFIIIB with TFIIIC, that it stimulates the recruitment of TFIIIC to tRNA genes, that it prevents the formation of an overly stable TFIIIB-tDNA complex and that it augments the dynamics of RNA polymerase III. Furthermore, we identify Bdp1 as a novel Cdk1 substrate, and phosphorylation of Bdp1 is required for the cell cycle-dependent increase in tDNA transcription. In addition, we show that phosphorylation of the Cdk1 substrate Nup60 mediates formation of a Nup60-Nup2 complex at tRNA genes, which is also required for cell cycle-dependent tDNA transcription. Together, our findings indicate that Cdk1 activity gates tRNA synthesis by regulating the dynamics of the TFIIIB-TFIIIC-RNAPIII complex, and that it may promote the formation of a nuclear pore microenvironment conducive to efficient tDNA transcription.

Keywords: Cdk1, cell cycle, RNAPIII machinery, tRNA

Procedia PDF Downloads 162
8105 A Super-Efficiency Model for Evaluating Efficiency in the Presence of Time Lag Effect

Authors: Yanshuang Zhang, Byungho Jeong

Abstract:

In many cases, there is a time lag between the consumption of inputs and the production of outputs. This time lag effect should be considered in evaluating the performance of organizations. Recently, a couple of DEA models were developed for considering time lag effect in efficiency evaluation of research activities. Multi-periods input(MpI) and Multi-periods output(MpO) models are integrated models to calculate simple efficiency considering time lag effect. However, these models can’t discriminate efficient DMUs because of the nature of basic DEA model in which efficiency scores are limited to ‘1’. That is, efficient DMUs can’t be discriminated because their efficiency scores are same. Thus, this paper suggests a super-efficiency model for efficiency evaluation under the consideration of time lag effect based on the MpO model. A case example using a long-term research project is given to compare the suggested model with the MpO model.

Keywords: DEA, super-efficiency, time lag, multi-periods input

Procedia PDF Downloads 448
8104 Seamless MATLAB® to Register-Transfer Level Design Methodology Using High-Level Synthesis

Authors: Petri Solanti, Russell Klein

Abstract:

Many designers are asking for an automated path from an abstract mathematical MATLAB model to a high-quality Register-Transfer Level (RTL) hardware description. Manual transformations of MATLAB or intermediate code are needed, when the design abstraction is changed. Design conversion is problematic as it is multidimensional and it requires many different design steps to translate the mathematical representation of the desired functionality to an efficient hardware description with the same behavior and configurability. Yet, a manual model conversion is not an insurmountable task. Using currently available design tools and an appropriate design methodology, converting a MATLAB model to efficient hardware is a reasonable effort. This paper describes a simple and flexible design methodology that was developed together with several design teams.

Keywords: design methodology, high-level synthesis, MATLAB, verification

Procedia PDF Downloads 115
8103 The Effects and Interactions of Synthesis Parameters on Properties of Mg Substituted Hydroxyapatite

Authors: S. Sharma, U. Batra, S. Kapoor, A. Dua

Abstract:

In this study, the effects and interactions of reaction time and capping agent assistance during sol-gel synthesis of magnesium substituted hydroxyapatite nanopowder (MgHA) on hydroxyapatite (HA) to β-tricalcium phosphate (β-TCP) ratio, Ca/P ratio and mean crystallite size was examined experimentally as well as through statistical analysis. MgHA nanopowders were synthesized by sol-gel technique at room temperature using aqueous solution of calcium nitrate tetrahydrate, magnesium nitrate hexahydrate and potassium dihydrogen phosphate as starting materials. The reaction time for sol-gel synthesis was varied between 15 to 60 minutes. Two process routes were followed with and without addition of triethanolamine (TEA) in the solutions. The elemental compositions of as-synthesized powders were determined using X-ray fluorescence (XRF) spectroscopy. The functional groups present in the as-synthesized MgHA nanopowders were established through Fourier Transform Infrared Spectroscopy (FTIR). The amounts of phases present, Ca/P ratio and mean crystallite sizes of MgHA nanopowders were determined using X-ray diffraction (XRD). The HA content in biphasic mixture of HA and β-TCP and Ca/P ratio in as-synthesized MgHA nanopowders increased effectively with reaction time of sols (p < 0.0001, two way Anova), however, these were independent of TEA addition (p > 0.15, two way Anova). The MgHA nanopowders synthesized with TEA assistance exhibited 14 nm lower crystallite size (p < 0.018, 2 sample t-test) compared to the powder synthesized without TEA assistance.

Keywords: capping agent, hydroxyapatite, regression analysis, sol-gel, 2- sample t-test, two-way analysis of variance (ANOVA)

Procedia PDF Downloads 347
8102 Efficient Ni(II)-Containing Layered Triple Hydroxide-Based Catalysts: Synthesis, Characterisation and Their Role in the Heck Reaction

Authors: Gabor Varga, Krisztina Karadi, Zoltan Konya, Akos Kukovecz, Pal Sipos, Istvan Palinko

Abstract:

Nickel can efficiently replace palladium in the Heck, Suzuki and Negishi reactions. This study focuses on the synthesis and catalytic application of Ni(II)-containing layered double hydroxides (LDHs) and layered triple hydroxides (LTHs). Our goals were to incorporate Ni(II) ions among the layers of LDHs or LTHs, or binding it to their surface or building it into their layers in such a way that their catalytic activities are maintained or even increased. The LDHs and LTHs were prepared by the co-precipitation method using ethylene glycol as co-solvent. In several cases, post-synthetic modifications (e.g., thermal treatment) were performed. After optimizing the synthesis conditions, the composites displayed good crystallinity and were free of byproducts. The success of the syntheses and the post-synthetic modifications was confirmed by relevant characterization methods (XRD, SEM, SEM-EDX and combined IR techniques). Catalytic activities of the produced and well-characterized solids were investigated through the Heck reaction. The composites behaved as efficient, recyclable catalysts in the Heck reaction between 4-bromoanisole and styrene. Through varying the reaction parameters, we were able to obtain acceptable conversions under mild conditions. Our study highlights the possibility of the application of Ni(II)-containing composites as efficient catalysts in coupling reactions.

Keywords: layered double hydroxide, layered triple hydroxide, heterogeneous catalysis, heck reaction

Procedia PDF Downloads 147
8101 Classification of Business Models of Italian Bancassurance by Balance Sheet Indicators

Authors: Andrea Bellucci, Martina Tofi

Abstract:

The aim of paper is to analyze business models of bancassurance in Italy for life business. The life insurance business is very developed in the Italian market and banks branches have 80% of the market share. Given its maturity, the life insurance market needs to consolidate its organizational form to allow for the development of non-life business, which nowadays collects few premiums but represents a great opportunity to enlarge the market share of bancassurance using its strength in the distribution channel while the market share of independent agents is decreasing. Starting with the main business model of bancassurance for life business, this paper will analyze the performances of life companies in the Italian market by balance sheet indicators and by main discriminant variables of business models. The study will observe trends from 2013 to 2015 for the Italian market by exploiting a database managed by Associazione Nazionale delle Imprese di Assicurazione (ANIA). The applied approach is based on a bottom-up analysis starting with variables and indicators to define business models’ classification. The statistical classification algorithm proposed by Ward is employed to design business models’ profiles. Results from the analysis will be a representation of the main business models built by their profile related to indicators. In that way, an unsupervised analysis is developed that has the limit of its judgmental dimension based on research opinion, but it is possible to obtain a design of effective business models.

Keywords: bancassurance, business model, non life bancassurance, insurance business value drivers

Procedia PDF Downloads 275
8100 Tunable Crystallinity of Zinc Gallogermanate Nanoparticles via Organic Ligand-Assisted Biphasic Hydrothermal Synthesis

Authors: Sarai Guerrero, Lijia Liu

Abstract:

Zinc gallogermanate (ZGGO) is a persistent phosphor that can emit in the near infrared (NIR) range once dopped with Cr³⁺ enabling its use for in-vivo deep-tissue bio-imaging. Such a property also allows for its application in cancer diagnosis and therapy. Given this, work into developing a synthetic procedure that can be done using common laboratory instruments and equipment as well as understanding ZGGO overall, is in demand. However, the ZGGO nanoparticles must have a size compatible for cell intake to occur while still maintaining sufficient photoluminescence. The nanoparticle must also be made biocompatible by functionalizing the surface for hydrophilic solubility and for high particle uniformity in the final product. Additionally, most research is completed on doped ZGGO, leaving a gap in understanding the base form of ZGGO. It also leaves a gap in understanding how doping affects the synthesis of ZGGO. In this work, the first step of optimizing the particle size via the crystalline size of ZGGO was done with undoped ZGGO using the organic acid, oleic acid (OA) for organic ligand-assisted biphasic hydrothermal synthesis. The effects of this synthesis procedure on ZGGO’s crystallinity were evaluated using Powder X-Ray Diffraction (PXRD). OA was selected as the capping ligand as experiments have shown it beneficial in synthesizing sub-10 nm zinc gallate (ZGO) nanoparticles as well as palladium nanocrystals and magnetite (Fe₃O₄) nanoparticles. Later it is possible to substitute OA with a different ligand allowing for hydrophilic solubility. Attenuated Total Reflection Fourier-Transform Infrared (ATR-FTIR) was used to investigate the surface of the nanoparticle to investigate and verify that OA had capped the nanoparticle. PXRD results showed that using this procedure led to improved crystallinity, comparable to the high-purity reagents used on the ZGGO nanoparticles. There was also a change in the crystalline size of the ZGGO nanoparticles. ATR-FTIR showed that once capped ZGGO cannot be annealed as doing so will affect the OA. These results point to this new procedure positively affecting the crystallinity of ZGGO nanoparticles. There are also repeatable implying the procedure is a reliable source of highly crystalline ZGGO nanoparticles. With this completed, the next step will be working on substituting the OA with a hydrophilic ligand. As these ligands effect the solubility of the nanoparticle as well as the pH that the nanoparticles can dissolve in, further research is needed to verify which ligand is best suited for preparing ZGGO for bio-imaging.

Keywords: biphasic hydrothermal synthesis, crystallinity, oleic acid, zinc gallogermanate

Procedia PDF Downloads 104