Search results for: inlet design
12371 Integration of Agile Philosophy and Scrum Framework to Missile System Design Processes
Authors: Misra Ayse Adsiz, Selim Selvi
Abstract:
In today's world, technology is competing with time. In order to catch up with the world's companies and adapt quickly to the changes, it is necessary to speed up the processes and keep pace with the rate of change of the technology. The missile system design processes, which are handled with classical methods, keep behind in this race. Because customer requirements are not clear, and demands are changing again and again in the design process. Therefore, in the system design process, a methodology suitable for the missile system design dynamics has been investigated and the processes used for catching up the era are examined. When commonly used design processes are analyzed, it is seen that any one of them is dynamic enough for today’s conditions. So a hybrid design process is established. After a detailed review of the existing processes, it is decided to focus on the Scrum Framework and Agile Philosophy. Scrum is a process framework. It is focused on to develop software and handling change management with rapid methods. In addition, agile philosophy is intended to respond quickly to changes. In this study, it is aimed to integrate Scrum framework and agile philosophy, which are the most appropriate ways for rapid production and change adaptation, into the missile system design process. With this approach, it is aimed that the design team, involved in the system design processes, is in communication with the customer and provide an iterative approach in change management. These methods, which are currently being used in the software industry, have been integrated with the product design process. A team is created for system design process. The roles of Scrum Team are realized with including the customer. A scrum team consists of the product owner, development team and scrum master. Scrum events, which are short, purposeful and time-limited, are organized to serve for coordination rather than long meetings. Instead of the classic system design methods used in product development studies, a missile design is made with this blended method. With the help of this design approach, it is become easier to anticipate changing customer demands, produce quick solutions to demands and combat uncertainties in the product development process. With the feedback of the customer who included in the process, it is worked towards marketing optimization, design and financial optimization.Keywords: agile, design, missile, scrum
Procedia PDF Downloads 16812370 [Keynote Speech]: Conceptual Design of a Short Take-Off and Landing (STOL) Light Sport Aircraft
Authors: Zamri Omar, Alifi Zainal Abidin
Abstract:
Although flying machines have made their tremendous technological advancement since the first successfully flight of the heavier-than-air aircraft, its benefits to the greater community are still belittled. One of the reasons for this drawback is due to the relatively high cost needed to fly on the typical light aircraft. A smaller and lighter plane, widely known as Light Sport Aircraft (LSA) has the potential to attract more people to actively participate in numerous flying activities, such as for recreational, business trips or other personal purposes. In this paper, we propose a new LSA design with some simple, yet important analysis required in the aircraft conceptual design stage.Keywords: light sport aircraft, conceptual design, aircraft layout, aircraft
Procedia PDF Downloads 34612369 An Exploration on Competency-Based Curricula in Integrated Circuit Design
Authors: Chih Chin Yang, Chung Shan Sun
Abstract:
In this paper, the relationships between professional competences and school curricula in IC design industry are explored. The semi-structured questionnaire survey and focus group interview is the research method. Study participants are graduates of microelectronics engineering professional departments who are currently employed in the IC industry. The IC industries are defined as the electronic component manufacturing industry and optical-electronic component manufacturing industry in the semiconductor industry and optical-electronic material devices, respectively. Study participants selected from IC design industry include IC engineering and electronic & semiconductor engineering. The human training with IC design professional competence in microelectronics engineering professional departments is explored in this research. IC professional competences of human resources in the IC design industry include general intelligence and professional intelligence.Keywords: IC design, curricula, competence, task, duty
Procedia PDF Downloads 38212368 Optimal Design of Substation Grounding Grid Based on Genetic Algorithm Technique
Authors: Ahmed Z. Gabr, Ahmed A. Helal, Hussein E. Said
Abstract:
With the incessant increase of power systems capacity and voltage grade, the safety of grounding grid becomes more and more prominent. In this paper, the designing substation grounding grid is presented by means of genetic algorithm (GA). This approach purposes to control the grounding cost of the power system with the aid of controlling grounding rod number and conductor lengths under the same safety limitations. The proposed technique is used for the design of the substation grounding grid in Khalda Petroleum Company “El-Qasr” power plant and the design was simulated by using CYMGRD software for results verification. The result of the design is highly complying with IEEE 80-2000 standard requirements.Keywords: genetic algorithm, optimum grounding grid design, power system analysis, power system protection, single layer model, substation
Procedia PDF Downloads 53412367 The Use of Sustainability Criteria on Infrastructure Design to Encourage Sustainable Engineering Solutions on Infrastructure Projects
Authors: Shian Saroop, Dhiren Allopi
Abstract:
In order to stay competitive and to meet upcoming stricter environmental regulations and customer requirements, designers have a key role in designing civil infrastructure so that it is environmentally sustainable. There is an urgent need for engineers to apply technologies and methods that deliver better and more sustainable performance of civil infrastructure as well as a need to establish a standard of measurement for greener infrastructure, rather than merely use tradition solutions. However, there are no systems in place at the design stage that assesses the environmental impact of design decisions on township infrastructure projects. This paper identifies alternative eco-efficient civil infrastructure design solutions and developed sustainability criteria and a toolkit to analyse the eco efficiency of infrastructure projects. The proposed toolkit is aimed at promoting high-performance, eco-efficient, economical and environmentally friendly design decisions on stormwater, roads, water and sanitation related to township infrastructure projects. These green solutions would bring a whole new class of eco-friendly solutions to current infrastructure problems, while at the same time adding a fresh perspective to the traditional infrastructure design process. A variety of projects were evaluated using the green infrastructure toolkit and their results are compared to each other, to assess the results of using greener infrastructure verses the traditional method of designing infrastructure. The application of ‘green technology’ would ensure a sustainable design of township infrastructure services assisting the design to consider alternative resources, the environmental impacts of design decisions, ecological sensitivity issues, innovation, maintenance and materials, at the design stage of a project.Keywords: eco-efficiency, green infrastructure, infrastructure design, sustainable development
Procedia PDF Downloads 22712366 The Methodology of Hand-Gesture Based Form Design in Digital Modeling
Authors: Sanghoon Shim, Jaehwan Jung, Sung-Ah Kim
Abstract:
As the digital technology develops, studies on the TUI (Tangible User Interface) that links the physical environment utilizing the human senses with the virtual environment through the computer are actively being conducted. In addition, there has been a tremendous advance in computer design making through the use of computer-aided design techniques, which enable optimized decision-making through comparison with machine learning and parallel comparison of alternatives. However, a complex design that can respond to user requirements or performance can emerge through the intuition of the designer, but it is difficult to actualize the emerged design by the designer's ability alone. Ancillary tools such as Gaudí's Sandbag can be an instrument to reinforce and evolve emerged ideas from designers. With the advent of many commercial tools that support 3D objects, designers' intentions are easily reflected in their designs, but the degree of their reflection reflects their intentions according to the proficiency of design tools. This study embodies the environment in which the form can be implemented by the fingers of the most basic designer in the initial design phase of the complex type building design. Leapmotion is used as a sensor to recognize the hand motions of the designer, and it is converted into digital information to realize an environment that can be linked in real time in virtual reality (VR). In addition, the implemented design can be linked with Rhino™, a 3D authoring tool, and its plug-in Grasshopper™ in real time. As a result, it is possible to design sensibly using TUI, and it can serve as a tool for assisting designer intuition.Keywords: design environment, digital modeling, hand gesture, TUI, virtual reality
Procedia PDF Downloads 36612365 Designing an Exhaust Gas Energy Recovery Module Following Measurements Performed under Real Operating Conditions
Authors: Jerzy Merkisz, Pawel Fuc, Piotr Lijewski, Andrzej Ziolkowski, Pawel Czarkowski
Abstract:
The paper presents preliminary results of the development of an automotive exhaust gas energy recovery module. The aim of the performed analyses was to select the geometry of the heat exchanger that would ensure the highest possible transfer of heat at minimum heat flow losses. The starting point for the analyses was a straight portion of a pipe, from which the exhaust system of the tested vehicle was made. The design of the heat exchanger had a cylindrical cross-section, was 300 mm long and was fitted with a diffuser and a confusor. The model works were performed for the mentioned geometry utilizing the finite volume method based on the Ansys CFX v12.1 and v14 software. This method consisted in dividing of the system into small control volumes for which the exhaust gas velocity and pressure calculations were performed using the Navier-Stockes equations. The heat exchange in the system was modeled based on the enthalpy balance. The temperature growth resulting from the acting viscosity was not taken into account. The heat transfer on the fluid/solid boundary in the wall layer with the turbulent flow was done based on an arbitrarily adopted dimensionless temperature. The boundary conditions adopted in the analyses included the convective condition of heat transfer on the outer surface of the heat exchanger and the mass flow and temperature of the exhaust gas at the inlet. The mass flow and temperature of the exhaust gas were assumed based on the measurements performed in actual traffic using portable PEMS analyzers. The research object was a passenger vehicle fitted with a 1.9 dm3 85 kW diesel engine. The tests were performed in city traffic conditions.Keywords: waste heat recovery, heat exchanger, CFD simulation, pems
Procedia PDF Downloads 57412364 Robust Design of a Ball Joint Considering Uncertainties
Authors: Bong-Su Sin, Jong-Kyu Kim, Se-Il Song, Kwon-Hee Lee
Abstract:
An automobile ball joint is a pivoting element used to allow rotational motion between the parts of the steering and suspension system. And it plays a role in smooth transmission of steering movement, also reduction in impact from the road surface. A ball joint is under various repeated loadings that may cause cracks and abrasion. This damages lead to safety problems of a car, as well as reducing the comfort of the driver's ride, and raise questions about the ball joint procedure and the whole durability of the suspension system. Accordingly, it is necessary to ensure the high durability and reliability of a ball joint. The structural responses of stiffness and pull-out strength were then calculated to check if the design satisfies the related requirements. The analysis was sequentially performed, following the caulking process. In this process, the deformation and stress results obtained from the analysis were saved. Sequential analysis has a strong advantage, in that it can be analyzed by considering the deformed shape and residual stress. The pull-out strength means the required force to pull the ball stud out from the ball joint assembly. The low pull-out strength can deteriorate the structural stability and safety performances. In this study, two design variables and two noise factors were set up. Two design variables were the diameter of a stud and the angle of a socket. And two noise factors were defined as the uncertainties of Young's modulus and yield stress of a seat. The DOE comprises 81 cases using these conditions. Robust design of a ball joint was performed using the DOE. The pull-out strength was generated from the uncertainties in the design variables and the design parameters. The purpose of robust design is to find the design with target response and smallest variation.Keywords: ball joint, pull-out strength, robust design, design of experiments
Procedia PDF Downloads 42212363 Effectiveness Evaluation of a Machine Design Process Based on the Computation of the Specific Output
Authors: Barenten Suciu
Abstract:
In this paper, effectiveness of a machine design process is evaluated on the basis of the specific output calculus. Concretely, a screw-worm gear mechanical transmission is designed by using the classical and the 3D-CAD methods. Strength analysis and drawing of the designed parts is substantially aided by employing the SolidWorks software. Quality of the design process is assessed by manufacturing (printing) the parts, and by computing the efficiency, specific load, as well as the specific output (work) of the mechanical transmission. Influence of the stroke, travelling velocity and load on the mechanical output, is emphasized. Optimal design of the mechanical transmission becomes possible by the appropriate usage of the acquired results.Keywords: mechanical transmission, design, screw, worm-gear, efficiency, specific output, 3D-printing
Procedia PDF Downloads 14312362 Seismic Design Approach for Areas with Low Seismicity
Authors: Mogens Saberi
Abstract:
The following article focuses on a new seismic design approach for Denmark. Denmark is located in a low seismic zone and up till now a general and very simplified approach has been used to accommodate the effect of seismic loading. The current used method is presented and it is found that the approach is on the unsafe side for many building types in Denmark. The damages during time due to earth quake is presented and a seismic map for Denmark is developed and presented. Furthermore, a new design approach is suggested and compared to the existing one. The new approach is relatively simple but captures the effect of seismic loading more realistic than the existing one. The new approach is believed to the incorporated in the Danish Deign Code for building structures.Keywords: low seismicity, new design approach, earthquakes, Denmark
Procedia PDF Downloads 36512361 The Role of Urban Design in Creating Cohesive and People’s Public Spaces
Authors: Hazem Abuorf
Abstract:
From the perspective of viewing urban design as the architecture of public spaces, the latter has many advantages; for example, in achieving attractive and vibrant public spaces, ensuring safety and amenity, supporting a strong sense of place and local character. Besides all advantages, such spaces nevertheless trigger numerous dilemmas, how to design urban spaces preserving the quality of life in the long term while equally achieving cohesion between new urban developments and the already existing urban structure without causing a split in history through the cause of functional and aesthetic degradation. Analysis of this article seeks to propose a methodology deemed essential for assessing and stimulating design criteria of the public spaces when rehabilitating urban sites. The method’s utility is shown by analyzing rehabilitation projects in Gaza Strip, whose design of the public spaces has mainly focused on the physical aspect ignoring the place’s local identity, users’ needs, and history. The proposed methodology serves as a guide for municipal authorities and technical teams to deal with interventions that would rework the role of urban design towards making sense of place.Keywords: urban design, public realm, rehabilitation projects, quality of life
Procedia PDF Downloads 15912360 Numerical Studies on Thrust Vectoring Using Shock-Induced Self Impinging Secondary Jets
Authors: S. Vignesh, N. Vishnu, S. Vigneshwaran, M. Vishnu Anand, Dinesh Kumar Babu, V. R. Sanal Kumar
Abstract:
The study of the primary flow velocity and the self impinging secondary jet flow mixing is important from both the fundamental research and the application point of view. Real industrial configurations are more complex than simple shear layers present in idealized numerical thrust-vectoring models due to the presence of combustion, swirl and confinement. Predicting the flow features of self impinging secondary jets in a supersonic primary flow is complex owing to the fact that there are a large number of parameters involved. Earlier studies have been highlighted several key features of self impinging jets, but an extensive characterization in terms of jet interaction between supersonic flow and self impinging secondary sonic jets is still an active research topic. In this paper numerical studies have been carried out using a validated two-dimensional k-omega standard turbulence model for the design optimization of a thrust vector control system using shock induced self impinging secondary flow sonic jets using non-reacting flows. Efforts have been taken for examining the flow features of TVC system with various secondary jets at different divergent locations and jet impinging angles with the same inlet jet pressure and mass flow ratio. The results from the parametric studies reveal that in addition to the primary to the secondary mass flow ratio the characteristics of the self impinging secondary jets having bearing on an efficient thrust vectoring. We concluded that the self impinging secondary jet nozzles are better than single jet nozzle with the same secondary mass flow rate owing to the fact fixing of the self impinging secondary jet nozzles with proper jet angle could facilitate better thrust vectoring for any supersonic aerospace vehicle.Keywords: fluidic thrust vectoring, rocket steering, supersonic to sonic jet interaction, TVC in aerospace vehicles
Procedia PDF Downloads 58812359 Operation Cycle Model of ASz62IR Radial Aircraft Engine
Authors: M. Duk, L. Grabowski, P. Magryta
Abstract:
Today's very important element relating to air transport is the environment impact issues. Nowadays there are no emissions standards for turbine and piston engines used in air transport. However, it should be noticed that the environmental effect in the form of exhaust gases from aircraft engines should be as small as possible. For this purpose, R&D centers often use special software to simulate and to estimate the negative effect of engine working process. For cooperation between the Lublin University of Technology and the Polish aviation company WSK "PZL-KALISZ" S.A., to achieve more effective operation of the ASz62IR engine, one of such tools have been used. The AVL Boost software allows to perform 1D simulations of combustion process of piston engines. ASz62IR is a nine-cylinder aircraft engine in a radial configuration. In order to analyze the impact of its working process on the environment, the mathematical model in the AVL Boost software have been made. This model contains, among others, model of the operation cycle of the cylinders. This model was based on a volume change in combustion chamber according to the reciprocating movement of a piston. The simplifications that all of the pistons move identically was assumed. The changes in cylinder volume during an operating cycle were specified. Those changes were important to determine the energy balance of a cylinder in an internal combustion engine which is fundamental for a model of the operating cycle. The calculations for cylinder thermodynamic state were based on the first law of thermodynamics. The change in the mass in the cylinder was calculated from the sum of inflowing and outflowing masses including: cylinder internal energy, heat from the fuel, heat losses, mass in cylinder, cylinder pressure and volume, blowdown enthalpy, evaporation heat etc. The model assumed that the amount of heat released in combustion process was calculated from the pace of combustion, using Vibe model. For gas exchange, it was also important to consider heat transfer in inlet and outlet channels because of much higher values there than for flow in a straight pipe. This results from high values of heat exchange coefficients and temperature coefficients near valves and valve seats. A Zapf modified model of heat exchange was used. To use the model with the flight scenarios, the impact of flight altitude on engine performance has been analyze. It was assumed that the pressure and temperature at the inlet and outlet correspond to the values resulting from the model for International Standard Atmosphere (ISA). Comparing this model of operation cycle with the others submodels of the ASz62IR engine, it could be noticed, that a full analysis of the performance of the engine, according to the ISA conditions, can be made. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, underKeywords: aviation propulsion, AVL Boost, engine model, operation cycle, aircraft engine
Procedia PDF Downloads 29212358 Design of Compact UWB Multilayered Microstrip Filter with Wide Stopband
Authors: N. Azadi-Tinat, H. Oraizi
Abstract:
Design of compact UWB multilayered microstrip filter with E-shape resonator is presented, which provides wide stopband up to 20 GHz and arbitrary impedance matching. The design procedure is developed based on the method of least squares and theory of N-coupled transmission lines. The dimensions of designed filter are about 11 mm × 11 mm and the three E-shape resonators are placed among four dielectric layers. The average insertion loss in the passband is less than 1 dB and in the stopband is about 30 dB up to 20 GHz. Its group delay in the UWB region is about 0.5 ns. The performance of the optimized filter design perfectly agrees with the microwave simulation softwares.Keywords: method of least square, multilayer microstrip filter, n-coupled transmission lines, ultra-wideband
Procedia PDF Downloads 39212357 System Engineering Design of Offshore Oil Drilling Production Platform from Marine Environment
Authors: C. Njoku Paul
Abstract:
This paper deals with systems engineering applications design for offshore oil drilling production platform in the Nigerian Marine Environment. Engineering Design model of the distribution and accumulation of petroleum hydrocarbons discharged into marine environment production platform and sources of impact of an offshore is treated.Keywords: design of offshore oil drilling production platform, marine, environment, petroleum hydrocarbons
Procedia PDF Downloads 54112356 Design and Development of a Prototype Vehicle for Shell Eco-Marathon
Authors: S. S. Dol
Abstract:
Improvement in vehicle efficiency can reduce global fossil fuels consumptions. For that sole reason, Shell Global Corporation introduces Shell Eco-marathon where student teams require to design, build and test energy-efficient vehicles. Hence, this paper will focus on design processes and the development of a fuel economic vehicle which satisfying the requirements of the competition. In this project, three components are designed and analyzed, which are the body, chassis and powertrain of the vehicle. Optimum design for each component is produced through simulation analysis and theoretical calculation in which improvement is made as the project progresses.Keywords: energy efficient, drag force, chassis, powertrain
Procedia PDF Downloads 33412355 Open Distance Learning and Curriculum Transformation: Linkages, Alignment, and Innovation
Authors: Devanandan Govender
Abstract:
Curriculum design and development in higher education is a complex and challenging process. Amongst others, the extent to which higher education curriculum responds to a country's imperatives, industry requirements, and societal demands are some important considerations. Added to this is the whole notion of sustainable development, climate change and in the South African context the issue of ‘Africanising the curriculum’ is also significant. In this paper, the author describes and analyses the various challenges related to curriculum transformation, design and development within an ODL context and how we at Unisa engage and address curriculum transformation in mainstream curriculum design and development both at course design level and programme/ qualification level.Keywords: curriculum transformation, curriculum creep, curriculum drift, curriculum mapping
Procedia PDF Downloads 37612354 Exploration of Influential Factors on First Year Architecture Students’ Productivity
Authors: Shima Nikanjam, Badiossadat Hassanpour, Adi Irfan Che Ani
Abstract:
The design process in architecture education is based upon the Learning-by-Doing method, which leads students to understand how to design by practicing rather than studying. First-year design studios, as starting educational stage, provide integrated knowledge and skills of design for newly jointed architecture students. Within the basic design studio environment, students are guided to transfer their abstract thoughts into visual concrete decisions under the supervision of design educators for the first time. Therefore, introductory design studios have predominant impacts on students’ operational thinking and designing. Architectural design thinking is quite different from students’ educational backgrounds and learning habits. This educational challenge at basic design studios creates a severe need to study the reality of design education at foundation year and define appropriate educational methods with convenient project types with the intention of enhancing architecture education quality. Material for this study has been gathered through long-term direct observation at a first year second semester design studio at the faculty of architecture at EMU (known as FARC 102), fall and spring academic semester 2014-15. Distribution of a questionnaire among case study students and interviews with third and fourth design studio students who passed through the same methods of education in the past 2 years and conducting interviews with instructors are other methodologies used in this research. The results of this study reveal a risk of a mismatch between the implemented teaching method, project type and scale in this particular level and students’ learning styles. Although the existence of such risk due to varieties in students’ profiles could be expected to some extent, recommendations can support educators to reach maximum compatibility.Keywords: architecture education, basic design studio, educational method, forms creation skill
Procedia PDF Downloads 37312353 Thermal and Hydraulic Design of Shell and Tube Heat Exchangers
Authors: Ahmed R. Ballil
Abstract:
Heat exchangers are devices used to transfer heat between two fluids. These devices are utilized in many engineering and industrial applications such as heating, cooling, condensation and boiling processes. The fluids might be in direct contact (mixed), or they separated by a solid wall to avoid mixing. In the present paper, interactive computer-aided design of shell and tube heat exchangers is developed using Visual Basic computer code as a framework. This design is based on the Bell-Delaware method, which is one of the very well known methods reported in the literature for the design of shell and tube heat exchangers. Physical properties for either the tube or the shell side fluids are internally evaluated by calling on an enormous data bank composed of more than a hundred fluid compounds. This contributes to increase the accuracy of the present design. The international system of units is considered in the developed computer program. The present design has an added feature of being capable of performing modification based upon a preset design criterion, such that an optimum design is obtained at satisfying constraints set either by the user or by the method itself. Also, the present code is capable of giving an estimate of the approximate cost of the heat exchanger based on the predicted surface area of the exchanger evaluated by the program. Finally, the present thermal and hydraulic design code is tested for accuracy and consistency against some of existed and approved designs of shell and tube heat exchangers.Keywords: bell-delaware method, heat exchangers, shell and tube, thermal and hydraulic design
Procedia PDF Downloads 14812352 Optimisation of Structural Design by Integrating Genetic Algorithms in the Building Information Modelling Environment
Authors: Tofigh Hamidavi, Sepehr Abrishami, Pasquale Ponterosso, David Begg
Abstract:
Structural design and analysis is an important and time-consuming process, particularly at the conceptual design stage. Decisions made at this stage can have an enormous effect on the entire project, as it becomes ever costlier and more difficult to alter the choices made early on in the construction process. Hence, optimisation of the early stages of structural design can provide important efficiencies in terms of cost and time. This paper suggests a structural design optimisation (SDO) framework in which Genetic Algorithms (GAs) may be used to semi-automate the production and optimisation of early structural design alternatives. This framework has the potential to leverage conceptual structural design innovation in Architecture, Engineering and Construction (AEC) projects. Moreover, this framework improves the collaboration between the architectural stage and the structural stage. It will be shown that this SDO framework can make this achievable by generating the structural model based on the extracted data from the architectural model. At the moment, the proposed SDO framework is in the process of validation, involving the distribution of an online questionnaire among structural engineers in the UK.Keywords: building information, modelling, BIM, genetic algorithm, GA, architecture-engineering-construction, AEC, optimisation, structure, design, population, generation, selection, mutation, crossover, offspring
Procedia PDF Downloads 24012351 The Design of Information Technology System for Traceability of Thailand’s Tubtimjun Roseapple
Authors: Pimploi Tirastittam, Phutthiwat Waiyawuththanapoom, Sawanath Treesathon
Abstract:
As there are several countries which import agriculture product from Thailand, those countries demand Thailand to establish the traceability system. The traceability system is the tool to reduce the risk in the supply chain in a very effective way as it will help the stakeholder in the supply chain to identify the defect point which will reduce the cost of operation in the supply chain. This research is aimed to design the traceability system for Tubtimjun roseapple for exporting to China, and it is the qualitative research. The data was collected from the expert in the tuntimjun roseapple and fruit exporting industry, and the data was used to design the traceability system. The design of the tubtimjun roseapple traceability system was followed the theory of supply chain which starts from the upstream of the supply chain to the downstream of the supply chain to support the process and condition of the exporting which included the database designing, system architecture, user interface design and information technology of the traceability system.Keywords: design information, technology system, traceability, tubtimjun roseapple
Procedia PDF Downloads 17012350 Optimal Design of Profiled Steel Sheet for Composite Slab
Authors: Adinew Gebremeskel Tizazu
Abstract:
Nowadays, in our world of technological development, there is an enhanced intention imposed on the building construction industry to improve the time, economy, and structural efficiency of structures. Modern profiled steel sheets are mostly designed as formwork and tensile reinforcement. This research is concerned with the optimal design of profiled steel sheets for composite slabs. Apart from satisfying the safety requirement, the design should be economical. For a given condition, there might be a large number of alternatives that satisfy the requirement set by the codes. But the designer must be in a position to choose the design, which is optimal against certain measures of optimality. Therefore, the designers have to do some optimization to arrive at such a design. In this research, the optimal cross-sectional dimensions of profiled steel sheets will be determined by considering different spans, loadings, and materials.Keywords: profiled sheeting, optimal cross-sectional dimensions, cold-formed profiled sheets, composite slab
Procedia PDF Downloads 2312349 Simplified Mobile AR Platform Design for Augmented Tourism
Authors: Eric Hawkinson, Edgaras Artemciukas
Abstract:
This study outlines iterations of designing mobile augmented reality (MAR) applications for tourism specific contexts. Using a design based research model, several cycles of development to implementation were analyzed and refined upon with the goal of building a MAR platform that would facilitate the creation of augmented tours and environments by non-technical users. The project took on several stages, and through the process, a simple framework was begun to be established that can inform the design and use of MAR applications for tourism contexts. As a result of these iterations of development, a platform was developed that can allow novice computer users to create augmented tourism environments. This system was able to connect existing tools in widespread use such as Google Forms and connect them to computer vision algorithms needed for more advanced augmented tourism environments. The study concludes with a discussion of this MAR platform and reveals design elements that have implications for tourism contexts. The study also points to future case uses and design approaches for augmented tourism.Keywords: augmented tourism, augmented reality, user experience, mobile design, e-tourism
Procedia PDF Downloads 21612348 Design Guidelines for URM Infills and Effect of Construction Sequence on Seismic Performance of Code Compliant RC Frame Buildings
Authors: Putul Haldar, Yogendra Singh, D. K. Paul
Abstract:
Un-Reinforced Masonry (URM) infilled RC framed buildings are the most common construction practice for modern multi-storey buildings in India like many other parts of the world. Although the behavior and failure pattern of the global structure changes significantly due to infill-frame interaction, the general design practice is to treat them as non-structural elements and their stiffness, strength and interaction with frame is often ignored, as it is difficult to simulate. Indian Standard, like many other major national codes, does not provide any explicit guideline for modeling of infills. This paper takes a stock of controlling design provisions in some of the major national seismic design codes (BIS 2002; CEN 2004; NZS-4230 2004; ASCE-41 2007) to ensure the desired seismic performance of infilled frame. Most of the national codes on seismic design of buildings still lack in adequate guidelines on modeling and design of URM infilled frames results in variable assumption in analysis and design. This paper, using nonlinear pushover analysis, also presents the effect of one of such assumptions of conventional ‘simultaneous’ analysis procedure of infilled frame on the seismic performance of URM infilled RC frame buildings.Keywords: URM infills, RC frame, seismic design codes, construction sequence of infilled frame
Procedia PDF Downloads 38912347 Designing Cultural-Creative Products with the Six Categories of Hanzi (Chinese Character Classification)
Authors: Pei-Jun Xue, Ming-Yu Hsiao
Abstract:
Chinese characters, or hanzi, represent a process of simplifying three-dimensional signs into plane signifiers. From pictograms at the beginning to logograms today, a Han linguist thus classified them into six categories known as the six categories of Chinese characters. Design is a process of signification, and cultural-creative design is a process translating ideas into design with creativity upon culture. Aiming to investigate the process of cultural-creative design transforming cultural text into cultural signs, this study analyzed existing cultural-creative products with the six categories of Chinese characters by treating such products as representations which accurately communicate the designer’s ideas to users through the categorization, simplification, and interpretation of sign features. This is a two-phase pilot study on designing cultural-creative products with the six categories of Chinese characters. Phase I reviews the related literature on the theory of the six categories of Chinese characters investigated and concludes with the process and principles of character evolution. Phase II analyzes the design of existing cultural-creative products with the six categories of Chinese characters and explores the conceptualization of product design.Keywords: six categories of Chinese characters, cultural-creative product design, cultural signs, cultural product
Procedia PDF Downloads 34112346 Logo Design of Pajamas, OTOP Product of Sainoi Community, Sainoi District, Nonthaburi Province
Authors: Witthaya Mekhum, Napasri Suwanajote, Isara Sangprasert
Abstract:
This research on logo design of pajamas, OTOP product of Sainoi community, Sainoi district, Nonthanuri Province is a participatory action research aiming to find the logo for pajamas, an OTOP product of Sainoi community. Sample of this research is 50 local residents from Sainoi community in Sainoi district, Nonthanuri Province. The questionnaire consisted of 4 main parts. Part 1: factors that influence the decisions of consumers; Part 2: characteristics of the materials used in the design; Part 3: attitude assessment and needs of consumers about logo designing to develop marketing channels; Part 4: suggestions. Interviews were conducted. For data analysis, checklist items were analyzed with frequency and percentage. Open-end items were analyzed by summarizing and using ratio scale and mean and standard deviation. The research results showed that the design, cutting and fabric affect the decision of the consumers. They want design to be decent and beautiful. Illustrations used in graphic design logos should be Lines. Fonts should be English letters and the color of the font should be the same color.Keywords: design, logo, OTOP product, pajamas
Procedia PDF Downloads 27012345 Experimental Analysis for the Inlet of the Brazilian Aerospace Vehicle 14-X B
Authors: João F. A. Martos, Felipe J. Costa, Sergio N. P. Laiton, Bruno C. Lima, Israel S. Rêgo, Paulo P. G. Toro
Abstract:
Nowadays, the scramjet is a topic that has attracted the attention of several scientific communities (USA, Australia, Germany, France, Japan, India, China, Russia), that are investing in this in this type of propulsion system due its interest to facilitate access to space and reach hypersonic speed, who have invested in this type of propulsion due to the interest in facilitating access to space. The Brazilian hypersonic scramjet aerospace vehicle 14-X B is a technological demonstrator of a hypersonic airbreathing propulsion system based on the supersonic combustion (scramjet) intended to be tested in flight into the Earth's atmosphere at 30 km altitude and Mach number 7. The 14-X B has been designed at the Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics of the Institute for Advanced Studies (IEAv) in Brazil. The IEAv Hypersonic Shock Tunnel, named T3, is a ground-test facility able to reproduce the flight conditions as the Mach number as well as pressure and temperature in the test section close to those encountered during the test flight of the vehicle 14-X B into design conditions. A 1-m long stainless steel 14-X B model was experimentally investigated at T3 Hypersonic Shock Tunnel, for freestream Mach number 7. Static pressure measurements along the lower surface of the 14-X B model, along with high-speed schlieren photographs taken from the 5.5° leading edge and the 14.5° deflection compression ramp, provided experimental data that were compared to the analytical-theoretical solutions and the computational fluid dynamics (CFD) simulations. The results show a good qualitative agreement, and in consequence demonstrating the importance of these methods in the project of the 14-X B hypersonic aerospace vehicle.Keywords: 14-X, CFD, hypersonic, hypersonic shock tunnel, scramjet
Procedia PDF Downloads 35912344 Evaluation of the Architect-Friendliness of LCA-Based Environmental Impact Assessment Tools
Authors: Elke Meex, Elke Knapen, Griet Verbeeck
Abstract:
The focus of sustainable building is gradually shifting from energy efficiency towards the more global environmental impact of building design during all life-cycle stages. In this context, many tools have been developed that use a LCA-approach to assess the environmental impact on a whole building level. Since the building design strongly influences the final environmental performance and the architect plays a key role in the design process, it is important that these tools are adapted to his work method and support the decision making from the early design phase on. Therefore, a comparative evaluation of the degree of architect-friendliness of some LCA tools on building level is made, based on an evaluation framework specifically developed for the architect’s viewpoint. In order to allow comparison of the results, a reference building has been designed, documented for different design phases and entered in all software tools. The evaluation according to the framework shows that the existing tools are not very architect-friendly. Suggestions for improvement are formulated.Keywords: architect-friendliness, design supportive value, evaluation framework, tool comparison
Procedia PDF Downloads 54012343 Ankh Key Broadband Array Antenna for 5G Applications
Authors: Noha M. Rashad, W. Swelam, M. H. Abd ElAzeem
Abstract:
A simple design of array antenna is presented in this paper, supporting millimeter wave applications which can be used in short range wireless communications such as 5G applications. This design enhances the use of V-band, according to IEEE standards, as the antenna works in the 70 GHz band with bandwidth more than 11 GHz and peak gain more than 13 dBi. The design is simulated using different numerical techniques achieving a very good agreement.Keywords: 5G technology, array antenna, microstrip, millimeter wave
Procedia PDF Downloads 30612342 An Analysis Study of a Participatory Design Workshop from the Perspectives of Communication Strategies and Tools
Authors: Meng-Yu Wun, Jiunde Lee
Abstract:
Participatory design transfers the role of design team becoming the facilitator who manages to work collaboratively with the 'partners of innovation': users. This facilitator role not just concerns the users’ behaviors or insights under the common practice of user-centered design, it emphasizes the importance of communication experience conducted by various strategies and tools in a workshop session which could profoundly impact the quality of the co-creation process. To investigate the communication experience in the participatory design, this study proposed a qualitative research to analyze communication strategies and tools. A participatory design workshop and following in-depth interviews were carried out to explore how participants (facilitators, users) might apply different strategies and tools to enhance the communication process. The major study findings are as follows: (a) roles had influence on communication experience; facilitators’ principles and methods influenced the usage of facilitation strategies in various situations, while users put more emphasis on communication activities and goals aimed to complete the design tasks, (b) communication tools should be both fixed and changeable: participants had fixed cognition on different forms of communication tools; with the fundamental cognition, they could choose and make use of tools according to their needs, (c) the management of workshop communication should be flexible: controlling the schedule, stimulating innovations, and creating the space for conversation are crucial to facilitate in a participatory workshop.Keywords: communication experience, facilitation, participatory design, workshop
Procedia PDF Downloads 157