Search results for: input performance
14067 Fuzzy Analytic Hierarchy Process for Determination of Supply Chain Performance Evaluation Criteria
Authors: Ibrahim Cil, Onur Kurtcu, H. Ibrahim Demir, Furkan Yener, Yusuf. S. Turkan, Muharrem Unver, Ramazan Evren
Abstract:
Fuzzy AHP (Analytic Hierarchy Process) method is decision-making way at the end of integrating the current AHP method with fuzzy structure. In this study, the processes of production planning, inventory management and purchasing department of a system were analysed and were requested to decide the performance criteria of each area. At this point, the current work processes were analysed by various decision-makers and comparing each criteria by giving points according to 1-9 scale were completed. The criteria were listed in order to their weights by using Fuzzy AHP approach and top three performance criteria of each department were determined. After that, the performance criteria of supply chain consisting of three departments were asked to determine. The processes of each department were compared by decision-makers at the point of building the supply chain performance system and getting the performance criteria. According to the results, the criteria of performance system of supply chain by using Fuzzy AHP were determined for which will be used in the supply chain performance system in the future.Keywords: AHP, fuzzy, performance evaluation, supply chain
Procedia PDF Downloads 34614066 Applying of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for Estimation of Flood Hydrographs
Authors: Amir Ahmad Dehghani, Morteza Nabizadeh
Abstract:
This paper presents the application of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to flood hydrograph modeling of Shahid Rajaee reservoir dam located in Iran. This was carried out using 11 flood hydrographs recorded in Tajan river gauging station. From this dataset, 9 flood hydrographs were chosen to train the model and 2 flood hydrographs to test the model. The different architectures of neuro-fuzzy model according to the membership function and learning algorithm were designed and trained with different epochs. The results were evaluated in comparison with the observed hydrographs and the best structure of model was chosen according the least RMSE in each performance. To evaluate the efficiency of neuro-fuzzy model, various statistical indices such as Nash-Sutcliff and flood peak discharge error criteria were calculated. In this simulation, the coordinates of a flood hydrograph including peak discharge were estimated using the discharge values occurred in the earlier time steps as input values to the neuro-fuzzy model. These results indicate the satisfactory efficiency of neuro-fuzzy model for flood simulating. This performance of the model demonstrates the suitability of the implemented approach to flood management projects.Keywords: adaptive neuro-fuzzy inference system, flood hydrograph, hybrid learning algorithm, Shahid Rajaee reservoir dam
Procedia PDF Downloads 47814065 Rainfall-Runoff Forecasting Utilizing Genetic Programming Technique
Authors: Ahmed Najah Ahmed Al-Mahfoodh, Ali Najah Ahmed Al-Mahfoodh, Ahmed Al-Shafie
Abstract:
In this study, genetic programming (GP) technique has been investigated in prediction of set of rainfall-runoff data. To assess the effect of input parameters on the model, the sensitivity analysis was adopted. To evaluate the performance of the proposed model, three statistical indexes were used, namely; Correlation Coefficient (CC), Mean Square Error (MSE) and Correlation of Efficiency (CE). The principle aim of this study is to develop a computationally efficient and robust approach for predict of rainfall-runoff which could reduce the cost and labour for measuring these parameters. This research concentrates on the Johor River in Johor State, Malaysia.Keywords: genetic programming, prediction, rainfall-runoff, Malaysia
Procedia PDF Downloads 48214064 Performance of AquaCrop Model for Simulating Maize Growth and Yield Under Varying Sowing Dates in Shire Area, North Ethiopia
Authors: Teklay Tesfay, Gebreyesus Brhane Tesfahunegn, Abadi Berhane, Selemawit Girmay
Abstract:
Adjusting the proper sowing date of a crop at a particular location with a changing climate is an essential management option to maximize crop yield. However, determining the optimum sowing date for rainfed maize production through field experimentation requires repeated trials for many years in different weather conditions and crop management. To avoid such long-term experimentation to determine the optimum sowing date, crop models such as AquaCrop are useful. Therefore, the overall objective of this study was to evaluate the performance of AquaCrop model in simulating maize productivity under varying sowing dates. A field experiment was conducted for two consecutive cropping seasons by deploying four maize seed sowing dates in a randomized complete block design with three replications. Input data required to run this model are stored as climate, crop, soil, and management files in the AquaCrop database and adjusted through the user interface. Observed data from separate field experiments was used to calibrate and validate the model. AquaCrop model was validated for its performance in simulating the green canopy and aboveground biomass of maize for the varying sowing dates based on the calibrated parameters. Results of the present study showed that there was a good agreement (an overall R2 =, Ef= d= RMSE =) between measured and simulated values of the canopy cover and biomass yields. Considering the overall values of the statistical test indicators, the performance of the model to predict maize growth and biomass yield was successful, and so this is a valuable tool help for decision-making. Hence, this calibrated and validated model is suggested to use for determining optimum maize crop sowing date for similar climate and soil conditions to the study area, instead of conducting long-term experimentation.Keywords: AquaCrop model, calibration, validation, simulation
Procedia PDF Downloads 7114063 Proportional and Integral Controller-Based Direct Current Servo Motor Speed Characterization
Authors: Adel Salem Bahakeem, Ahmad Jamal, Mir Md. Maruf Morshed, Elwaleed Awad Khidir
Abstract:
Direct Current (DC) servo motors, or simply DC motors, play an important role in many industrial applications such as manufacturing of plastics, precise positioning of the equipment, and operating computer-controlled systems where speed of feed control, maintaining the position, and ensuring to have a constantly desired output is very critical. These parameters can be controlled with the help of control systems such as the Proportional Integral Derivative (PID) controller. The aim of the current work is to investigate the effects of Proportional (P) and Integral (I) controllers on the steady state and transient response of the DC motor. The controller gains are varied to observe their effects on the error, damping, and stability of the steady and transient motor response. The current investigation is conducted experimentally on a servo trainer CE 110 using analog PI controller CE 120 and theoretically using Simulink in MATLAB. Both experimental and theoretical work involves varying integral controller gain to obtain the response to a steady-state input, varying, individually, the proportional and integral controller gains to obtain the response to a step input function at a certain frequency, and theoretically obtaining the proportional and integral controller gains for desired values of damping ratio and response frequency. Results reveal that a proportional controller helps reduce the steady-state and transient error between the input signal and output response and makes the system more stable. In addition, it also speeds up the response of the system. On the other hand, the integral controller eliminates the error but tends to make the system unstable with induced oscillations and slow response to eliminate the error. From the current work, it is desired to achieve a stable response of the servo motor in terms of its angular velocity subjected to steady-state and transient input signals by utilizing the strengths of both P and I controllers.Keywords: DC servo motor, proportional controller, integral controller, controller gain optimization, Simulink
Procedia PDF Downloads 11014062 A Generalized Model for Performance Analysis of Airborne Radar in Clutter Scenario
Authors: Vinod Kumar Jaysaval, Prateek Agarwal
Abstract:
Performance prediction of airborne radar is a challenging and cumbersome task in clutter scenario for different types of targets. A generalized model requires to predict the performance of Radar for air targets as well as ground moving targets. In this paper, we propose a generalized model to bring out the performance of airborne radar for different Pulsed Repetition Frequency (PRF) as well as different type of targets. The model provides a platform to bring out different subsystem parameters for different applications and performance requirements under different types of clutter terrain.Keywords: airborne radar, blind zone, clutter, probability of detection
Procedia PDF Downloads 47014061 Performance in Police Organizations: Approaches from the Literature Review
Authors: Felipe Haleyson Ribeiro dos Santos, Edson Ronaldo Guarido Filho
Abstract:
This article aims to review the literature on performance in police organizations. For that, the inOrdinatio method was adopted, which defines the form of selection and classification of articles. The search was carried out in databases, which resulted in a total of 619 documents that were cataloged and classified with the support of the Mendeley software. The theoretical scope intended here is to identify how performance in police organizations has been studied. After deepening the analysis and focusing on management, it was possible to classify the articles into three levels: individual, organizational, and institutional. However, to our best knowledge, no studies were found that addressed the performance relationship between the levels, which can be seen as a suggestion for further research.Keywords: police management, performance, management, multi-level
Procedia PDF Downloads 10914060 AS-Geo: Arbitrary-Sized Image Geolocalization with Learnable Geometric Enhancement Resizer
Authors: Huayuan Lu, Chunfang Yang, Ma Zhu, Baojun Qi, Yaqiong Qiao, Jiangqian Xu
Abstract:
Image geolocalization has great application prospects in fields such as autonomous driving and virtual/augmented reality. In practical application scenarios, the size of the image to be located is not fixed; it is impractical to train different networks for all possible sizes. When its size does not match the size of the input of the descriptor extraction model, existing image geolocalization methods usually directly scale or crop the image in some common ways. This will result in the loss of some information important to the geolocalization task, thus affecting the performance of the image geolocalization method. For example, excessive down-sampling can lead to blurred building contour, and inappropriate cropping can lead to the loss of key semantic elements, resulting in incorrect geolocation results. To address this problem, this paper designs a learnable image resizer and proposes an arbitrary-sized image geolocation method. (1) The designed learnable image resizer employs the self-attention mechanism to enhance the geometric features of the resized image. Firstly, it applies bilinear interpolation to the input image and its feature maps to obtain the initial resized image and the resized feature maps. Then, SKNet (selective kernel net) is used to approximate the best receptive field, thus keeping the geometric shapes as the original image. And SENet (squeeze and extraction net) is used to automatically select the feature maps with strong contour information, enhancing the geometric features. Finally, the enhanced geometric features are fused with the initial resized image, to obtain the final resized images. (2) The proposed image geolocalization method embeds the above image resizer as a fronting layer of the descriptor extraction network. It not only enables the network to be compatible with arbitrary-sized input images but also enhances the geometric features that are crucial to the image geolocalization task. Moreover, the triplet attention mechanism is added after the first convolutional layer of the backbone network to optimize the utilization of geometric elements extracted by the first convolutional layer. Finally, the local features extracted by the backbone network are aggregated to form image descriptors for image geolocalization. The proposed method was evaluated on several mainstream datasets, such as Pittsburgh30K, Tokyo24/7, and Places365. The results show that the proposed method has excellent size compatibility and compares favorably to recently mainstream geolocalization methods.Keywords: image geolocalization, self-attention mechanism, image resizer, geometric feature
Procedia PDF Downloads 21414059 Recognizing Human Actions by Multi-Layer Growing Grid Architecture
Authors: Z. Gharaee
Abstract:
Recognizing actions performed by others is important in our daily lives since it is necessary for communicating with others in a proper way. We perceive an action by observing the kinematics of motions involved in the performance. We use our experience and concepts to make a correct recognition of the actions. Although building the action concepts is a life-long process, which is repeated throughout life, we are very efficient in applying our learned concepts in analyzing motions and recognizing actions. Experiments on the subjects observing the actions performed by an actor show that an action is recognized after only about two hundred milliseconds of observation. In this study, hierarchical action recognition architecture is proposed by using growing grid layers. The first-layer growing grid receives the pre-processed data of consecutive 3D postures of joint positions and applies some heuristics during the growth phase to allocate areas of the map by inserting new neurons. As a result of training the first-layer growing grid, action pattern vectors are generated by connecting the elicited activations of the learned map. The ordered vector representation layer receives action pattern vectors to create time-invariant vectors of key elicited activations. Time-invariant vectors are sent to second-layer growing grid for categorization. This grid creates the clusters representing the actions. Finally, one-layer neural network developed by a delta rule labels the action categories in the last layer. System performance has been evaluated in an experiment with the publicly available MSR-Action3D dataset. There are actions performed by using different parts of human body: Hand Clap, Two Hands Wave, Side Boxing, Bend, Forward Kick, Side Kick, Jogging, Tennis Serve, Golf Swing, Pick Up and Throw. The growing grid architecture was trained by applying several random selections of generalization test data fed to the system during on average 100 epochs for each training of the first-layer growing grid and around 75 epochs for each training of the second-layer growing grid. The average generalization test accuracy is 92.6%. A comparison analysis between the performance of growing grid architecture and self-organizing map (SOM) architecture in terms of accuracy and learning speed show that the growing grid architecture is superior to the SOM architecture in action recognition task. The SOM architecture completes learning the same dataset of actions in around 150 epochs for each training of the first-layer SOM while it takes 1200 epochs for each training of the second-layer SOM and it achieves the average recognition accuracy of 90% for generalization test data. In summary, using the growing grid network preserves the fundamental features of SOMs, such as topographic organization of neurons, lateral interactions, the abilities of unsupervised learning and representing high dimensional input space in the lower dimensional maps. The architecture also benefits from an automatic size setting mechanism resulting in higher flexibility and robustness. Moreover, by utilizing growing grids the system automatically obtains a prior knowledge of input space during the growth phase and applies this information to expand the map by inserting new neurons wherever there is high representational demand.Keywords: action recognition, growing grid, hierarchical architecture, neural networks, system performance
Procedia PDF Downloads 15714058 Application of Smplify-X Algorithm with Enhanced Gender Classifier in 3D Human Pose Estimation
Authors: Jiahe Liu, Hongyang Yu, Miao Luo, Feng Qian
Abstract:
The widespread application of 3D human body reconstruction spans various fields. Smplify-X, an algorithm reliant on single-image input, employs three distinct body parameter templates, necessitating gender classification of individuals within the input image. Researchers employed a ResNet18 network to train a gender classifier within the Smplify-X framework, setting the threshold at 0.9, designating images falling below this threshold as having neutral gender. This model achieved 62.38% accurate predictions and 7.54% incorrect predictions. Our improvement involved refining the MobileNet network, resulting in a raised threshold of 0.97. Consequently, we attained 78.89% accurate predictions and a mere 0.2% incorrect predictions, markedly enhancing prediction precision and enabling more precise 3D human body reconstruction.Keywords: SMPLX, mobileNet, gender classification, 3D human reconstruction
Procedia PDF Downloads 10014057 On Performance of Cache Replacement Schemes in NDN-IoT
Authors: Rasool Sadeghi, Sayed Mahdi Faghih Imani, Negar Najafi
Abstract:
The inherent features of Named Data Networking (NDN) provides a robust solution for Internet of Thing (IoT). Therefore, NDN-IoT has emerged as a combined architecture which exploits the benefits of NDN for interconnecting of the heterogeneous objects in IoT. In NDN-IoT, caching schemes are a key role to improve the network performance. In this paper, we consider the effectiveness of cache replacement schemes in NDN-IoT scenarios. We investigate the impact of replacement schemes on average delay, average hop count, and average interest retransmission when replacement schemes are Least Frequently Used (LFU), Least Recently Used (LRU), First-In-First-Out (FIFO) and Random. The simulation results demonstrate that LFU and LRU present a stable performance when the cache size changes. Moreover, the network performance improves when the number of consumers increases.Keywords: NDN-IoT, cache replacement, performance, ndnSIM
Procedia PDF Downloads 36514056 Middle-Level Management Involvement in Strategy Process, and Organizational Performance
Authors: Mazyar Taghavi
Abstract:
This research examines middle-level managers’ involvement in strategy process in 15 manufacturing and service companies in Iran. We considered two dominant theoretical arguments for expecting a positive association. According to the first direction involvement improves organizational performance by improving the quality of strategic decisions. According to the second track, middle managers contribute to increased levels of performance through strategic consensus among them. Results indicate that involvement in the strategy is related to organizational performance. Involvement is associated with consensus (i.e. strategic understanding and commitment) among middle-level managers. However, findings indicate that consensus is not related to the organizational performance.Keywords: middle-level management, strategy process, organizational performance, strategy consensus
Procedia PDF Downloads 44014055 Effect of Taper Pin Ratio on Microstructure and Mechanical Property of Friction Stir Welded AZ31 Magnesium Alloy
Authors: N. H. Othman, N. Udin, M. Ishak, L. H. Shah
Abstract:
This study focuses on the effect of pin taper tool ratio on friction stir welding of magnesium alloy AZ31. Two pieces of AZ31 alloy with thickness of 6 mm were friction stir welded by using the conventional milling machine. The shoulder diameter used in this experiment is fixed at 18 mm. The taper pin ratio used are varied at 6:6, 6:5, 6:4, 6:3, 6:2 and 6:1. The rotational speeds that were used in this study were 500 rpm, 1000 rpm and 1500 rpm, respectively. The welding speeds used are 150 mm/min, 200 mm/min and 250 mm/min. Microstructure observation of welded area was studied by using optical microscope. Equiaxed grains were observed at the TMAZ and stir zone indicating fully plastic deformation. Tool pin diameter ratio 6/1 causes low heat input to the material because of small contact surface between tool surface and stirred materials compared to other tool pin diameter ratio. The grain size of stir zone increased with increasing of ratio of rotational speed to transverse speed due to higher heat input. It is observed that worm hole is produced when excessive heat input is applied. To evaluate the mechanical properties of this specimen, tensile test was used in this study. Welded specimens using taper pin ratio 6:1 shows higher tensile strength compared to other taper pin ratio up to 204 MPa. Moreover, specimens using taper pin ratio 6:1 showed better tensile strength with 500 rpm of rotational speed and 150mm/min welding speed.Keywords: friction stir welding, magnesium AZ31, cylindrical taper tool, taper pin ratio
Procedia PDF Downloads 28614054 Statistic Regression and Open Data Approach for Identifying Economic Indicators That Influence e-Commerce
Authors: Apollinaire Barme, Simon Tamayo, Arthur Gaudron
Abstract:
This paper presents a statistical approach to identify explanatory variables linearly related to e-commerce sales. The proposed methodology allows specifying a regression model in order to quantify the relevance between openly available data (economic and demographic) and national e-commerce sales. The proposed methodology consists in collecting data, preselecting input variables, performing regressions for choosing variables and models, testing and validating. The usefulness of the proposed approach is twofold: on the one hand, it allows identifying the variables that influence e- commerce sales with an accessible approach. And on the other hand, it can be used to model future sales from the input variables. Results show that e-commerce is linearly dependent on 11 economic and demographic indicators.Keywords: e-commerce, statistical modeling, regression, empirical research
Procedia PDF Downloads 22714053 Using Self Organizing Feature Maps for Classification in RGB Images
Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami
Abstract:
Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feed-forward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on self organizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.Keywords: classification, SOFM algorithm, neural network, neighborhood, RGB image
Procedia PDF Downloads 47814052 Meteosat Second Generation Image Compression Based on the Radon Transform and Linear Predictive Coding: Comparison and Performance
Authors: Cherifi Mehdi, Lahdir Mourad, Ameur Soltane
Abstract:
Image compression is used to reduce the number of bits required to represent an image. The Meteosat Second Generation satellite (MSG) allows the acquisition of 12 image files every 15 minutes. Which results a large databases sizes. The transform selected in the images compression should contribute to reduce the data representing the images. The Radon transform retrieves the Radon points that represent the sum of the pixels in a given angle for each direction. Linear predictive coding (LPC) with filtering provides a good decorrelation of Radon points using a Predictor constitute by the Symmetric Nearest Neighbor filter (SNN) coefficients, which result losses during decompression. Finally, Run Length Coding (RLC) gives us a high and fixed compression ratio regardless of the input image. In this paper, a novel image compression method based on the Radon transform and linear predictive coding (LPC) for MSG images is proposed. MSG image compression based on the Radon transform and the LPC provides a good compromise between compression and quality of reconstruction. A comparison of our method with other whose two based on DCT and one on DWT bi-orthogonal filtering is evaluated to show the power of the Radon transform in its resistibility against the quantization noise and to evaluate the performance of our method. Evaluation criteria like PSNR and the compression ratio allows showing the efficiency of our method of compression.Keywords: image compression, radon transform, linear predictive coding (LPC), run lengthcoding (RLC), meteosat second generation (MSG)
Procedia PDF Downloads 42114051 A Fuzzy Structural Equation Model for Development of a Safety Performance Index Assessment Tool in Construction Sites
Authors: Murat Gunduz, Mustafa Ozdemir
Abstract:
In this research, a framework is to be proposed to model the safety performance in construction sites. Determinants of safety performance are to be defined through extensive literature review and a multidimensional safety performance model is to be developed. In this context, a questionnaire is to be administered to construction companies with sites. The collected data through questionnaires including linguistic terms are then to be defuzzified to get concrete numbers by using fuzzy set theory which provides strong and significant instruments for the measurement of ambiguities and provides the opportunity to meaningfully represent concepts expressed in the natural language. The validity of the proposed safety performance model, relationships between determinants of safety performance are to be analyzed using the structural equation modeling (SEM) which is a highly strong multi variable analysis technique that makes possible the evaluation of latent structures. After validation of the model, a safety performance index assessment tool is to be proposed by the help of software. The proposed safety performance assessment tool will be based on the empirically validated theoretical model.Keywords: Fuzzy set theory, safety performance assessment, safety index, structural equation modeling (SEM), construction sites
Procedia PDF Downloads 52214050 Effects of Employees’ Training Program on the Performance of Small Scale Enterprises in Oyo State
Authors: Itiola Kehinde Adeniran
Abstract:
The study examined the effect of employees’ training on the performance of small scale enterprises in Oyo State. A structured questionnaire was used to collect data from 150 respondents through purposive sampling method. Linear regression was used with the aid of statistical package for social science (SPSS) version 20 to analyze the data collected in order to examine the effect of independent variable, employees’ training on dependent variable, performance (profit) of small scale enterprises. The result revealed that employees’ training has a significant effect on the performance of small scale enterprises. It was concluded that predictor variable namely (training) is 55.5% variance of enterprises performance (profitability). Therefore, the paper recommended that all small scale enterprises in Nigeria should embrace manpower training and development in order to improve employees’ performance leading to organizational profitability.Keywords: training, employee performance, small scale enterprise, organizational profitability
Procedia PDF Downloads 38614049 A Strategic Performance Control System for Municipal Organization
Authors: Emin Gundogar, Aysegul Yilmaz
Abstract:
Strategic performance control is a significant procedure in management. There are various methods to improve this procedure. This study introduces an information system that is developed to score performance for municipal management. The application of the system is clarified by exemplifying municipal processes.Keywords: management information system, municipal management, performance control
Procedia PDF Downloads 47714048 Production Increase of C-Central Wells Baher Essalm-Libya
Authors: Walid Ben Husein, Emad Krekshi, Malek Essnni
Abstract:
The Bahr Essalam gas-condensate field is located off the Libyan coast and is currently being produced by Mellitah Oil and Gas (MOG). Gas and condensate are produced from the Bahr Essalam reservoir through a mixture of platform and subsea wells, with the subsea wells being gathered at the western manifolds and delivered to the Sabratha platform via a 22-inch pipeline. Gas is gathered and dehydrated on the Sabratha platform and then delivered to the Mellitah gas plant via an existing 36-inch gas export pipeline. The condensate separated on the Sabratha platform will be delivered to the Mellitah gas plant via an existing 10-inch export pipeline. The Bahr Essalam Phase II project includes 2 production wells (CC16 & CC17) at C-Central A connected to the Sabratha platform via a new 10.9 km long 10”/14” production pipeline. Production rates from CC16 and CC17 have exceeded the maximum planned rate of 40 MMSCFD per well. A hydrothermal analysis was conducted to review and Verify input data, focusing on the variation of flowing well head as a function of flowrate as well as Review available input data against the previous design input data to determine the extent of change. The steady-state and transient simulations performed with Olga yielded coherent results and confirmed the possibility of achieving flow rates of up to 60MMSCFD per well without exceeding the design temperatures, pressures, and velocities.Keywords: Bahr Essalam, Mellitah Oil and Gas, production flow rates, steady state, transient, OLGA.
Procedia PDF Downloads 1014047 Developing a HSE-Finacial Indicator Model in Oil Industry
Authors: Reza Safari, Ali Rajabzadeh Ghatari, Raheleh Hossseinzadeh Mahabadi
Abstract:
In the present world, there are different pressures on firms such as competition, legislations, social etc. these pressures force the firms to follow “survival” as their primary goal and then growth. One of the main factors that helps firms to reach their goals is proper financial performance. To find out about the financial performance, a firm should monitors its financial performance. Financial performance affected by many factors. This research seeks to clear which financial performance indicators are most important according to Environmental situation of a firm and what are their priorities. To do so, environmental indicators specified as presented on OECD Key Environmental Indicators 2008 and so the financial performance indicators such as Profitability, Liquidity, Gearing, Investor ratios, and etc. At this stage, the affections questioned through questionnaires. After gaining the results, data analyzed using Promethee technique. By using decision matrixes extracted from those techniques an expert system designed. This expert system suggests the suitable financial performance indicators and their ranking by receiving the environment situation given environment indicators weight.Keywords: environment indicators, financial performance indicators, promethee, expert system
Procedia PDF Downloads 44214046 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks
Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez
Abstract:
Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning
Procedia PDF Downloads 33914045 JaCoText: A Pretrained Model for Java Code-Text Generation
Authors: Jessica Lopez Espejel, Mahaman Sanoussi Yahaya Alassan, Walid Dahhane, El Hassane Ettifouri
Abstract:
Pretrained transformer-based models have shown high performance in natural language generation tasks. However, a new wave of interest has surged: automatic programming language code generation. This task consists of translating natural language instructions to a source code. Despite the fact that well-known pre-trained models on language generation have achieved good performance in learning programming languages, effort is still needed in automatic code generation. In this paper, we introduce JaCoText, a model based on Transformer neural network. It aims to generate java source code from natural language text. JaCoText leverages the advantages of both natural language and code generation models. More specifically, we study some findings from state of the art and use them to (1) initialize our model from powerful pre-trained models, (2) explore additional pretraining on our java dataset, (3) lead experiments combining the unimodal and bimodal data in training, and (4) scale the input and output length during the fine-tuning of the model. Conducted experiments on CONCODE dataset show that JaCoText achieves new state-of-the-art results.Keywords: java code generation, natural language processing, sequence-to-sequence models, transformer neural networks
Procedia PDF Downloads 28614044 Reed: An Approach Towards Quickly Bootstrapping Multilingual Acoustic Models
Authors: Bipasha Sen, Aditya Agarwal
Abstract:
Multilingual automatic speech recognition (ASR) system is a single entity capable of transcribing multiple languages sharing a common phone space. Performance of such a system is highly dependent on the compatibility of the languages. State of the art speech recognition systems are built using sequential architectures based on recurrent neural networks (RNN) limiting the computational parallelization in training. This poses a significant challenge in terms of time taken to bootstrap and validate the compatibility of multiple languages for building a robust multilingual system. Complex architectural choices based on self-attention networks are made to improve the parallelization thereby reducing the training time. In this work, we propose Reed, a simple system based on 1D convolutions which uses very short context to improve the training time. To improve the performance of our system, we use raw time-domain speech signals directly as input. This enables the convolutional layers to learn feature representations rather than relying on handcrafted features such as MFCC. We report improvement on training and inference times by atleast a factor of 4x and 7.4x respectively with comparable WERs against standard RNN based baseline systems on SpeechOcean's multilingual low resource dataset.Keywords: convolutional neural networks, language compatibility, low resource languages, multilingual automatic speech recognition
Procedia PDF Downloads 12314043 Recent Trends in Supply Chain Delivery Models
Authors: Alfred L. Guiffrida
Abstract:
A review of the literature on supply chain delivery models which use delivery windows to measure delivery performance is presented. The review herein serves to meet the following objectives: (i) provide a synthesis of previously published literature on supply chain delivery performance models, (ii) provide in one paper a consolidation of research that can serve as a single source to keep researchers up to date with the research developments in supply chain delivery models, and (iii) identify gaps in the modeling of supply chain delivery performance which could stimulate new research agendas.Keywords: delivery performance, delivery window, supply chain delivery models, supply chain performance
Procedia PDF Downloads 42214042 Content Creation as Performance
Authors: D. van der Merwe
Abstract:
Walter Benjamin observed a marked difference in test performances versus final performances, with special regard to film and the cinema setting versus the stage as the site of performance, exhibition, and consumption. The attention given to film is justifiable and valid given its position as the best example of media convergence of Benjamin’s era, that of late modernity. In contemporary terms, however, the film has been supplanted by content as the prime example of convergence at work, and the digital domain, materialized in the form of the mobile internet, as the substituted site for the cinema. By examining the performance of the polymediated self within social media content, this paper hopes to establish the practice of content creation as a cultural artefact evidencing exhibition value on par with -or at least comparable with- performance art.Keywords: content creation, convergence, stage performance, test performance, polymediation, Walter Benjamin
Procedia PDF Downloads 1114041 Angle of Arrival Estimation Using Maximum Likelihood Method
Authors: Olomon Wu, Hung Lu, Nick Wilkins, Daniel Kerr, Zekeriya Aliyazicioglu, H. K. Hwang
Abstract:
Multiple Input Multiple Output (MIMO) radar has received increasing attention in recent years. MIMO radar has many advantages over conventional phased array radar such as target detection, resolution enhancement, and interference suppression. In this paper, the results are presented from a simulation study of MIMO Uniformly-Spaced Linear Array (ULA) antennas. The performance is investigated under varied parameters, including varied array size, Pseudo Random (PN) sequence length, number of snapshots, and Signal to Noise Ratio (SNR). The results of MIMO are compared to a traditional array antenna.Keywords: MIMO radar, phased array antenna, target detection, radar signal processing
Procedia PDF Downloads 54214040 Effects of Transformational Leadership and Political Competition on Corporate Performance of Nigeria National Petroleum Corporation
Authors: Justine Ugochukwu Osuagwu, Sazali Abd Wahab
Abstract:
The performance and operation of NNPC have faced series of attacks by all stakeholders as many have observed lots of inefficiency not only on the part of the management but the staff. This has raised questions of whether their operations and performance are being seriously affected by lack of transformational leadership, and the political competition prevalent in the country. The author has applied the administrative leadership theory and institutional theory as a guide to this study and empirically relates such theories to the study. The study also has utilized the quantitative approach where questionnaires were distributed to 370 participants, and the correctly filled and returned questionnaires were used for the analysis using structural equation modeling. The path coefficient of transformational leadership to performance is strong and positive with β = 0.672; t-value = 14.245; p-value = 0.000. Also, the result found that political competition does not mediate the relationship between transformational leadership and performance of NNPC. (β = -0.008; t-value = -0.600; p- value > 0.05). However, the indirect path is all insignificant, meaning that transformational leadership has relationship with corporate performance.The study found that,while political competition does not serve as a mediator in the relationship between transformational leadership and corporate performance, these styles of leadership have a direct and positive impact on corporate performance. The direct relationship between transformational leadership and political competition was not discovered, despite the fact that political competition has a direct and significant impact, both positive and negative, on corporate performance. As a result, both political competition and transformational leadership have the potential to significantly alter corporate performance.Keywords: performance, transformational leadership, political competition, corporation performance, Nigeria national petroleum corporation
Procedia PDF Downloads 11814039 Performance and Voyage Analysis of Marine Gas Turbine Engine, Installed to Power and Propel an Ocean-Going Cruise Ship from Lagos to Jeddah
Authors: Mathias U. Bonet, Pericles Pilidis, Georgios Doulgeris
Abstract:
An aero-derivative marine Gas Turbine engine model is simulated to be installed as the main propulsion prime mover to power a cruise ship which is designed and routed to transport intending Muslim pilgrims for the annual hajj pilgrimage from Nigeria to the Islamic port city of Jeddah in Saudi Arabia. A performance assessment of the Gas Turbine engine has been conducted by examining the effect of varying aerodynamic and hydrodynamic conditions encountered at various geographical locations along the scheduled transit route during the voyage. The investigation focuses on the overall behavior of the Gas Turbine engine employed to power and propel the ship as it operates under ideal and adverse conditions to be encountered during calm and rough weather according to the different seasons of the year under which the voyage may be undertaken. The variation of engine performance under varying operating conditions has been considered as a very important economic issue by determining the time the speed by which the journey is completed as well as the quantity of fuel required for undertaking the voyage. The assessment also focuses on the increased resistance caused by the fouling of the submerged portion of the ship hull surface with its resultant effect on the power output of the engine as well as the overall performance of the propulsion system. Daily ambient temperature levels were obtained by accessing data from the UK Meteorological Office while the varying degree of turbulence along the transit route and according to the Beaufort scale were also obtained as major input variables of the investigation. By assuming the ship to be navigating the Atlantic Ocean and the Mediterranean Sea during winter, spring and summer seasons, the performance modeling and simulation was accomplished through the use of an integrated Gas Turbine performance simulation code known as ‘Turbomach’ along with a Matlab generated code named ‘Poseidon’, all of which have been developed at the Power and Propulsion Department of Cranfield University. As a case study, the results of the various assumptions have further revealed that the marine Gas Turbine is a reliable and available alternative to the conventional marine propulsion prime movers that have dominated the maritime industry before now. The techno-economic and environmental assessment of this type of propulsion prime mover has enabled the determination of the effect of changes in weather and sea conditions on the ship speed as well as trip time and the quantity of fuel required to be burned throughout the voyage.Keywords: ambient temperature, hull fouling, marine gas turbine, performance, propulsion, voyage
Procedia PDF Downloads 18614038 Vision-Based Hand Segmentation Techniques for Human-Computer Interaction
Abstract:
This work is the part of vision based hand gesture recognition system for Natural Human Computer Interface. Hand tracking and segmentation are the primary steps for any hand gesture recognition system. The aim of this paper is to develop robust and efficient hand segmentation algorithm such as an input to another system which attempt to bring the HCI performance nearby the human-human interaction, by modeling an intelligent sign language recognition system based on prediction in the context of dialogue between the system (avatar) and the interlocutor. For the purpose of hand segmentation, an overcoming occlusion approach has been proposed for superior results for detection of hand from an image.Keywords: HCI, sign language recognition, object tracking, hand segmentation
Procedia PDF Downloads 412