Search results for: glass/epoxy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1260

Search results for: glass/epoxy

870 Chemical, Structural and Mechanical Optimization of Zr-Based Bulk Metallic Glass for Biomedical Applications

Authors: Eliott Guérin, Remi Daudin, Georges Kalepsi, Alexis Lenain, Sebastien Gravier, Benoit Ter-Ovanessian, Damien Fabregue, Jean-Jacques Blandin

Abstract:

Due to interesting compromise between mechanical and corrosion properties, Zr-based BMGs are attractive for biomedical applications. However, the enhancement of their glass forming ability (GFA) is often achieved by addition of toxic elements like Ni or Be, which is of course a problem for such applications. Consequently, the development of Ni-free Be-free Zr-based BMGs is of great interest. We have developed a Zr-based (Ni and Be-free) amorphous metallic alloy with an elastic limit twice the one of Ti-6Al-4V. The Zr56Co28Al16 composition exhibits a yield strength close to 2 GPa and low Young’s modulus (close to 90 GPa) [1-2]. In this work, we investigated Niobium (Nb) addition through substitution of Zr up to 8 at%. Cobalt substitution has already been reported [3], but we chose Zr substitution to preserve the glass forming ability. In this case, we show that the glass forming ability for 5 mm diameters rods is maintained up to 3 at% of Nb substitution using suction casting in cooper moulds. Concerning the thermal stability, we measure a strong compositional dependence on the glass transition (Tg). Using DSC analysis (heating rate 20 K/min), we show that the Tg rises from 752 K for 0 at% of Nb to 759 K for 3 at% of Nb. Yet, the thermal range between Tg and the crystallisation temperature (Tx) remains almost unchanged from 33 K to 35 K. Uniaxial compression tests on 2 mm diameter pillars and 3 points bending (3PB) tests on 1 mm thick plates are performed to study the Nb addition on the mechanical properties and the plastic behaviour. With these tests, an optimal Nb concentration is found, improving both plasticity and fatigue resistance. Through interpretations of DSC measurements, an attempt is made to correlate the modifications of the mechanical properties with the structural changes. The optimized chemical, structural and mechanical properties through Nb addition are encouraging to develop the potential of this BMG alloy for biomedical applications. For this purpose, we performed polarisation, immersion and cytotoxicity tests. The figure illustrates the polarisation response of Zr56Co28Al16, Zr54Co28Al16Nb2 and TA6V as a reference after 2h of open circuit potential. The results show that the substitution of Zr by a small amount of Nb significantly improves the corrosion resistance of the alloy.

Keywords: metallic glasses, amorphous metal, medical, mechanical resistance, biocompatibility

Procedia PDF Downloads 147
869 Effect of Fiber Orientation on the Mechanical Properties of Fabricated Plate Using Basalt Fiber

Authors: Sharmili Routray, Kishor Chandra Biswal

Abstract:

The use of corrosion resistant fiber reinforced polymer (FRP) reinforcement is beneficial in structures particularly those exposed to deicing salts, and/or located in highly corrosive environment. Generally Glass, Carbon and Aramid fibers are used for the strengthening purpose of the structures. Due to the necessities of low weight and high strength materials, it is required to find out the suitable substitute with low cost. Recent developments in fiber production technology allow the strengthening of structures using Basalt fiber which is made from basalt rock. Basalt fiber has good range of thermal performance, high tensile strength, resistance to acids, good electro‐magnetic properties, inert nature, resistance to corrosion, radiation and UV light, vibration and impact loading. This investigation focuses on the effect of fibre content and fiber orientation of basalt fibre on mechanical properties of the fabricated composites. Specimen prepared with unidirectional Basalt fabric as reinforcing materials and epoxy resin as a matrix in polymer composite. In this investigation different fiber orientation are taken and the fabrication is done by hand lay-up process. The variation of the properties with the increasing number of plies of fiber in the composites is also studied. Specimens are subjected to tensile strength test and the failure of the composite is examined with the help of INSTRON universal testing Machine (SATEC) of 600 kN capacities. The average tensile strength and modulus of elasticity of BFRP plates are determined from the test Program.

Keywords: BFRP, fabrication, Fiber Reinforced Polymer (FRP), strengthening

Procedia PDF Downloads 291
868 Mechanical Properties of Graphene Nano-Platelets Coated Carbon-Fiber Composites

Authors: Alok Srivastava, Vidit Gupta, Aparna Singh, Chandra Sekher Yerramalli

Abstract:

Carbon-fiber epoxy composites show extremely high modulus and strength in the uniaxial direction. However, they are prone to fail under low load in transverse direction due to the weak nature of the interface between the carbon-fiber and epoxy. In the current study, we have coated graphene nano-platelets (GNPs) on the carbon-fibers in an attempt to strengthen the interface/interphase between the fiber and the matrix. Vacuum Assisted Resin Transfer Moulding (VARTM) has been used to make the laminates of eight cross-woven fabrics. Tensile, flexural and fracture toughness tests have been performed on pristine carbon-fiber composite (P-CF), GNP coated carbon-fiber composite (GNP-CF) and functionalized-GNP coated carbon-fiber composite (F-GNP-CF). The tensile strength and flexural strength values are pretty similar for P-CF and GNP-CF. The micro-structural examination of the GNP coated carbon-fibers, as well as the fracture surfaces, have been carried out using scanning electron microscopy (SEM). The micrographs reveal the deposition of GNPs onto the carbon fibers in transverse and longitudinal direction. Fracture surfaces show the debonding and pull outs of the carbon fibers in P-CF and GNP-CF samples.

Keywords: carbon fiber, graphene nanoplatelets, strength, VARTM, Vacuum Assisted Resin Transfer Moulding

Procedia PDF Downloads 145
867 Influence of Fiber Loading and Surface Treatments on Mechanical Properties of Pineapple Leaf Fiber Reinforced Polymer Composites

Authors: Jain Jyoti, Jain Shorab, Sinha Shishir

Abstract:

In the current scenario, development of new biodegradable composites with the reinforcement of some plant derived natural fibers are in major research concern. Abundant quantity of these natural plant derived fibers including sisal, ramp, jute, wheat straw, pine, pineapple, bagasse, etc. can be used exclusively or in combination with other natural or synthetic fibers to augment their specific properties like chemical, mechanical or thermal properties. Among all natural fibers, wheat straw, bagasse, kenaf, pineapple leaf, banana, coir, ramie, flax, etc. pineapple leaf fibers have very good mechanical properties. Being hydrophilic in nature, pineapple leaf fibers have very less affinity towards all types of polymer matrixes. Not much work has been carried out in this area. Surface treatments like alkaline treatment in different concentrations were conducted to improve its compatibility towards hydrophobic polymer matrix. Pineapple leaf fiber epoxy composites have been prepared using hand layup method. Effect of variation in fiber loading up to 20% in epoxy composites has been studied for mechanical properties like tensile strength and flexural strength. Analysis of fiber morphology has also been studied using FTIR, XRD. SEM micrographs have also been studied for fracture surface.

Keywords: composite, mechanical, natural fiber, pineapple leaf fiber

Procedia PDF Downloads 238
866 Utilization of Waste Glass Powder in Mortar

Authors: Suhaib Salahuddin Alzubair Suliman

Abstract:

This paper examines the mechanical strength of different binders including pure ordinary Portland cement (OPC) and others having OPC supplemented by two maximum sizes of waste glass powder (GP) of 75-μm and 150μm. Chemical analysis of the GPs using PCEDX test analysis has revealed it silica (SiO2 ) content % is 86.883 and Calcium oxide (CaO) is 12.203%while there are traces of other impurities . Furthermore, the specific gravity of GP was measured. The experiments have been conducted on 63 specimens mortar made with standard sand with 20%,25%, and 30% of GP levels of substituting OPC. The specimens are tested at 3, 7 and 28 days for compressive strength and flexural strength. The specimens made with maximum GP size of 75-μm have outperformed the control OPC mortar at 28 days test age than size 150-μm at various replacement levels. In addition to that, the mechanical strengths were evaluated compressive strength and flexural strength tests were conducted for GPs. The findings from this study indicated that the mortars modified with GP 75μm and replacement ratio of 20% showed an improvement in compressive strength and flexural strength compared to the control mortar at the 28 days of curing with significant development between 7 and 28 days. Mortar with GP size 75-μm containing 30% & 20% replacement of cement have exhibited the highest flexural strength among all mortar mixtures. The improvement in the mechanical strength of the mortars modified with GP can be attributed to the pozzolanic property of GPs, which leads to a more densified microstructure and improved interfacial bonding between sand and cement paste matrix in mortars.

Keywords: glass powder, pozzolana, compressive strength, flexural strength, mortar

Procedia PDF Downloads 67
865 A Critical Study of the Performance of Self Compacting Concrete (SCC) Using Locally Supplied Materials in Bahrain

Authors: A. Umar, A. Tamimi

Abstract:

Development of new types of concrete with improved performance is a very important issue for the whole building industry. The development is based on the optimization of the concrete mix design, with an emphasis not only on the workability and mechanical properties but also to the durability and the reliability of the concrete structure in general. Self-compacting concrete (SCC) is a high-performance material designed to flow into formwork under its own weight and without the aid of mechanical vibration. At the same time it is cohesive enough to fill spaces of almost any size and shape without segregation or bleeding. Construction time is shorter and production of SCC is environmentally friendly (no noise, no vibration). Furthermore, SCC produces a good surface finish. Despite these advantages, SCC has not gained much local acceptance though it has been promoted in the Middle East for the last ten to twelve years. The reluctance in utilizing the advantages of SCC, in Bahrain, may be due to lack of research or published data pertaining to locally produced SCC. Therefore, there is a need to conduct studies on SCC using locally available material supplies. From the literature, it has been observed that the use of viscosity modifying admixtures (VMA), micro silica and glass fibers have proved to be very effective in stabilizing the rheological properties and the strength of fresh and hardened properties of self-compacting concrete (SCC). Therefore, in the present study, it is proposed to carry out investigations of SCC with combinations of various dosages of VMAs with and without micro silica and glass fibers and to study their influence on the properties of fresh and hardened concrete.

Keywords: self-compacting concrete, viscosity modifying admixture, micro silica, glass fibers

Procedia PDF Downloads 646
864 Durability Study of Pultruded CFRP Plates under Sustained Bending in Distilled Water and Seawater Immersions: Effects on the Visco-Elastic Properties

Authors: Innocent Kafodya, Guijun Xian

Abstract:

This paper presents effects of distilled water, seawater and sustained bending strains of 30% and 50% ultimate strain at room temperature, on the durability of unidirectional pultruded carbon fiber reinforced polymer (CFRP) plates. In this study, dynamic mechanical analyzer (DMA) was used to investigate the synergic effects of the immersions and bending strains on the visco-elastic properties of (CFRP) such as storage modulus, tan delta and glass transition temperature. The study reveals that the storage modulus and glass transition temperature increase while tan delta peak decreases in the initial stage of both immersions due to the progression of curing. The storage modulus and Tg subsequently decrease and tan delta increases due to the matrix plasticization. The blister induced damages in the unstrained seawater samples enhance water uptake and cause more serious degradation of Tg and storage modulus than in water immersion. Increasing sustained bending decreases Tg and storage modulus in a long run for both immersions due to resin matrix cracking and debonding. The combined effects of immersions and strains are not clearly reflected due to the statistical effects of DMA sample sizes and competing processes of molecular reorientation and postcuring.

Keywords: pultruded CFRP plate, bending strain, glass transition temperature, storage modulus, tan delta

Procedia PDF Downloads 268
863 Experimental and Computational Analysis of Glass Fiber Reinforced Plastic Beams with Piezoelectric Fibers

Authors: Selin Kunc, Srinivas Koushik Gundimeda, John A. Gallagher, Roselita Fragoudakis

Abstract:

This study investigates the behavior of Glass Fiber Reinforced Plastic (GFRP) laminated beams additionally reinforced with piezoelectric fibers. The electromechanical behavior of piezoelectric materials coupled with high strength/low weight GFRP laminated beams can have significant application in a wide range of industries. Energy scavenging through mechanical vibrations is the focus of this study, and possible applications can be seen in the automotive industry. This study examines the behavior of such composite laminates using Classical Lamination Theory (CLT) under three-point bending conditions. Fiber orientation is optimized for the desired stiffness and deflection that yield maximum energy output. Finite element models using ABAQUS/CAE are verified through experimental testing. The optimum stacking sequences examined are [0o]s, [ 0/45o]s, and [45/-45o]s. Results show the superiority of the stacking sequence [0/45o]s, providing higher strength at a lower weight, and maximum energy output. Furthermore, laminated GFRP beams additionally reinforced with piezoelectric fibers can be used under bending to not only replace metallic component while providing similar strength at a lower weight but also provide an energy output.

Keywords: classical lamination theory (CLT), energy scavenging, glass fiber reinforced plastics (GFRP), piezoelectric fibers

Procedia PDF Downloads 304
862 Effects of Aggregate Type and Concrete Age on Compressive Strength After Subjected to Elevated Temperature

Authors: Ahmed M. Seyam, Rita Nemes

Abstract:

In this study, the influence of elevated temperature and concrete age on the compressive strength of concrete produced by normal quartz aggregate, expanded clay, expanded glass, crushed andesite and crushed clay bricks aggregates were investigated. For this purpose, six different mixtures were prepared by 100% replacement of the coarse aggregate. The specimens were cured in water for seven days, then kept in the laboratory for 120 days and 240 days. The concrete specimens were heated in an electric furnace up to 200, 400, 600, 800, and 1000 °C and kept at these temperatures for two hours heating, then for 24 hours cooling. The residual compressive strength of the specimens was measured. The results showed that, the elevated temperature induces a significant decrease in a compressive strength in both normal weight and lightweight aggregate concrete, by comparing the behavior of different mixes, in all cases, the strength of the specimens containing crushed andesite aggregates showed a better performance for compressive strength after exposure to elevated temperatures over 800 °C, while the specimens containing expanded glass showing the least residual strength after subjected to elevated temperature; moreover the age of the concrete in all mixes has also been an effective factor, the behavior of the concrete strength loss by increasing heating temperature was not changed but the strength results showing the better performance and higher compressive strength in both ambient and elevated temperature.

Keywords: elevated temperature, concrete age, compressive strength, expanded clay, expanded glass, crushed andesite, crushed clay bricks

Procedia PDF Downloads 116
861 Structural Analysis of a Composite Wind Turbine Blade

Authors: C. Amer, M. Sahin

Abstract:

The design of an optimised horizontal axis 5-meter-long wind turbine rotor blade in according with IEC 61400-2 standard is a research and development project in order to fulfil the requirements of high efficiency of torque from wind production and to optimise the structural components to the lightest and strongest way possible. For this purpose, a research study is presented here by focusing on the structural characteristics of a composite wind turbine blade via finite element modelling and analysis tools. In this work, first, the required data regarding the general geometrical parts are gathered. Then, the airfoil geometries are created at various sections along the span of the blade by using CATIA software to obtain the two surfaces, namely; the suction and the pressure side of the blade in which there is a hat shaped fibre reinforced plastic spar beam, so-called chassis starting at 0.5m from the root of the blade and extends up to 4 m and filled with a foam core. The root part connecting the blade to the main rotor differential metallic hub having twelve hollow threaded studs is then modelled. The materials are assigned as two different types of glass fabrics, polymeric foam core material and the steel-balsa wood combination for the root connection parts. The glass fabrics are applied using hand wet lay-up lamination with epoxy resin as METYX L600E10C-0, is the unidirectional continuous fibres and METYX XL800E10F having a tri-axial architecture with fibres in the 0,+45,-45 degree orientations in a ratio of 2:1:1. Divinycell H45 is used as the polymeric foam. The finite element modelling of the blade is performed via MSC PATRAN software with various meshes created on each structural part considering shell type for all surface geometries, and lumped mass were added to simulate extra adhesive locations. For the static analysis, the boundary conditions are assigned as fixed at the root through aforementioned bolts, where for dynamic analysis both fixed-free and free-free boundary conditions are made. By also taking the mesh independency into account, MSC NASTRAN is used as a solver for both analyses. The static analysis aims the tip deflection of the blade under its own weight and the dynamic analysis comprises normal mode dynamic analysis performed in order to obtain the natural frequencies and corresponding mode shapes focusing the first five in and out-of-plane bending and the torsional modes of the blade. The analyses results of this study are then used as a benchmark prior to modal testing, where the experiments over the produced wind turbine rotor blade has approved the analytical calculations.

Keywords: dynamic analysis, fiber reinforced composites, horizontal axis wind turbine blade, hand-wet layup, modal testing

Procedia PDF Downloads 423
860 Study of the Adhesive Bond Effect on Electro-Mechanical Behaviour of Coupled Piezo Structural System

Authors: Rahul S. Raj

Abstract:

Electro-mechanical impedance technique is a recently developed non-destructive method for structural health monitoring. This system comprises of piezo electric patch, bonded to the structure using an adhesive/epoxy and electrically excited to determine the health of the component. The subjected electric field actuates the PZT patch harmonically and imparts a force on the host structure. The structural response thus produced by the host component is in the form of peaks and valleys which further shows the admittance signatures of the structure for the given excitation frequency. Adhesives have the capability to change the structural signatures, in EMI technique, by transforming conductance and susceptance signatures. The static approximation provide a justifiable result where adhesive bond lines are thin and stiff. The epoxy adhesive bonds limits design flexibility due to poor bond strengths, hence to enhance the performance of the joints, a new technique is developed for joining PZT, i.e. the alloy bonding technique. It is a metallic joining compound which contains many active elements including Titanium, that reacts with the tenacious surface films of the ceramic and composites to create excellent bonds. This alloy-based bonding technique will be used for better strain interaction and rigorous stress transfer between PZT patch and the host structure.

Keywords: EMI technique, conductance, susceptance, admittance, alloy bonding

Procedia PDF Downloads 118
859 Stability Characteristics of Angle Ply Bi-Stable Laminates by Considering the Effect of Resin Layers

Authors: Masih Moore, Saeed Ziaei-Rad

Abstract:

In this study, the stability characteristics of a bi-stable composite plate with different asymmetric composition are considered. The interest in bi-stable structures comes from their ability that these structures can have two different stable equilibrium configurations to define a discrete set of stable shapes. The structures can easily change the first stable shape to the second one by a simple snap action. The main purpose of the current research is to consider the effect of including resin layers on the stability characteristics of bi-stable laminates. To this end and In order to determine the magnitude of the loads that are responsible for snap through and snap back phenomena between two stable shapes of the laminate, a non-linear finite element method (FEM) is utilized. An experimental investigation was also carried out to study the critical loads that caused snapping between two different stable shapes. Several specimens were manufactured from T300/5208 graphite-epoxy with [0/90]T, [-30/60]T, [-20/70]T asymmetric stacking sequence. In order to create an accurate finite element model, different thickness of resin layers created during the manufacturing process of the laminate was measured and taken into account. The geometry of each lamina and the resin layers was characterized by optical microscopy from different locations of the laminates thickness. The exact thickness of each lamina and the resin layer in all specimens with [0/90]T,[-30/60]T, [-20/70]T stacking sequence were determined by using image processing technique.

Keywords: bi-stable laminates, finite element method, graphite-epoxy plate, snap behavior

Procedia PDF Downloads 242
858 Nondestructive Evaluation of Hidden Delamination in Glass Fiber Composite Using Terahertz Spectroscopy

Authors: Chung-Hyeon Ryu, Do-Hyoung Kim, Hak-Sung Kim

Abstract:

As the use of the composites was increased, the detecting method of hidden damages which have an effect on performance of the composite was important. Terahertz (THz) spectroscopy was assessed as one of the new powerful nondestructive evaluation (NDE) techniques for fiber reinforced composite structures because it has many advantages which can overcome the limitations of conventional NDE techniques such as x-rays or ultrasound. The THz wave offers noninvasive, noncontact and nonionizing methods evaluating composite damages, also it gives a broad range of information about the material properties. In additions, it enables to detect the multiple-delaminations of various nonmetallic materials. In this study, the pulse type THz spectroscopy imaging system was devised and used for detecting and evaluating the hidden delamination in the glass fiber reinforced plastic (GFRP) composite laminates. The interaction between THz and the GFRP composite was analyzed respect to the type of delamination, including their thickness, size and numbers of overlaps among multiple-delaminations in through-thickness direction. Both of transmission and reflection configurations were used for evaluation of hidden delaminations and THz wave propagations through the delaminations were also discussed. From these results, various hidden delaminations inside of the GFRP composite were successfully detected using time-domain THz spectroscopy imaging system and also compared to the results of C-scan inspection. It is expected that THz NDE technique will be widely used to evaluate the reliability of composite structures.

Keywords: terahertz, delamination, glass fiber reinforced plastic composites, terahertz spectroscopy

Procedia PDF Downloads 591
857 Synthesizing and Fabrication of Pani-(SnO₂, ZnO)/rGO by Sol-Gel Method to Develop a Biosensor Thin-Films on Top Glass Substrate

Authors: Mohammad Arifin, Huda Abdullah, Norshafadzila Mohammad Naim

Abstract:

The fabricated PANI-(SnO₂, ZnO)/rGO nanocomposite thin films for the E. coli bacteria sensor were investigated. The nanocomposite thin films were prepared by the sol-gel method and deposited on the glass substrate using the spin-coating technique. The internal structure and surface morphology of the thin films have been analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM). The optical properties of the films were investigated by UV-Vis spectroscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). The sensitivity performance was identified by measuring the changing conductivity before and after the incubation of E. coli bacteria using current-voltage (I-V) and cyclic voltammetry (C-V) measurements.

Keywords: PANI-(SnO₂, ZnO)/rGO, nanocomposite, bacteria sensor, thin films

Procedia PDF Downloads 114
856 Ab Initio Approach to Generate a Binary Bulk Metallic Glass Foam

Authors: Jonathan Galvan-Colin, Ariel Valladares, Renela Valladares, Alexander Valladares

Abstract:

Both porous materials and bulk metallic glasses have been studied due to their potential applications and their exceptional physical and chemical properties. However, each material presents certain drawbacks which have been thought to be overcome by generating bulk metallic glass foams (BMGF). Although some experimental reports have been performed on multicomponent BMGF, still no ab initio works have been published, as far as we know. We present an approach based on the expanding lattice (EL) method to generate binary amorphous nanoporous Cu64Zr36. Starting from two different configurations: a 108-atom crystalline cubic supercell (cCu64Zr36) and a 108-atom amorphous supercell (aCu64Zr36), both with an initial density of 8.06 g/cm3, we applied EL method to halve the density and to get 50% of porosity. After the lattice expansion the supercells were subject to ab initio molecular dynamics for 500 steps at constant room temperature. Then, the samples were geometry-optimized and characterized with the pair and radial distribution functions, bond-angle distributions and a coordination number analysis. We found that pores appeared along specific spatial directions different from one to another and that they differed in size and form as well, which we think is related to the initial structure. Due to the lack of experimental counterparts our results should be considered predictive and further studies are needed in order to handle a larger number of atoms and its implication on pore topology.

Keywords: ab initio molecular dynamics, bulk mettalic glass, porous alloy

Procedia PDF Downloads 260
855 Optical Characterization of Lead Sulphide Thin Films Grown by Chemical Bath Deposition

Authors: Ekpekpo Arthur

Abstract:

Thin films can either be conductive or dielectric (non-conductive). It is formed through atom/molecules state or formed after decomposing the materials into atomic/molecular scale by physical or chemical processes. In this study, thin films of Lead Sulphide were deposited on glass substrate prepared from lead acetate and thiourea solution using chemical bath deposition (CBD). The glass slides were subjected to the pretreatment by soaking them in a solution of 50% sulphuric acid and 50% nitric acid. Lead sulphide was deposited at different parameters such as deposition time and temperature. The optical properties of the thin films were determined from spectroscopy measurements of absorbance and reflectance. Optical studies show that the band gap of lead sulphide ranges between 0.41 eV to 300K.

Keywords: lead sulphide, spectroscopy, absorbance, reflectance

Procedia PDF Downloads 430
854 Flexural Strength of Alkali Resistant Glass Textile Reinforced Concrete Beam with Prestressing

Authors: Jongho Park, Taekyun Kim, Jungbhin You, Sungnam Hong, Sun-Kyu Park

Abstract:

Due to the aging of bridges, increasing of maintenance costs and decreasing of structural safety is occurred. The steel corrosion of reinforced concrete bridge is the most common problem and this phenomenon is accelerating due to abnormal weather and increasing CO2 concentration due to climate change. To solve these problems, composite members using textile have been studied. A textile reinforced concrete can reduce carbon emissions by reduced concrete and without steel bars, so a lot of structural behavior studies are needed. Therefore, in this study, textile reinforced concrete beam was made and flexural test was performed. Also, the change of flexural strength according to the prestressing was conducted. As a result, flexural strength of TRC with prestressing was increased compared and flexural behavior was shown as reinforced concrete.

Keywords: AR-glass, flexural strength, prestressing, textile reinforced concrete

Procedia PDF Downloads 329
853 Pick and Place System for Dip Glaze Using PID Controller

Authors: Benchalak Muangmeesri

Abstract:

Glazes ceramics are ceramic materials produced through controlled crystallization of a parent glass. The great variety of compositions and the possibility of developing special micro structures with specific technological properties have allowed glass ceramic materials to be used in a wide range of applications. At the same time, glazes ceramics need to improvement in the mechanical and chemical properties of glazed. The pick and place station is equipped with a three-axis module. test piece housings placed on the vacuum are detected module picks up a test piece insert from the slide and places it on the test piece housing. Overall, glazes ceramics are compared with automatically and manually of speed and position control. The handling modules of automatic transfer are a new generation of high speed and precision then these color results from absorption and thickness than manual is also included.

Keywords: glaze, PID control, pick and place, ceramic

Procedia PDF Downloads 377
852 Processing and Characterization of Aluminum Matrix Composite Reinforced with Amorphous Zr₃₇.₅Cu₁₈.₆₇Al₄₃.₉₈ Phase

Authors: P. Abachi, S. Karami, K. Purazrang

Abstract:

The amorphous reinforcements (metallic glasses) can be considered as promising options for reinforcing light-weight aluminum and its alloys. By using the proper type of reinforcement, one can overcome to drawbacks such as interfacial de-cohesion and undesirable reactions which can be created at ceramic particle and metallic matrix interface. In this work, the Zr-based amorphous phase was produced via mechanical milling of elemental powders. Based on Miedema semi-empirical Model and diagrams for formation enthalpies and/or Gibbs free energies of Zr-Cu amorphous phase in comparison with the crystalline phase, the glass formability range was predicted. The composite was produced using the powder mixture of the aluminum and metallic glass and spark plasma sintering (SPS) at the temperature slightly above the glass transition Tg of the metallic glass particles. The selected temperature and rapid sintering route were suitable for consolidation of an aluminum matrix without crystallization of amorphous phase. To characterize amorphous phase formation, X-ray diffraction (XRD) phase analyses were performed on powder mixture after specified intervals of milling. The microstructure of the composite was studied by optical and scanning electron microscope (SEM). Uniaxial compression tests were carried out on composite specimens with the dimension of 4 mm long and a cross-section of 2 ˟ 2mm2. The micrographs indicated an appropriate reinforcement distribution in the metallic matrix. The comparison of stress–strain curves of the consolidated composite and the non-reinforced Al matrix alloy in compression showed that the enhancement of yield strength and mechanical strength are combined with an appreciable plastic strain at fracture. It can be concluded that metallic glasses (amorphous phases) are alternative reinforcement material for lightweight metal matrix composites capable of producing high strength and adequate ductility. However, this is in the expense of minor density increase.

Keywords: aluminum matrix composite, amorphous phase, mechanical alloying, spark plasma sintering

Procedia PDF Downloads 361
851 Me and My Selfie: Identity Building Through Self Representation in Social Media

Authors: Revytia Tanera

Abstract:

This research is a pilot study to examine the rise of selfie trend in dealing with individual self representation and identity building in social media. The symbolic interactionism theory is used as the concept of the desired self image, and Cooley’s looking glass-self concept is used to analyze the mechanical reflection of ourselves; how do people perform their “digital self” in social media. In-depth interviews were conducted in the study with a non-random sample who owns a smartphone with a front camera feature and are active in social media. This research is trying to find out whether the selfie trend brings any influence on identity building on each individual. Through analysis of interview results, it can be concluded that people take selfie photos in order to express themselves and to boost their confidence. This study suggests a follow up and more in depth analysis on identity and self representation from various age groups.

Keywords: self representation, selfie, social media, symbolic interaction, looking glass-self

Procedia PDF Downloads 297
850 TiN/TiO2 Nanostructure Coating on Glass Substrate

Authors: F. Dabir, R. Sarraf-Mamoory, N. Riahi-Noori

Abstract:

In this work, a nanostructured TiO2 layer was coated onto a FTO-less glass substrate using screen printing technique for back contact DSSC application. Then, titanium nitride thin film was applied on TiO2 layer by plasma assisted chemical vapor deposition (PACVD) as charge collector layer. The microstructure of prepared TiO2 layer was characterized by SEM. The sheet resistance, microstructure and elemental composition of titanium nitride thin films were analysed by four point probe, SEM, and EDS, respectively. TiO2 layer had porous nanostructure. The EDS analysis of TiN thin film showed presence of chlorine impurity. Sheet resistance of TiN thin film was 30 Ω/sq. With respect to the results, PACVD TiN can be a good candidate as a charge collector layer in back contacts DSSC.

Keywords: TiO2, TiN, charge collector, DSSC

Procedia PDF Downloads 463
849 Electrical and Thermal Characteristics of a Photovoltaic Solar Wall with Passive and Active Ventilation through a Room

Authors: Himanshu Dehra

Abstract:

An experimental study was conducted for ascertaining electrical and thermal characteristics of a pair of photovoltaic (PV) modules integrated with solar wall of an outdoor room. A pre-fabricated outdoor room was setup for conducting outdoor experiments on a PV solar wall with passive and active ventilation through the outdoor room. The selective operating conditions for glass coated PV modules were utilized for establishing their electrical and thermal characteristics. The PV solar wall was made up of glass coated PV modules, a ventilated air column, and an insulating layer of polystyrene filled plywood board. The measurements collected were currents, voltages, electric power, air velocities, temperatures, solar intensities, and thermal time constant. The results have demonstrated that: i) a PV solar wall installed on a wooden frame was of more heat generating capacity in comparison to a window glass or a standalone PV module; ii) generation of electric power was affected with operation of vertical PV solar wall; iii) electrical and thermal characteristics were not significantly affected by heat and thermal storage losses; and iv) combined heat and electricity generation were function of volume of thermal and electrical resistances developed across PV solar wall. Finally, a comparison of temperature plots of passive and active ventilation envisaged that fan pressure was necessary to avoid overheating of the PV solar wall. The active ventilation was necessary to avoid over-heating of the PV solar wall and to maintain adequate ventilation of room under mild climate conditions.

Keywords: photovoltaic solar wall, solar energy, passive ventilation, active ventilation

Procedia PDF Downloads 394
848 Development of Boro-Tellurite Glasses Enhanced with HfO2 for Radiation Shielding: Examination of Optical and Physical Characteristics

Authors: Sleman Yahya Rasul

Abstract:

Due to their transparency, various types of glass are utilized in numerous applications where clear visibility is essential. One such application involves environments where radiography, radiotherapy, and X-ray devices are used, all of which involve exposure to radiation. As is well-known, radiation can be lethal to humans. Consequently, there is a need for glass that can absorb and block these harmful rays in such settings. Effective protection from radiation typically requires materials with high atomic numbers and densities. Currently, lead oxide-infused glasses are commonly used for this purpose, but due to the toxicity of lead oxide, there is a demand for safer alternatives. HfO2 has been selected as an additive for boro-tellurite (M1-M2-M3) glasses intended for radiation shielding because it has a high atomic number, high density, and is non-toxic. In this study, new glasses will be developed as alternatives to leaded glasses by incorporating x mol% HfO2 into the boro-tellurite glass structure. The glass compositions will be melted and quenched using the traditional method in an alumina crucible at temperatures between 900–1100°C. The resulting glasses will be evaluated for their elastic properties (including elastic modulus, shear modulus, bulk modulus, and Poisson ratio), density, hardness, and fracture toughness. X-ray diffraction (XRD) will be used to examine the amorphous nature of the glasses, while Differential Thermal Analysis (DTA) will provide thermal analysis. Optical properties will be assessed through UV-Vis and Photoluminescence Spectroscopy, and structural properties will be studied using Raman spectroscopy and FTIR spectroscopy. Additionally, the radiation shielding capabilities will be investigated by measuring parameters such as mass attenuation coefficient, half-value thickness, mean free path, effective atomic number (Z_eff), and effective electron density (N_e). The aim of this study is to develop new, lead-free glasses with excellent optical properties and high mechanical strength to replace the leaded glasses currently used for radiation shielding.

Keywords: boro-tellurite glasses, hfo2, radiation shielding, mechanical properties, elastic properties, optical properties

Procedia PDF Downloads 41
847 An Investigation into the Crystallization Tendency/Kinetics of Amorphous Active Pharmaceutical Ingredients: A Case Study with Dipyridamole and Cinnarizine

Authors: Shrawan Baghel, Helen Cathcart, Biall J. O'Reilly

Abstract:

Amorphous drug formulations have great potential to enhance solubility and thus bioavailability of BCS class II drugs. However, the higher free energy and molecular mobility of the amorphous form lowers the activation energy barrier for crystallization and thermodynamically drives it towards the crystalline state which makes them unstable. Accurate determination of the crystallization tendency/kinetics is the key to the successful design and development of such systems. In this study, dipyridamole (DPM) and cinnarizine (CNZ) has been selected as model compounds. Thermodynamic fragility (m_T) is measured from the heat capacity change at the glass transition temperature (Tg) whereas dynamic fragility (m_D) is evaluated using methods based on extrapolation of configurational entropy to zero 〖(m〗_(D_CE )), and heating rate dependence of Tg 〖(m〗_(D_Tg)). The mean relaxation time of amorphous drugs was calculated from Vogel-Tammann-Fulcher (VTF) equation. Furthermore, the correlation between fragility and glass forming ability (GFA) of model drugs has been established and the relevance of these parameters to crystallization of amorphous drugs is also assessed. Moreover, the crystallization kinetics of model drugs under isothermal conditions has been studied using Johnson-Mehl-Avrami (JMA) approach to determine the Avrami constant ‘n’ which provides an insight into the mechanism of crystallization. To further probe into the crystallization mechanism, the non-isothermal crystallization kinetics of model systems was also analysed by statistically fitting the crystallization data to 15 different kinetic models and the relevance of model-free kinetic approach has been established. In addition, the crystallization mechanism for DPM and CNZ at each extent of transformation has been predicted. The calculated fragility, glass forming ability (GFA) and crystallization kinetics is found to be in good correlation with the stability prediction of amorphous solid dispersions. Thus, this research work involves a multidisciplinary approach to establish fragility, GFA and crystallization kinetics as stability predictors for amorphous drug formulations.

Keywords: amorphous, fragility, glass forming ability, molecular mobility, mean relaxation time, crystallization kinetics, stability

Procedia PDF Downloads 351
846 Microstructure Study of Melt Spun Mg₆₅Cu₂₅Y₁₀

Authors: Michael Regev, Shai Essel, Alexander Katz-Demyanetz

Abstract:

Magnesium alloys are characterized by good physical properties: They exhibit high strength, are lightweight and have good damping absorption and good thermal and electrical conductivity. Amorphous magnesium alloys, moreover, exhibit higher strength, hardness and a large elastic domain in addition to having excellent corrosion resistance. These above-mentioned advantages make magnesium based metallic glasses attractive for industrial use. Among the various existing magnesium alloys, Mg₆₅Cu₂₅Y₁₀ alloy is known to be one of the best glass formers. In the current study, Mg₆₅Cu₂₅Y₁₀ ribbons were produced by melt spinning, their microstructure was investigated in its as-cast condition, after pressing under 0.5 GPa for 5 minutes under different temperatures - RT, 500C, 1000C, 1500C and 2000C - and after five minute exposure to the above temperatures without pressing. The microstructure was characterized by means of X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), High Resolution Scanning Electron Microscope (HRSEM) and High Resolution Transmission Electron Microscopy (HRTEM). XRD and DSC studies showed that the as-cast material had an amorphous character and that the material crystallized during exposure to temperature with or without applying stress. HRTEM revealed that the as-cast Mg65Cu25Y10, although known to be one of the best glass formers, is nano-crystalline rather than amorphous. The current study casts light on the question what an amorphous alloy is and whether there is any clear borderline between amorphous and nano-crystalline alloys.

Keywords: metallic glass, magnesium, melt spinning, amorphous alloys

Procedia PDF Downloads 232
845 Artificial Neural Network in Ultra-High Precision Grinding of Borosilicate-Crown Glass

Authors: Goodness Onwuka, Khaled Abou-El-Hossein

Abstract:

Borosilicate-crown (BK7) glass has found broad application in the optic and automotive industries and the growing demands for nanometric surface finishes is becoming a necessity in such applications. Thus, it has become paramount to optimize the parameters influencing the surface roughness of this precision lens. The research was carried out on a 4-axes Nanoform 250 precision lathe machine with an ultra-high precision grinding spindle. The experiment varied the machining parameters of feed rate, wheel speed and depth of cut at three levels for different combinations using Box Behnken design of experiment and the resulting surface roughness values were measured using a Taylor Hobson Dimension XL optical profiler. Acoustic emission monitoring technique was applied at a high sampling rate to monitor the machining process while further signal processing and feature extraction methods were implemented to generate the input to a neural network algorithm. This paper highlights the training and development of a back propagation neural network prediction algorithm through careful selection of parameters and the result show a better classification accuracy when compared to a previously developed response surface model with very similar machining parameters. Hence artificial neural network algorithms provide better surface roughness prediction accuracy in the ultra-high precision grinding of BK7 glass.

Keywords: acoustic emission technique, artificial neural network, surface roughness, ultra-high precision grinding

Procedia PDF Downloads 303
844 Theoretical-Experimental Investigations on Free Vibration of Glass Fiber/Polyester Composite Conical Shells Containing Fluid

Authors: Tran Ich Thinh, Nguyen Manh Cuong

Abstract:

Free vibrations of partial fluid-filled composite truncated conical shells are investigated using the Dynamic Stiffness Method (DSM) or Continuous Element Method (CEM) based on the First Order Shear Deformation Theory (FSDT) and non-viscous incompressible fluid equations. Numerical examples are given for analyzing natural frequencies and harmonic responses of clamped-free conical shells partially and completely filled with fluid. To compare with the theoretical results, detailed experimental results have been obtained on the free vibration of a clamped-free conical shells partially filled with water by using a multi-vibration measuring machine (DEWEBOOK-DASYLab 5.61.10). Three glass fiber/polyester composite truncated cones with the radius of the larger end 285 mm, thickness 2 mm, and the cone lengths along the generators are 285 mm, 427.5 mm and 570 mm with the semi-vertex angles 27, 14 and 9 degrees respectively were used, and the filling ratio of the contained water was 0, 0.25, 0.50, 0.75 and 1.0. The results calculated by proposed computational model for studied composite conical shells are in good agreement with experiments. Obtained results indicate that the fluid filling can reduce significantly the natural frequencies of composite conical shells. Parametric studies including circumferential wave number, fluid depth and cone angles are carried out.

Keywords: dynamic stiffness method, experimental study, free vibration, fluid-shell interaction, glass fiber/polyester composite conical shell

Procedia PDF Downloads 496
843 Spectroscopy and Electron Microscopy for the Characterization of CdSxSe1-x Quantum Dots in a Glass Matrix

Authors: C. Fornacelli, P. Colomban, E. Mugnaioli, I. Memmi Turbanti

Abstract:

When semiconductor particles are reduced in scale to nanometer dimension, their optical and electro-optical properties strongly differ from those of bulk crystals of the same composition. Since sampling is often not allowed concerning cultural heritage artefacts, the potentialities of two non-invasive techniques, such as Raman and Fiber Optic Reflectance Spectroscopy (FORS), have been investigated and the results of the analysis on some original glasses of different colours (from yellow to orange and deep red) and periods (from the second decade of the 20th century to present days) are reported in the present study. In order to evaluate the potentialities of the application of non-invasive techniques to the investigation of the structure and distribution of nanoparticles dispersed in a glass matrix, Scanning Electron Microscopy (SEM) and energy-disperse spectroscopy (EDS) mapping, together with Transmission Electron Microscopy (TEM) and Electron Diffraction Tomography (EDT) have also been used. Raman spectroscopy allows a fast and non-destructive measure of the quantum dots composition and size, thanks to the evaluation of the frequencies and the broadening/asymmetry of the LO phonons bands, respectively, though the important role of the compressive strain arising from the glass matrix and the possible diffusion of zinc from the matrix to the nanocrystals should be taken into account when considering the optical-phonons frequency values. The incorporation of Zn has been assumed by an upward shifting of the LO band related to the most abundant anion (S or Se), while the role of the surface phonons as well as the confinement-induced scattering by phonons with a non-zero wavevectors on the Raman peaks broadening has been verified. The optical band gap varies from 2.42 eV (pure CdS) to 1.70 eV (CdSe). For the compositional range between 0.5≤x≤0.2, the presence of two absorption edges has been related to the contribution of both pure CdS and the CdSxSe1-x solid solution; this particular feature is probably due to the presence of unaltered cubic zinc blende structures of CdS that is not taking part to the formation of the solid solution occurring only between hexagonal CdS and CdSe. Moreover, the band edge tailing originating from the disorder due to the formation of weak bonds and characterized by the Urbach edge energy has been studied and, together with the FWHM of the Raman signal, has been assumed as a good parameter to evaluate the degree of topological disorder. SEM-EDS mapping showed a peculiar distribution of the major constituents of the glass matrix (fluxes and stabilizers), especially concerning those samples where a layered structure has been assumed thanks to the spectroscopic study. Finally, TEM-EDS and EDT were used to get high-resolution information about nanocrystals (NCs) and heterogeneous glass layers. The presence of ZnO NCs (< 4 nm) dispersed in the matrix has been verified for most of the samples, while, for those samples where a disorder due to a more complex distribution of the size and/or composition of the NCs has been assumed, the TEM clearly verified most of the assumption made by the spectroscopic techniques.

Keywords: CdSxSe1-x, EDT, glass, spectroscopy, TEM-EDS

Procedia PDF Downloads 298
842 Production of Biocomposites Using Chars Obtained by Co-Pyrolysis of Olive Pomace with Plastic Wastes

Authors: Esra Yel, Tabriz Aslanov, Merve Sogancioglu, Suheyla Kocaman, Gulnare Ahmetli

Abstract:

The disposal of waste plastics has become a major worldwide environmental problem. Pyrolysis of waste plastics is one of the routes to waste minimization and recycling that has been gaining interest. In pyrolysis, the pyrolysed material is separated into gas, liquid (both are fuel) and solid (char) products. All fractions have utilities and economical value depending upon their characteristics. The first objective of this study is to determine the co-pyrolysis product fractions of waste HDPE- (high density polyethylene) and LDPE (low density polyethylene)-olive pomace (OP) and to determine the qualities of the solid product char. Chars obtained at 700 °C pyrolysis were used in biocomposite preparation as additive. As the second objective, the effects of char on biocomposite quality were investigated. Pyrolysis runs were performed at temperature 700 °C with heating rates of 5 °C/min. Biocomposites were prepared by mixing of chars with bisphenol-F type epoxy resin in various wt%. Biocomposite properties were determined by measuring electrical conductivity, surface hardness, Young’s modulus and tensile strength of the composites. The best electrical conductivity results were obtained with HDPE-OP char. For HDPE-OP char and LDPE-OP char, compared to neat epoxy, the tensile strength values of the composites increased by 102% and 78%, respectively, at 10% char dose. The hardness measurements showed similar results to the tensile tests, since there is a correlation between the hardness and the tensile strength.

Keywords: biocomposite, char, olive pomace, pyrolysis

Procedia PDF Downloads 250
841 Localized Detection of ᴅ-Serine by Using an Enzymatic Amperometric Biosensor and Scanning Electrochemical Microscopy

Authors: David Polcari, Samuel C. Perry, Loredano Pollegioni, Matthias Geissler, Janine Mauzeroll

Abstract:

ᴅ-serine acts as an endogenous co-agonist for N-methyl-ᴅ-aspartate receptors in neuronal synapses. This makes it a key component in the development and function of a healthy brain, especially given its role in several neurodegenerative diseases such as Alzheimer’s disease and dementia. Despite such clear research motivations, the primary site and mechanism of ᴅ-serine release is still currently unclear. For this reason, we are developing a biosensor for the detection of ᴅ-serine utilizing a microelectrode in combination with a ᴅ-amino acid oxidase enzyme, which produces stoichiometric quantities of hydrogen peroxide in response to ᴅ-serine. For the fabrication of a biosensor with good selectivity, we use a permselective poly(meta-phenylenediamine) film to ensure only the target molecule is reacted, according to the size exclusion principle. In this work, we investigated the effect of the electrodeposition conditions used on the biosensor’s response time and selectivity. Careful optimization of the fabrication process allowed for enhanced biosensor response time. This allowed for the real time sensing of ᴅ-serine in a bulk solution, and also provided in means to map the efflux of ᴅ-serine in real time. This was done using scanning electrochemical microscopy (SECM) with the optimized biosensor to measure localized release of ᴅ-serine from an agar filled glass capillary sealed in an epoxy puck, which acted as a model system. The SECM area scan simultaneously provided information regarding the rate of ᴅ-serine flux from the model substrate, as well as the size of the substrate itself. This SECM methodology, which provides high spatial and temporal resolution, could be useful to investigate the primary site and mechanism of ᴅ-serine release in other biological samples.

Keywords: ᴅ-serine, enzymatic biosensor, microelectrode, scanning electrochemical microscopy

Procedia PDF Downloads 227