Search results for: hard classifiers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1279

Search results for: hard classifiers

889 Tuning of Indirect Exchange Coupling in FePt/Al₂O₃/Fe₃Pt System

Authors: Rajan Goyal, S. Lamba, S. Annapoorni

Abstract:

The indirect exchange coupled system consists of two ferromagnetic layers separated by non-magnetic spacer layer. The type of exchange coupling may be either ferro or anti-ferro depending on the thickness of the spacer layer. In the present work, the strength of exchange coupling in FePt/Al₂O₃/Fe₃Pt has been investigated by varying the thickness of the spacer layer Al₂O₃. The FePt/Al₂O₃/Fe₃Pt trilayer structure is fabricated on Si <100> single crystal substrate using sputtering technique. The thickness of FePt and Fe₃Pt is fixed at 60 nm and 2 nm respectively. The thickness of spacer layer Al₂O₃ was varied from 0 to 16 nm. The normalized hysteresis loops recorded at room temperature both in the in-plane and out of plane configuration reveals that the orientation of easy axis lies along the plane of the film. It is observed that the hysteresis loop for ts=0 nm does not exhibit any knee around H=0 indicating that the hard FePt layer and soft Fe₃Pt layer are strongly exchange coupled. However, the insertion of Al₂O₃ spacer layer of thickness ts = 0.7 nm results in appearance of a minor knee around H=0 suggesting the weakening of exchange coupling between FePt and Fe₃Pt. The disappearance of knee in hysteresis loop with further increase in thickness of the spacer layer up to 8 nm predicts the co-existence of ferromagnetic (FM) and antiferromagnetic (AFM) exchange interaction between FePt and Fe₃Pt. In addition to this, the out of plane hysteresis loop also shows an asymmetry around H=0. The exchange field Hex = (Hc↑-HC↓)/2, where Hc↑ and Hc↓ are the coercivity estimated from lower and upper branch of hysteresis loop, increases from ~ 150 Oe to ~ 700 Oe respectively. This behavior may be attributed to the uncompensated moments in the hard FePt layer and soft Fe₃Pt layer at the interface. A better insight into the variation in indirect exchange coupling has been investigated using recoil curves. It is observed that the almost closed recoil curves are obtained for ts= 0 nm up to a reverse field of ~ 5 kOe. On the other hand, the appearance of appreciable open recoil curves at lower reverse field ~ 4 kOe for ts = 0.7 nm indicates that uncoupled soft phase undergoes irreversible magnetization reversal at lower reverse field suggesting the weakening of exchange coupling. The openness of recoil curves decreases with increase in thickness of the spacer layer up to 8 nm. This behavior may be attributed to the competition between FM and AFM exchange interactions. The FM exchange coupling between FePt and Fe₃Pt due to porous nature of Al₂O₃ decreases much slower than the weak AFM coupling due to interaction between Fe ions of FePt and Fe₃Pt via O ions of Al₂O₃. The hysteresis loop has been simulated using Monte Carlo based on Metropolis algorithm to investigate the variation in strength of exchange coupling in FePt/Al₂O₃/Fe₃Pt trilayer system.

Keywords: indirect exchange coupling, MH loop, Monte Carlo simulation, recoil curve

Procedia PDF Downloads 189
888 An Explanatory Practice Example: The Reasons of Students Not Doing Any Extra Work

Authors: Özge Özsoy

Abstract:

Teachers usually complain that their students do not study enough to further practice the subjects they have covered in class. Teachers tend to focus on how often and hard they should study rather than finding out the main reasons why most students avoid doing any extra work to improve their skills. In this study, with the use of exploratory practice method, 40 English preparatory class students at Anadolu University will discuss this puzzle through an in-class discussion and create posters describing the reasons for and solutions to it. The overlapping data from the posters will be categorized in two sections as reasons and solutions in a final poster. The study aims at revealing the student perspective of a common puzzle that troubles many teachers.

Keywords: exploratory practice, extra work, puzzle, students, teachers

Procedia PDF Downloads 338
887 Job Shop Scheduling: Classification, Constraints and Objective Functions

Authors: Majid Abdolrazzagh-Nezhad, Salwani Abdullah

Abstract:

The job-shop scheduling problem (JSSP) is an important decision facing those involved in the fields of industry, economics and management. This problem is a class of combinational optimization problem known as the NP-hard problem. JSSPs deal with a set of machines and a set of jobs with various predetermined routes through the machines, where the objective is to assemble a schedule of jobs that minimizes certain criteria such as makespan, maximum lateness, and total weighted tardiness. Over the past several decades, interest in meta-heuristic approaches to address JSSPs has increased due to the ability of these approaches to generate solutions which are better than those generated from heuristics alone. This article provides the classification, constraints and objective functions imposed on JSSPs that are available in the literature.

Keywords: job-shop scheduling, classification, constraints, objective functions

Procedia PDF Downloads 442
886 Innovative Dissipative Bracings for Seismic-Resistant Automated Rack Supported Warehouses

Authors: Agnese Natali, Francesco Morelli, Walter Salvatore

Abstract:

Automated Rack Supported Warehouses (ARSWs) are storage buildings whose structure is made of the same racks where goods are placed. The possibility of designing dissipative seismic-resistant ARSWs is investigated. Diagonals are the dissipative elements, arranged as tense-only X bracings. Local optimization is numerically performed to satisfy the over-resistant connection request for the dissipative element, that is hard to be reached due the geometrical limits of the thin-walled diagonals and must be balanced with resistance, the limit of slenderness, and ductility requests.

Keywords: steel racks, thin-walled cold-formed elements, structural optimization, hierarchy rules, dog-bone philosophy

Procedia PDF Downloads 159
885 The Backlift Technique among South African Cricket Players

Authors: Habib Noorbhai

Abstract:

This study primarily aimed to investigate the batting backlift technique (BBT) among semi-professional, professional and current international cricket players. A key question was to investigate if the lateral batting backlift technique (LBBT) is more common at the highest levels of the game. The participants in this study sample (n = 130) were South African semi-professional players (SP) (n = 69) and professional players (P) (n = 49) and South African international professional players (SAI) (n = 12). Biomechanical and video analysis were performed on all participant groups. Classifiers were utilised to identify the batting backlift technique type (BBTT) employed by all batsmen. All statistics and wagon wheels (scoring areas of the batsmen on a cricket field) were sourced online. This study found that a LBBT is more common at the highest levels of cricket batsmanship with batsmen at the various levels of cricket having percentages of the LBBT as follows: SP = 37.7%; P = 38.8%; SAI = 75%; p = 0.001. This study also found that SAI batsmen who used the LBBT were more proficient at scoring runs in various areas around the cricket field (according to the wagon wheel analysis). This study found that a LBBT is more common at the highest levels of cricket batsmanship. Cricket coaches should also pay attention to the direction of the backlift with players, especially when correlating the backlift to various scoring areas on the cricket field. Further in-depth research is required to fully investigate the change in batting backlift techniques among cricket players over a long-term period.

Keywords: cricket batting, biomechanical analysis, backlift, performance

Procedia PDF Downloads 259
884 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring

Authors: A. Degale Desta, Cheng Jian

Abstract:

Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.

Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning

Procedia PDF Downloads 161
883 MegaProjects and the Governing Processes That Lead to Success and Failure: A Literature Review

Authors: Fangwei Zhu, Wei Tian, Linzhuo Wang, Miao Yu

Abstract:

Megaproject has long been a critical issue in project governance, for its low success rate and large impact on society. Although the extant literature on megaproject governance is vast, to our best knowledge, the lacking of a thorough literature review makes it hard for us to gain a holistic view on current scenario of megaproject governance. The study conducts a systematic literature review process to analyze the existing literatures on megaproject governance. The finding indicates that mega project governance needs to be handled at network level and forming a network level governance provides a holistic framework for governing megaproject towards sustainable development of the projects. Theoretical and practical implications, as well as future studies and limitations, were discussed.

Keywords: megaproject, governance, literature review, network

Procedia PDF Downloads 198
882 The Use of Mobile Phones as a Direct Marketing Tool and Consumer Attitudes

Authors: Abdülcelil Mücahid Zengin, Göksel Şimşek

Abstract:

Mobile phones are one of the direct marketing tools that can be used to reach todays hard to reach consumers. Mobile phones are very personal devices and they are always carried with the consumer, where ever they go. This creates an opportunity for marketers to create personalized marketing communications messages and send them on the right time and place. This study examines consumer attitudes toward mobile marketing, especially toward SMS marketing. Unlike similar studies, this study does not focus on the young, but includes consumers who are in the 18-70 age range to the field research. According to the results, it has been concluded that most participants think SMS marketing is disturbing. Most important problems with SMS marketing are about getting subscribed to message lists without the permission of the receiver; the high number of messages sent; and the irrelevancy of the message content.

Keywords: direct marketing, mobile phones mobile marketing, sms advertising, sms marketing

Procedia PDF Downloads 347
881 A Supervised Approach for Detection of Singleton Spam Reviews

Authors: Atefeh Heydari, Mohammadali Tavakoli, Naomie Salim

Abstract:

In recent years, we have witnessed that online reviews are the most important source of customers’ opinion. They are progressively more used by individuals and organisations to make purchase and business decisions. Unfortunately, for the reason of profit or fame, frauds produce deceptive reviews to hoodwink potential customers. Their activities mislead not only potential customers to make appropriate purchasing decisions and organisations to reshape their business, but also opinion mining techniques by preventing them from reaching accurate results. Spam reviews could be divided into two main groups, i.e. multiple and singleton spam reviews. Detecting a singleton spam review that is the only review written by a user ID is extremely challenging due to lack of clue for detection purposes. Singleton spam reviews are very harmful and various features and proofs used in multiple spam reviews detection are not applicable in this case. Current research aims to propose a novel supervised technique to detect singleton spam reviews. To achieve this, various features are proposed in this study and are to be combined with the most appropriate features extracted from literature and employed in a classifier. In order to compare the performance of different classifiers, SVM and naive Bayes classification algorithms were used for model building. The results revealed that SVM was more accurate than naive Bayes and our proposed technique is capable to detect singleton spam reviews effectively.

Keywords: classification algorithms, Naïve Bayes, opinion review spam detection, singleton review spam detection, support vector machine

Procedia PDF Downloads 308
880 Effects of Polydispersity on the Glass Transition Dynamics of Aqueous Suspensions of Soft Spherical Colloidal Particles

Authors: Sanjay K. Behera, Debasish Saha, Paramesh Gadige, Ranjini Bandyopadhyay

Abstract:

The zero shear viscosity (η₀) of a suspension of hard sphere colloids characterized by a significant polydispersity (≈10%) increases with increase in volume fraction (ϕ) and shows a dramatic increase at ϕ=ϕg with the system entering a colloidal glassy state. Fragility which is the measure of the rapidity of approach of these suspensions towards the glassy state is sensitive to its size polydispersity and stiffness of the particles. Soft poly(N-isopropylacrylamide) (PNIPAM) particles deform in the presence of neighboring particles at volume fraction above the random close packing volume fraction of undeformed monodisperse spheres. Softness, therefore, enhances the packing efficiency of these particles. In this study PNIPAM particles of a nearly constant swelling ratio and with polydispersities varying over a wide range (7.4%-48.9%) are synthesized to study the effects of polydispersity on the dynamics of suspensions of soft PNIPAM colloidal particles. The size and polydispersity of these particles are characterized using dynamic light scattering (DLS) and scanning electron microscopy (SEM). As these particles are deformable, their packing in aqueous suspensions is quantified in terms of effective volume fraction (ϕeff). The zero shear viscosity (η₀) data of these colloidal suspensions, estimated from rheometric experiments as a function of the effective volume fraction ϕeff of the suspensions, increases with increase in ϕeff and shows a dramatic increase at ϕeff = ϕ₀. The data for η₀ as a function of ϕeff fits well to the Vogel-Fulcher-Tammann equation. It is observed that increasing polydispersity results in increasingly fragile supercooled liquid-like behavior, with the parameter ϕ₀, extracted from the fits to the VFT equation shifting towards higher ϕeff. The observed increase in fragility is attributed to the prevalence of dynamical heterogeneities (DHs) in these polydisperse suspensions, while the simultaneous shift in ϕ₀ is ascribed to the decoupling of the dynamics of the smallest and largest particles. Finally, it is observed that the intrinsic nonlinearity of these suspensions, estimated at the third harmonic near ϕ₀ in Fourier transform oscillatory rheological experiments, increases with increase in polydispersity. These results are in agreement with theoretical predictions and simulation results for polydisperse hard sphere colloidal glasses and clearly demonstrate that jammed suspensions of polydisperse colloidal particles can be effectively fluidized with increasing polydispersity. Suspensions of these particles are therefore excellent candidates for detailed experimental studies of the effects of polydispersity on the dynamics of glass formation.

Keywords: dynamical heterogeneity, effective volume fraction, fragility, intrinsic nonlinearity

Procedia PDF Downloads 163
879 A Hierarchical Method for Multi-Class Probabilistic Classification Vector Machines

Authors: P. Byrnes, F. A. DiazDelaO

Abstract:

The Support Vector Machine (SVM) has become widely recognised as one of the leading algorithms in machine learning for both regression and binary classification. It expresses predictions in terms of a linear combination of kernel functions, referred to as support vectors. Despite its popularity amongst practitioners, SVM has some limitations, with the most significant being the generation of point prediction as opposed to predictive distributions. Stemming from this issue, a probabilistic model namely, Probabilistic Classification Vector Machines (PCVM), has been proposed which respects the original functional form of SVM whilst also providing a predictive distribution. As physical system designs become more complex, an increasing number of classification tasks involving industrial applications consist of more than two classes. Consequently, this research proposes a framework which allows for the extension of PCVM to a multi class setting. Additionally, the original PCVM framework relies on the use of type II maximum likelihood to provide estimates for both the kernel hyperparameters and model evidence. In a high dimensional multi class setting, however, this approach has been shown to be ineffective due to bad scaling as the number of classes increases. Accordingly, we propose the application of Markov Chain Monte Carlo (MCMC) based methods to provide a posterior distribution over both parameters and hyperparameters. The proposed framework will be validated against current multi class classifiers through synthetic and real life implementations.

Keywords: probabilistic classification vector machines, multi class classification, MCMC, support vector machines

Procedia PDF Downloads 220
878 Genetic Algorithm for Solving the Flexible Job-Shop Scheduling Problem

Authors: Guilherme Baldo Carlos

Abstract:

The flexible job-shop scheduling problem (FJSP) is an NP-hard combinatorial optimization problem, which can be applied to model several applications in a wide array of industries. This problem will have its importance increase due to the shift in the production mode that modern society is going through. The demands are increasing and for products personalized and customized. This work aims to apply a meta-heuristic called a genetic algorithm (GA) to solve this problem. A GA is a meta-heuristic inspired by the natural selection of Charles Darwin; it produces a population of individuals (solutions) and selects, mutates, and mates the individuals through generations in order to find a good solution for the problem. The results found indicate that the GA is suitable for FJSP solving.

Keywords: genetic algorithm, evolutionary algorithm, scheduling, flexible job-shop scheduling

Procedia PDF Downloads 146
877 Kinetic Façade Design Using 3D Scanning to Convert Physical Models into Digital Models

Authors: Do-Jin Jang, Sung-Ah Kim

Abstract:

In designing a kinetic façade, it is hard for the designer to make digital models due to its complex geometry with motion. This paper aims to present a methodology of converting a point cloud of a physical model into a single digital model with a certain topology and motion. The method uses a Microsoft Kinect sensor, and color markers were defined and applied to three paper folding-inspired designs. Although the resulted digital model cannot represent the whole folding range of the physical model, the method supports the designer to conduct a performance-oriented design process with the rough physical model in the reduced folding range.

Keywords: design media, kinetic facades, tangible user interface, 3D scanning

Procedia PDF Downloads 412
876 Kannada HandWritten Character Recognition by Edge Hinge and Edge Distribution Techniques Using Manhatan and Minimum Distance Classifiers

Authors: C. V. Aravinda, H. N. Prakash

Abstract:

In this paper, we tried to convey fusion and state of art pertaining to SIL character recognition systems. In the first step, the text is preprocessed and normalized to perform the text identification correctly. The second step involves extracting relevant and informative features. The third step implements the classification decision. The three stages which involved are Data acquisition and preprocessing, Feature extraction, and Classification. Here we concentrated on two techniques to obtain features, Feature Extraction & Feature Selection. Edge-hinge distribution is a feature that characterizes the changes in direction of a script stroke in handwritten text. The edge-hinge distribution is extracted by means of a windowpane that is slid over an edge-detected binary handwriting image. Whenever the mid pixel of the window is on, the two edge fragments (i.e. connected sequences of pixels) emerging from this mid pixel are measured. Their directions are measured and stored as pairs. A joint probability distribution is obtained from a large sample of such pairs. Despite continuous effort, handwriting identification remains a challenging issue, due to different approaches use different varieties of features, having different. Therefore, our study will focus on handwriting recognition based on feature selection to simplify features extracting task, optimize classification system complexity, reduce running time and improve the classification accuracy.

Keywords: word segmentation and recognition, character recognition, optical character recognition, hand written character recognition, South Indian languages

Procedia PDF Downloads 493
875 MIMIC: A Multi Input Micro-Influencers Classifier

Authors: Simone Leonardi, Luca Ardito

Abstract:

Micro-influencers are effective elements in the marketing strategies of companies and institutions because of their capability to create an hyper-engaged audience around a specific topic of interest. In recent years, many scientific approaches and commercial tools have handled the task of detecting this type of social media users. These strategies adopt solutions ranging from rule based machine learning models to deep neural networks and graph analysis on text, images, and account information. This work compares the existing solutions and proposes an ensemble method to generalize them with different input data and social media platforms. The deployed solution combines deep learning models on unstructured data with statistical machine learning models on structured data. We retrieve both social media accounts information and multimedia posts on Twitter and Instagram. These data are mapped into feature vectors for an eXtreme Gradient Boosting (XGBoost) classifier. Sixty different topics have been analyzed to build a rule based gold standard dataset and to compare the performances of our approach against baseline classifiers. We prove the effectiveness of our work by comparing the accuracy, precision, recall, and f1 score of our model with different configurations and architectures. We obtained an accuracy of 0.91 with our best performing model.

Keywords: deep learning, gradient boosting, image processing, micro-influencers, NLP, social media

Procedia PDF Downloads 183
874 A Framework Based on Dempster-Shafer Theory of Evidence Algorithm for the Analysis of the TV-Viewers’ Behaviors

Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi

Abstract:

In this paper, we propose an approach of detecting the behavior of the viewers of a TV program in a non-controlled environment. The experiment we propose is based on the use of three types of connected objects (smartphone, smart watch, and a connected remote control). 23 participants were observed while watching their TV programs during three phases: before, during and after watching a TV program. Their behaviors were detected using an approach based on The Dempster Shafer Theory (DST) in two phases. The first phase is to approximate dynamically the mass functions using an approach based on the correlation coefficient. The second phase is to calculate the approximate mass functions. To approximate the mass functions, two approaches have been tested: the first approach was to divide each features data space into cells; each one has a specific probability distribution over the behaviors. The probability distributions were computed statistically (estimated by empirical distribution). The second approach was to predict the TV-viewing behaviors through the use of classifiers algorithms and add uncertainty to the prediction based on the uncertainty of the model. Results showed that mixing the fusion rule with the computation of the initial approximate mass functions using a classifier led to an overall of 96%, 95% and 96% success rate for the first, second and third TV-viewing phase respectively. The results were also compared to those found in the literature. This study aims to anticipate certain actions in order to maintain the attention of TV viewers towards the proposed TV programs with usual connected objects, taking into account the various uncertainties that can be generated.

Keywords: Iot, TV-viewing behaviors identification, automatic classification, unconstrained environment

Procedia PDF Downloads 228
873 A Study on Big Data Analytics, Applications and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, Healthcare, and business intelligence contain voluminous and incremental data, which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organization's decision-making strategy can be enhanced using big data analytics and applying different machine learning techniques and statistical tools on such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates on various frameworks in the process of Analysis using different machine-learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 81
872 A Study on Big Data Analytics, Applications, and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, healthcare, and business intelligence contain voluminous and incremental data which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organisation decision-making strategy can be enhanced by using big data analytics and applying different machine learning techniques and statistical tools to such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates various frameworks in the process of analysis using different machine learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 93
871 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction

Procedia PDF Downloads 335
870 E-Resource Management: Digital Environment for a Library System

Authors: Vikram Munjal, Harpreet Munjal

Abstract:

A few years ago we could hardly think of Libraries' strategic plan that includes the bold and amazing prediction of a mostly digital environment for a library system. However, sheer hard work by the engineers, academicians, and librarians made it feasible. However, it requires huge expenditure and now a day‘s spending for electronic resources (e-resources) have been growing much more rapidly than have the materials budgets of which such resources are usually a part. And many libraries are spending a huge amount on e-resources. Libraries today are in the midst of a profound shift toward reliance on e-resources, and this reliance seems to have deepened in recent years as libraries have shed paper journal subscriptions to help pay for online access. This has been exercised only to cater user behavior and attitudes that seem to be changing even more quickly in this dynamic scenario.

Keywords: radio frequency identification, management, scanning, barcodes, checkout and tags

Procedia PDF Downloads 402
869 The French, the Yoruba, and the H-Thing: Sharing and Realising Same Phenomenon Differently

Authors: Rose-Juliet Anyanwu

Abstract:

The principal objective of this paper is to investigate whether some sort of phonological processes, such as elision, aspiration, glottalisation, and hardening can be used to account for the behaviour of the glottal fricative (or approximant, as the case may be) ‘h’ in both French and Yoruba. French and Yoruba speakers generally tend to say, for instance ‘ockey’ and ‘amburger’, instead of ‘hockey’ and ‘hamburger’, respectively. Whereas the Yoruba conversely say, for instance ‘hadd’ for ‘add’, ‘heat’ for ‘eat’ on the one hand and ‘ard’ for ‘hard’, ‘eat’ for ‘heat’ on the other hand, on a similar note, it is not quite clear whether the French, however, if not at least in rare instances, would tend to force themselves to pronounce (in any form whatsoever) the h-sound. Recorded sentences containing h-initial as well as vowel-initial words will be used for the investigation. The present paper is meant to contribute to work on aspiration, compensation, elision, and glottalisation, as well as hardening.

Keywords: aspiration, compensation, glottalisation, hardening

Procedia PDF Downloads 168
868 Using Predictive Analytics to Identify First-Year Engineering Students at Risk of Failing

Authors: Beng Yew Low, Cher Liang Cha, Cheng Yong Teoh

Abstract:

Due to a lack of continual assessment or grade related data, identifying first-year engineering students in a polytechnic education at risk of failing is challenging. Our experience over the years tells us that there is no strong correlation between having good entry grades in Mathematics and the Sciences and excelling in hardcore engineering subjects. Hence, identifying students at risk of failure cannot be on the basis of entry grades in Mathematics and the Sciences alone. These factors compound the difficulty of early identification and intervention. This paper describes the development of a predictive analytics model in the early detection of students at risk of failing and evaluates its effectiveness. Data from continual assessments conducted in term one, supplemented by data of student psychological profiles such as interests and study habits, were used. Three classification techniques, namely Logistic Regression, K Nearest Neighbour, and Random Forest, were used in our predictive model. Based on our findings, Random Forest was determined to be the strongest predictor with an Area Under the Curve (AUC) value of 0.994. Correspondingly, the Accuracy, Precision, Recall, and F-Score were also highest among these three classifiers. Using this Random Forest Classification technique, students at risk of failure could be identified at the end of term one. They could then be assigned to a Learning Support Programme at the beginning of term two. This paper gathers the results of our findings. It also proposes further improvements that can be made to the model.

Keywords: continual assessment, predictive analytics, random forest, student psychological profile

Procedia PDF Downloads 133
867 High-pressure Crystallographic Characterization of f-block Element Complexes

Authors: Nicholas B. Beck, Thomas E. Albrecht-Schönzart

Abstract:

High-pressure results in decreases in the bond lengths of metal-ligand bonds, which has proven to be incredibly informative in uncovering differences in bonding between lanthanide and actinide complexes. The degree of f-electron contribution to the metal ligand bonds has been observed to increase under pressure by a far greater degree in the actinides than the lanthanides, as revealed by spectroscopic studies. However, the actual changes in bond lengths have yet to be quantified, although computationally predicted. By using high-pressure crystallographic techniques, crystal structures of lanthanide complexes have been obtained at pressures up to 5 GPa for both hard and soft-donor ligands. These studies have revealed some unpredicted changes in the coordination environment as well as provided experimental support to computational results

Keywords: crystallography, high-pressure, lanthanide, materials

Procedia PDF Downloads 103
866 Vitamin D and Prevention of Rickets in Children

Authors: Mousa Saleh Daoud

Abstract:

Rickets is a condition that affects the development of bones in children. It causes soft bones, which can become bowed or curved, this bending and curvature is evident in the age of Walking. The most common cause of rickets is dietary deficiency of vitamin D or Lack of exposure to sunlight or both together. The link between vitamin D and rickets has been known for many years and is well understood by doctors and scientists. If a child does not get enough of the vitamin D, the bones cannot form hard outer shells. This is why they become soft and weak. This study was conducted on children who reviewed by our medical clinic between the years 2011-2013. The study included 400 children, aged between one and six years. 11 children had clear clinical manifestations of rickets of varying degrees and all of them due to lack of vitamin D except for one case of rickets resistant to vitamin D. 389 cases ranged between natural and deficiency in vitamin D without clinical manifestations of Rickets.

Keywords: rickts, bone metabolic diseases, vitamin D, child

Procedia PDF Downloads 409
865 The Effect of Artificial Intelligence on Marketing Distribution

Authors: Yousef Wageh Nagy Fahmy

Abstract:

Mobile phones are one of the direct marketing tools used to reach today's hard-to-reach consumers. Cell phones are very personal devices and you can have them with you anytime, anywhere. This offers marketers the opportunity to create personalized marketing messages and send them at the right time and place. The study examined consumer attitudes towards mobile marketing, particularly SMS marketing. Unlike similar studies, this study does not focus on young people, but includes consumers between the ages of 18 and 70 in the field study.The results showed that the majority of participants found SMS marketing disruptive. The biggest problems with SMS marketing are subscribing to message lists without the recipient's consent; large number of messages sent; and the irrelevance of message content

Keywords: direct marketing, mobile phones mobile marketing, sms advertising, marketing sponsorship, marketing communication theories, marketing communication tools

Procedia PDF Downloads 70
864 Learn through AR (Augmented Reality)

Authors: Prajakta Musale, Bhargav Parlikar, Sakshi Parkhi, Anshu Parihar, Aryan Parikh, Diksha Parasharam, Parth Jadhav

Abstract:

AR technology is basically a development of VR technology that harnesses the power of computers to be able to read the surroundings and create projections of digital models in the real world for the purpose of visualization, demonstration, and education. It has been applied to education, fields of prototyping in product design, development of medical models, battle strategy in the military and many other fields. Our Engineering Design and Innovation (EDAI) project focuses on the usage of augmented reality, visual mapping, and 3d-visualization along with animation and text boxes to help students in fields of education get a rough idea of the concepts such as flow and mechanical movements that may be hard to visualize at first glance.

Keywords: spatial mapping, ARKit, depth sensing, real-time rendering

Procedia PDF Downloads 60
863 Classification of Generative Adversarial Network Generated Multivariate Time Series Data Featuring Transformer-Based Deep Learning Architecture

Authors: Thrivikraman Aswathi, S. Advaith

Abstract:

As there can be cases where the use of real data is somehow limited, such as when it is hard to get access to a large volume of real data, we need to go for synthetic data generation. This produces high-quality synthetic data while maintaining the statistical properties of a specific dataset. In the present work, a generative adversarial network (GAN) is trained to produce multivariate time series (MTS) data since the MTS is now being gathered more often in various real-world systems. Furthermore, the GAN-generated MTS data is fed into a transformer-based deep learning architecture that carries out the data categorization into predefined classes. Further, the model is evaluated across various distinct domains by generating corresponding MTS data.

Keywords: GAN, transformer, classification, multivariate time series

Procedia PDF Downloads 128
862 Hydrological Challenges and Solutions in the Nashik Region: A Multi Tracer and Geochemistry Approach to Groundwater Management

Authors: Gokul Prasad, Pennan Chinnasamy

Abstract:

The degradation of groundwater resources, attributed to factors such as excessive abstraction and contamination, has emerged as a global concern. This study delves into the stable isotopes of water) in a hard-rock aquifer situated in the Upper Godavari watershed, an agriculturally rich region in India underlain by Basalt. The higher groundwater draft (> 90%) poses significant risks; comprehending groundwater sources, flow patterns, and their environmental impacts is pivotal for researchers and water managers. The region has faced five droughts in the past 20 years; four are categorized as medium. The recharge rates are variable and show a very minimum contribution to groundwater. The rainfall pattern shows vast variability, with the region receiving seasonal monsoon rainfall for just four months and the rest of the year experiencing minimal rainfall. This research closely monitored monsoon precipitation inputs and examined spatial and temporal fluctuations in δ18O and δ2H in both groundwater and precipitation. By discerning individual recharge events during monsoons, it became possible to identify periods when evaporation led to groundwater quality deterioration, characterized by elevated salinity and stable isotope values in the return flow. The locally derived meteoric water line (LMWL) (δ2H = 6.72 * δ18O + 1.53, r² = 0.6) provided valuable insights into the groundwater system. The leftward shift of the Nashik LMWL in relation to the GMWL and LMWL indicated groundwater evaporation (-33 ‰), supported by spatial variations in electrical conductivity (EC) data. Groundwater in the eastern and northern watershed areas exhibited higher salinity > 3000uS/cm, expanding > 40% of the area compared to the western and southern regions due to geological disparities (alluvium vs basalt). The findings emphasize meteoric precipitation as the primary groundwater source in the watershed. However, spatial variations in isotope values and chemical constituents indicate other contributing factors, including evaporation, groundwater source type, and natural or anthropogenic (specifically agricultural and industrial) contaminants. Therefore, the study recommends focused hydro geochemistry and isotope analysis in areas with strong agricultural and industrial influence for the development of holistic groundwater management plans for protecting the groundwater aquifers' quantity and quality.

Keywords: groundwater quality, stable isotopes, salinity, groundwater management, hard-rock aquifer

Procedia PDF Downloads 46
861 Experimental Investigation on Over-Cut in Ultrasonic Machining of WC-Co Composite

Authors: Ravinder Kataria, Jatinder Kumar, B. S. Pabla

Abstract:

Ultrasonic machining is one of the most widely used non-traditional machining processes for machining of materials that are relatively brittle, hard, and fragile such as advanced ceramics, refractories, crystals, quartz etc. Present article has been targeted at investigating the impact of different experimental conditions (power rating, cobalt content, tool material, thickness of work piece, tool geometry, and abrasive grit size) on over cut in ultrasonic drilling of WC-Co composite material. Taguchi’s L-36 orthogonal array has been employed for conducting the experiments. Significant factors have been identified using analysis of variance (ANOVA) test. The experimental results revealed that abrasive grit size and tool material are most significant factors for over cut.

Keywords: ANOVA, abrasive grit size, Taguchi, WC-Co, ultrasonic machining

Procedia PDF Downloads 397
860 Magnetic Properties of Sr-Ferrite Nano-Powder Synthesized by Sol-Gel Auto-Combustion Method

Authors: M. Ghobeiti-Hasab, Z. Shariati

Abstract:

In this paper, strontium ferrite (SrO.6Fe2O3) was synthesized by the sol-gel auto-combustion process. The thermal behavior of powder obtained from self-propagating combustion of initial gel was evaluated by simultaneous differential thermal analysis (DTA) and thermo gravimetric (TG), from room temperature to 1200°C. The as-burnt powder was calcined at various temperatures from 700-900°C to achieve the single-phase Sr-ferrite. Phase composition, morphology and magnetic properties were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM) techniques. Results showed that the single-phase and nano-sized hexagonal strontium ferrite particles were formed at calcination temperature of 800°C with crystallite size of 27 nm and coercivity of 6238 Oe.

Keywords: hard magnet, Sr-ferrite, sol-gel auto-combustion, nano-powder

Procedia PDF Downloads 363