Search results for: fixed live camera images
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5297

Search results for: fixed live camera images

4907 Identification of Healthy and BSR-Infected Oil Palm Trees Using Color Indices

Authors: Siti Khairunniza-Bejo, Yusnida Yusoff, Nik Salwani Nik Yusoff, Idris Abu Seman, Mohamad Izzuddin Anuar

Abstract:

Most of the oil palm plantations have been threatened by Basal Stem Rot (BSR) disease which causes serious economic impact. This study was conducted to identify the healthy and BSR-infected oil palm tree using thirteen color indices. Multispectral and thermal camera was used to capture 216 images of the leaves taken from frond number 1, 9 and 17. Indices of normalized difference vegetation index (NDVI), red (R), green (G), blue (B), near infrared (NIR), green – blue (GB), green/blue (G/B), green – red (GR), green/red (G/R), hue (H), saturation (S), intensity (I) and thermal index (T) were used. From this study, it can be concluded that G index taken from frond number 9 is the best index to differentiate between the healthy and BSR-infected oil palm trees. It not only gave high value of correlation coefficient (R=-0.962), but also high value of separation between healthy and BSR-infected oil palm tree. Furthermore, power and S model developed using G index gave the highest R2 value which is 0.985.

Keywords: oil palm, image processing, disease, leaves

Procedia PDF Downloads 498
4906 Administration of Lactobacillus plantarum PS128 Improves Animal Behavior and Monoamine Neurotransmission in Germ-Free Mice

Authors: Liu Wei-Hsien, Chuang Hsiao-Li, Huang Yen-Te, Wu Chien-Chen, Chou Geng-Ting, Tsai Ying-Chieh

Abstract:

Intestinal microflora play an important role in communication along the gut-brain axis. Probiotics, defined as live bacteria or bacterial products, confer a significant health benefit to the host. Here we administered Lactobacillus plantarum PS128 (PS128) to the germ-free (GF) mouse to investigate the impact of the gut-brain axis on emotional behavior. Administration of live PS128 significantly increased the total distance traveled in the open field test; it decreased the time spent in the closed arm and increased the time spent and total entries into the open arm in the elevated plus maze. In contrast, heat-killed PS128 caused no significant changes in the GF mice. Treatment with live PS128 significantly increased levels of both serotonin and dopamine in the striatum, but not in the prefrontal cortex or hippocampus. However, live PS128 did not alter pro- or anti-inflammatory cytokine production by mitogen-stimulated splenocytes. The above data indicate that the normalization of emotional behavior correlated with monoamine neurotransmission, but not with immune activity. Our findings suggest that daily intake of the probiotic PS128 could ameliorate neuropsychiatric disorders such as anxiety and excessive psychological stress.

Keywords: dopamine, hypothalamic-pituitary-adrenal axis, intestinal microflora, serotonin

Procedia PDF Downloads 415
4905 Optimized Road Lane Detection Through a Combined Canny Edge Detection, Hough Transform, and Scaleable Region Masking Toward Autonomous Driving

Authors: Samane Sharifi Monfared, Lavdie Rada

Abstract:

Nowadays, autonomous vehicles are developing rapidly toward facilitating human car driving. One of the main issues is road lane detection for a suitable guidance direction and car accident prevention. This paper aims to improve and optimize road line detection based on a combination of camera calibration, the Hough transform, and Canny edge detection. The video processing is implemented using the Open CV library with the novelty of having a scale able region masking. The aim of the study is to introduce automatic road lane detection techniques with the user’s minimum manual intervention.

Keywords: hough transform, canny edge detection, optimisation, scaleable masking, camera calibration, improving the quality of image, image processing, video processing

Procedia PDF Downloads 94
4904 Implementation of an Image Processing System Using Artificial Intelligence for the Diagnosis of Malaria Disease

Authors: Mohammed Bnebaghdad, Feriel Betouche, Malika Semmani

Abstract:

Image processing become more sophisticated over time due to technological advances, especially artificial intelligence (AI) technology. Currently, AI image processing is used in many areas, including surveillance, industry, science, and medicine. AI in medical image processing can help doctors diagnose diseases faster, with minimal mistakes, and with less effort. Among these diseases is malaria, which remains a major public health challenge in many parts of the world. It affects millions of people every year, particularly in tropical and subtropical regions. Early detection of malaria is essential to prevent serious complications and reduce the burden of the disease. In this paper, we propose and implement a scheme based on AI image processing to enhance malaria disease diagnosis through automated analysis of blood smear images. The scheme is based on the convolutional neural network (CNN) method. So, we have developed a model that classifies infected and uninfected single red cells using images available on Kaggle, as well as real blood smear images obtained from the Central Laboratory of Medical Biology EHS Laadi Flici (formerly El Kettar) in Algeria. The real images were segmented into individual cells using the watershed algorithm in order to match the images from the Kaagle dataset. The model was trained and tested, achieving an accuracy of 99% and 97% accuracy for new real images. This validates that the model performs well with new real images, although with slightly lower accuracy. Additionally, the model has been embedded in a Raspberry Pi4, and a graphical user interface (GUI) was developed to visualize the malaria diagnostic results and facilitate user interaction.

Keywords: medical image processing, malaria parasite, classification, CNN, artificial intelligence

Procedia PDF Downloads 19
4903 Live Music Promotion in Burundi Country

Authors: Aster Anderson Rugamba

Abstract:

Context: Live music in Burundi is currently facing neglect and a decline in popularity, resulting in artists struggling to generate income from this field. Additionally, live music from Burundi has not been able to gain traction in the international market. It is essential to establish various structures and organizations to promote cultural events and support artistic endeavors in music and performing arts. Research Aim: The aim of this research is to seek new knowledge and understanding in the field of live music and its content in Burundi. Furthermore, it aims to connect with other professionals in the industry, make new discoveries, and explore potential collaborations and investments. Methodology: The research will utilize both quantitative and qualitative research methodologies. The quantitative approach will involve a sample size of 57 musician artists in Burundi. It will employ closed-ended questions and gather quantitative data to ensure a large sample size and high external validity. The qualitative approach will provide deeper insights and understanding through open-ended questions and in-depth interviews with selected participants. Findings: The research expects to find new theories, methodologies, empirical findings, and applications of existing knowledge that can contribute to the development of live music in Burundi. By exploring the challenges faced by artists and identifying potential solutions, the study aims to establish live music as a catalyst for development and generate a positive impact on both the Burundian and international community. Theoretical Importance: Theoretical contributions of this research will expand the current understanding of the live music industry in Burundi. It will propose new theories and models to address the issues faced by artists and highlight the potential of live music as a lucrative and influential industry. By bridging the gap between theory and practice, the research aims to provide valuable insights for academics, professionals, and policymakers. Data Collection and Analysis Procedures: Data will be collected through surveys, interviews, and archival research. Surveys will be administered to the sample of 57 musician artists, while interviews will be conducted to gain in-depth insights from selected participants. The collected data will be analyzed using both quantitative and qualitative methods, including statistical analysis and thematic analysis, respectively. This mixed-method approach will ensure a comprehensive and rigorous examination of the research questions addressed.

Keywords: business music in burundi, music in burundi, promotion of art, burundi music culture

Procedia PDF Downloads 61
4902 Damage Detection in a Cantilever Beam under Different Excitation and Temperature Conditions

Authors: A. Kyprianou, A. Tjirkallis

Abstract:

Condition monitoring of structures in service is very important as it provides information about the risk of damage development. One of the essential constituents of structural condition monitoring is the damage detection methodology. In the context of condition monitoring of in service structures a damage detection methodology analyses data obtained from the structure while it is in operation. Usually, this means that the data could be affected by operational and environmental conditions in a way that could mask the effects of a possible damage on the data. This, depending on the damage detection methodology, could lead to either false alarms or miss existing damages. In this article a damage detection methodology that is based on the Spatio-temporal continuous wavelet transform (SPT-CWT) analysis of a sequence of experimental time responses of a cantilever beam is proposed. The cantilever is subjected to white and pink noise excitation to simulate different operating conditions. In addition, in order to simulate changing environmental conditions, the cantilever is subjected to heating by a heat gun. The response of the cantilever beam is measured by a high-speed camera. Edges are extracted from the series of images of the beam response captured by the camera. Subsequent processing of the edges gives a series of time responses on 439 points on the beam. This sequence is then analyzed using the SPT-CWT to identify damage. The algorithm proposed was able to clearly identify damage under any condition when the structure was excited by white noise force. In addition, in the case of white noise excitation, the analysis could also reveal the position of the heat gun when it was used to heat the structure. The analysis could identify the different operating conditions i.e. between responses due to white noise excitation and responses due to pink noise excitation. During the pink noise excitation whereas damage and changing temperature were identified it was not possible to clearly identify the effect of damage from that of temperature. The methodology proposed in this article for damage detection enables the separation the damage effect from that due to temperature and excitation on data obtained from measurements of a cantilever beam. This methodology does not require information about the apriori state of the structure.

Keywords: spatiotemporal continuous wavelet transform, damage detection, data normalization, varying temperature

Procedia PDF Downloads 279
4901 The Images of Japan and the Japanese People: A Case of Japanese as a Foreign Language Students in Portugal

Authors: Tomoko Yaginuma, Rosa Cabecinhas

Abstract:

Recently, the studies of the images about Japan and/or the Japanese people have been done in a Japanese language education context since the number of the students of Japanese as a Foreign Language (JFL) has been increasing worldwide, including in Portugal. It has been claimed that one of the reasons for this increase is the current popularity of Japanese pop-culture, namely anime (Japanese animations) and manga (Japanese visual novels), among young students. In the present study, the images about Japan and the Japanese held by JFL students in Portugal were examined by a questionnaire survey. The JFL students in higher education in Portugal (N=296) were asked to answer, among the other questions, their degree of agreement (using a Likert scale) with 24 pre-defined descriptions about the Japanese, which appear as relevant in a qualitative pilot study conducted before. The results show that the image of Japanese people by Portuguese JFL students is stressed around four dimensions: 1) diligence, 2) kindness, 3) conservativeness and 4) innovativeness. The students considered anime was the main source of information about the Japanese people and culture and anime was also strongly associated with the students’ interests in learning Japanese language.

Keywords: anime, cultural studies, images about Japan and Japanese people, Portugal

Procedia PDF Downloads 150
4900 Temporal Fixed Effects: The Macroeconomic Implications on Industry Return

Authors: Mahdy Elhusseiny, Richard Gearhart, Mariam Alyammahi

Abstract:

In this study we analyse the impact of a number of major macroeconomic variables on industry-specific excess rates of return. In later specifications, we include time and recession fixed effects, to potentially capture time-specific trends that may have been changing over our panel. We have a number of results that bear mentioning. Seasonal and temporal factors found to have very large role in sector-specific excess returns. Increases in M1(money supply) decreases bank, insurance, real estate, and telecommunications, while increases industrial and transportation excess returns. The results indicate that the market return increases every sector-specific rate of return. The 2007 to 2009 recession significantly reduced excess returns in the bank, real estate, and transportation sectors.

Keywords: macroeconomic factors, industry returns, fixed effects, temporal factors

Procedia PDF Downloads 76
4899 Water Body Detection and Estimation from Landsat Satellite Images Using Deep Learning

Authors: M. Devaki, K. B. Jayanthi

Abstract:

The identification of water bodies from satellite images has recently received a great deal of attention. Different methods have been developed to distinguish water bodies from various satellite images that vary in terms of time and space. Urban water identification issues body manifests in numerous applications with a great deal of certainty. There has been a sharp rise in the usage of satellite images to map natural resources, including urban water bodies and forests, during the past several years. This is because water and forest resources depend on each other so heavily that ongoing monitoring of both is essential to their sustainable management. The relevant elements from satellite pictures have been chosen using a variety of techniques, including machine learning. Then, a convolution neural network (CNN) architecture is created that can identify a superpixel as either one of two classes, one that includes water or doesn't from input data in a complex metropolitan scene. The deep learning technique, CNN, has advanced tremendously in a variety of visual-related tasks. CNN can improve classification performance by reducing the spectral-spatial regularities of the input data and extracting deep features hierarchically from raw pictures. Calculate the water body using the satellite image's resolution. Experimental results demonstrate that the suggested method outperformed conventional approaches in terms of water extraction accuracy from remote-sensing images, with an average overall accuracy of 97%.

Keywords: water body, Deep learning, satellite images, convolution neural network

Procedia PDF Downloads 89
4898 Image Processing and Calculation of NGRDI Embedded System in Raspberry

Authors: Efren Lopez Jimenez, Maria Isabel Cajero, J. Irving-Vasqueza

Abstract:

The use and processing of digital images have opened up new opportunities for the resolution of problems of various kinds, such as the calculation of different vegetation indexes, among other things, differentiating healthy vegetation from humid vegetation. However, obtaining images from which these indexes are calculated is still the exclusive subject of active research. In the present work, we propose to obtain these images using a low cost embedded system (Raspberry Pi) and its processing, using a set of libraries of open code called OpenCV, in order to obtain the Normalized Red-Green Difference Index (NGRDI).

Keywords: Raspberry Pi, vegetation index, Normalized Red-Green Difference Index (NGRDI), OpenCV

Procedia PDF Downloads 291
4897 Abdominal Organ Segmentation in CT Images Based On Watershed Transform and Mosaic Image

Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid

Abstract:

Accurate Liver, spleen and kidneys segmentation in abdominal CT images is one of the most important steps for computer aided abdominal organs pathology diagnosis. In this paper, we have proposed a new semi-automatic algorithm for Liver, spleen and kidneys area extraction in abdominal CT images. Our proposed method is based on hierarchical segmentation and watershed algorithm. In our approach, a powerful technique has been designed to suppress over-segmentation based on mosaic image and on the computation of the watershed transform. The algorithm is currency in two parts. In the first, we seek to improve the quality of the gradient-mosaic image. In this step, we propose a method for improving the gradient-mosaic image by applying the anisotropic diffusion filter followed by the morphological filters. Thereafter we proceed to the hierarchical segmentation of the liver, spleen and kidney. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.

Keywords: anisotropic diffusion filter, CT images, morphological filter, mosaic image, multi-abdominal organ segmentation, mosaic image, the watershed algorithm

Procedia PDF Downloads 499
4896 An Analysis of Iranian Social Media Users’ Perceptions of Published Images of Coronavirus Deaths

Authors: Ali Gheshmi

Abstract:

The highest rate of death, after World War II, is due to the Coronavirus epidemic and more than 2 million people have died since the epidemic outbreak in December 2019, so the word “death” is one of the highest frequency words in social media; moreover, the use of social media has grown due to quarantine and successive restrictions and lockdowns. The most important aspects of the approach used by this study include the analysis of Iranian social media users’ reactions to the images of those who died due to Coronavirus, investigating if seeing such images via social media is effective on the users’ perception of the closeness of death, and evaluating the extent to which the fear of Coronavirus death is instrumental in persuading users to observe health protocols or causing mental problems in social media users. Since the goal of this study is to discover how social media users perceive and react to the images of people who died of Coronavirus, the cultural studies approach is used Receipt analysis method and in-depth interviews will be used for collecting data from Iranian users; also, snowball sampling is used in this study. The probable results would show that cyberspace users experience the closeness of “death” more than any time else and to cope with these annoying images, avoid viewing them or if they view, it will lead them to suffer from mental problems.

Keywords: death, receipt analysis method, mental health, social media, Covid-19

Procedia PDF Downloads 155
4895 A Similar Image Retrieval System for Auroral All-Sky Images Based on Local Features and Color Filtering

Authors: Takanori Tanaka, Daisuke Kitao, Daisuke Ikeda

Abstract:

The aurora is an attractive phenomenon but it is difficult to understand the whole mechanism of it. An approach of data-intensive science might be an effective approach to elucidate such a difficult phenomenon. To do that we need labeled data, which shows when and what types of auroras, have appeared. In this paper, we propose an image retrieval system for auroral all-sky images, some of which include discrete and diffuse aurora, and the other do not any aurora. The proposed system retrieves images which are similar to the query image by using a popular image recognition method. Using 300 all-sky images obtained at Tromso Norway, we evaluate two methods of image recognition methods with or without our original color filtering method. The best performance is achieved when SIFT with the color filtering is used and its accuracy is 81.7% for discrete auroras and 86.7% for diffuse auroras.

Keywords: data-intensive science, image classification, content-based image retrieval, aurora

Procedia PDF Downloads 449
4894 Sensitivity Analysis of Pile-Founded Fixed Steel Jacket Platforms

Authors: Mohamed Noureldin, Jinkoo Kim

Abstract:

The sensitivity of the seismic response parameters to the uncertain modeling variables of pile-founded fixed steel jacket platforms are investigated using tornado diagram, first-order second-moment, and static pushover analysis techniques. The effects of both aleatory and epistemic uncertainty on seismic response parameters have been investigated for an existing offshore platform. The sources of uncertainty considered in the present study are categorized into three different categories: the uncertainties associated with the soil-pile modeling parameters in clay soil, the platform jacket structure modeling parameters, and the uncertainties related to ground motion excitations. It has been found that the variability in parameters such as yield strength or pile bearing capacity has almost no effect on the seismic response parameters considered, whereas the global structural response is highly affected by the ground motion uncertainty. Also, some uncertainty in soil-pile property such as soil-pile friction capacity has a significant impact on the response parameters and should be carefully modeled. Based on the results, it is highlighted that which uncertain parameters should be considered carefully and which can be assumed with reasonable engineering judgment during the early structural design stage of fixed steel jacket platforms.

Keywords: fixed jacket offshore platform, pile-soil structure interaction, sensitivity analysis

Procedia PDF Downloads 375
4893 The Attitude of Egyptian Nubian University Students towards Arabic and Nubian Languages

Authors: Sanaa Abouras

Abstract:

This research investigates the attitude of Egyptian Nubian University students towards the Arabic and the two Nubian languages, Nobiin, and Kenuzi-Dongola. The Nubian languages are called by Egyptian Nubians, Fadijja/Fadicca and Kenzi, respectively. Nubians are people who live in the Nubia area which lies between Egypt’s southern borders with the northern part of Sudan. Nubia is divided into two parts - one under the Egyptian regime, and the other under the Sudanese regime. The number of participants used in the study was forty - half male and half female. Twenty of these participants live in the Nubian region and are enrolled at the South Valley University in Aswan, Egypt. This number was compared with an additional twenty Egyptian-Nubian university students who live outside the Nubian region and attend various Egyptian universities located in Alexandria and Cairo. The hypothesis of this study is that Egyptian Nubian University students tend to have positive attitudes toward Arabic and also the Nubian languages. This research is a qualitative and partially quantitative one. Observations, questionnaires, and interviews were used to collect data in order to explore the following: (1) the language students prefer to speak at home and in public and if language preferences are gender-related, (2) the factors that influence the Egyptian Nubian university students' attitudes towards Arabic and Nubian languages, and (3) a look at the future of these ethnic Nubian languages. Results that answered the main question on the attitude of Egyptian Nubian University students toward Arabic and Nubian languages revealed that students who live inside and outside the Nubian region tend to have positive attitudes towards both the Arabic and the Nubian languages.

Keywords: language attitude, minority, Arabic language, Nubian Language

Procedia PDF Downloads 272
4892 Dynamic Process Monitoring of an Ammonia Synthesis Fixed-Bed Reactor

Authors: Bothinah Altaf, Gary Montague, Elaine B. Martin

Abstract:

This study involves the modeling and monitoring of an ammonia synthesis fixed-bed reactor using partial least squares (PLS) and its variants. The process exhibits complex dynamic behavior due to the presence of heat recycling and feed quench. One limitation of static PLS model in this situation is that it does not take account of the process dynamics and hence dynamic PLS was used. Although it showed, superior performance to static PLS in terms of prediction, the monitoring scheme was inappropriate hence adaptive PLS was considered. A limitation of adaptive PLS is that non-conforming observations also contribute to the model, therefore, a new adaptive approach was developed, robust adaptive dynamic PLS. This approach updates a dynamic PLS model and is robust to non-representative data. The developed methodology showed a clear improvement over existing approaches in terms of the modeling of the reactor and the detection of faults.

Keywords: ammonia synthesis fixed-bed reactor, dynamic partial least squares modeling, recursive partial least squares, robust modeling

Procedia PDF Downloads 393
4891 3D Printed Multi-Modal Phantom Using Computed Tomography and 3D X-Ray Images

Authors: Sung-Suk Oh, Bong-Keun Kang, Sang-Wook Park, Hui-Jin Joo, Jong-Ryul Choi, Seong-Jun Lee, Jeong-Woo Sohn

Abstract:

The imaging phantom is utilized for the verification, evaluation and tuning of the medical imaging device and system. Although it could be costly, 3D printing is an ideal technique for a rapid, customized, multi-modal phantom making. In this article, we propose the multi-modal phantom using 3D printing. First of all, the Dicom images for were measured by CT (Computed Tomography) and 3D X-ray systems (PET/CT and Angio X-ray system of Siemens) and then were analyzed. Finally, the 3D modeling was processed using Dicom images. The 3D printed phantom was scanned by PET/CT and MRI systems and then evaluated.

Keywords: imaging phantom, MRI (Magnetic Resonance Imaging), PET / CT (Positron Emission Tomography / Computed Tomography), 3D printing

Procedia PDF Downloads 580
4890 Multiple Images Stitching Based on Gradually Changing Matrix

Authors: Shangdong Zhu, Yunzhou Zhang, Jie Zhang, Hang Hu, Yazhou Zhang

Abstract:

Image stitching is a very important branch in the field of computer vision, especially for panoramic map. In order to eliminate shape distortion, a novel stitching method is proposed based on gradually changing matrix when images are horizontal. For images captured horizontally, this paper assumes that there is only translational operation in image stitching. By analyzing each parameter of the homography matrix, the global homography matrix is gradually transferred to translation matrix so as to eliminate the effects of scaling, rotation, etc. in the image transformation. This paper adopts matrix approximation to get the minimum value of the energy function so that the shape distortion at those regions corresponding to the homography can be minimized. The proposed method can avoid multiple horizontal images stitching failure caused by accumulated shape distortion. At the same time, it can be combined with As-Projective-As-Possible algorithm to ensure precise alignment of overlapping area.

Keywords: image stitching, gradually changing matrix, horizontal direction, matrix approximation, homography matrix

Procedia PDF Downloads 319
4889 Automatic Detection of Proliferative Cells in Immunohistochemically Images of Meningioma Using Fuzzy C-Means Clustering and HSV Color Space

Authors: Vahid Anari, Mina Bakhshi

Abstract:

Visual search and identification of immunohistochemically stained tissue of meningioma was performed manually in pathologic laboratories to detect and diagnose the cancers type of meningioma. This task is very tedious and time-consuming. Moreover, because of cell's complex nature, it still remains a challenging task to segment cells from its background and analyze them automatically. In this paper, we develop and test a computerized scheme that can automatically identify cells in microscopic images of meningioma and classify them into positive (proliferative) and negative (normal) cells. Dataset including 150 images are used to test the scheme. The scheme uses Fuzzy C-means algorithm as a color clustering method based on perceptually uniform hue, saturation, value (HSV) color space. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.

Keywords: positive cell, color segmentation, HSV color space, immunohistochemistry, meningioma, thresholding, fuzzy c-means

Procedia PDF Downloads 210
4888 Automatic Method for Exudates and Hemorrhages Detection from Fundus Retinal Images

Authors: A. Biran, P. Sobhe Bidari, K. Raahemifar

Abstract:

Diabetic Retinopathy (DR) is an eye disease that leads to blindness. The earliest signs of DR are the appearance of red and yellow lesions on the retina called hemorrhages and exudates. Early diagnosis of DR prevents from blindness; hence, many automated algorithms have been proposed to extract hemorrhages and exudates. In this paper, an automated algorithm is presented to extract hemorrhages and exudates separately from retinal fundus images using different image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Since Optic Disc is the same color as the exudates, it is first localized and detected. The presented method has been tested on fundus images from Structured Analysis of the Retina (STARE) and Digital Retinal Images for Vessel Extraction (DRIVE) databases by using MATLAB codes. The results show that this method is perfectly capable of detecting hard exudates and the highly probable soft exudates. It is also capable of detecting the hemorrhages and distinguishing them from blood vessels.

Keywords: diabetic retinopathy, fundus, CHT, exudates, hemorrhages

Procedia PDF Downloads 272
4887 Contrastive Learning for Unsupervised Object Segmentation in Sequential Images

Authors: Tian Zhang

Abstract:

Unsupervised object segmentation aims at segmenting objects in sequential images and obtaining the mask of each object without any manual intervention. Unsupervised segmentation remains a challenging task due to the lack of prior knowledge about these objects. Previous methods often require manually specifying the action of each object, which is often difficult to obtain. Instead, this paper does not need action information of objects and automatically learns the actions and relations among objects from the structured environment. To obtain the object segmentation of sequential images, the relationships between objects and images are extracted to infer the action and interaction of objects based on the multi-head attention mechanism. Three types of objects’ relationships in the object segmentation task are proposed: the relationship between objects in the same frame, the relationship between objects in two frames, and the relationship between objects and historical information. Based on these relationships, the proposed model (1) is effective in multiple objects segmentation tasks, (2) just needs images as input, and (3) produces better segmentation results as more relationships are considered. The experimental results on multiple datasets show that this paper’s method achieves state-of-art performance. The quantitative and qualitative analyses of the result are conducted. The proposed method could be easily extended to other similar applications.

Keywords: unsupervised object segmentation, attention mechanism, contrastive learning, structured environment

Procedia PDF Downloads 109
4886 Secure Transfer of Medical Images Using Hybrid Encryption

Authors: Boukhatem Mohamed Belkaid, Lahdi Mourad

Abstract:

In this paper, we propose a new encryption system for security issues medical images. The hybrid encryption scheme is based on AES and RSA algorithms to validate the three security services are authentication, integrity, and confidentiality. Privacy is ensured by AES, authenticity is ensured by the RSA algorithm. Integrity is assured by the basic function of the correlation between adjacent pixels. Our system generates a unique password every new session of encryption, that will be used to encrypt each frame of the medical image basis to strengthen and ensure his safety. Several metrics have been used for various tests of our analysis. For the integrity test, we noticed the efficiencies of our system and how the imprint cryptographic changes at reception if a change affects the image in the transmission channel.

Keywords: AES, RSA, integrity, confidentiality, authentication, medical images, encryption, decryption, key, correlation

Procedia PDF Downloads 443
4885 Experimental Study on Slicing of Sapphire with Fixed Abrasive Diamond Wire Saw

Authors: Mengjun Zhang, Yuli Sun, Dunwen Zuo, Chunxiang Xie, Chunming Zhang

Abstract:

Experimental study on slicing of sapphire with fixed abrasive diamond wire saw was conducted in this paper. The process parameters were optimized through orthogonal experiment of three factors and four levels. The effects of wire speed, feed speed and tension pressure on the surface roughness were analyzed. Surface roughness in cutting direction and feed direction were both detected. The results show that feed speed plays the most significant role on the surface roughness of sliced sapphire followed by wire speed and tension pressure. The optimized process parameters are as follows: wire speed 1.9 m/s, feed speed 0.187 mm/min and tension pressure 0.18 MPa. In the end, the results were verified by analysis of variance.

Keywords: fixed abrasive, diamond wire saw, slicing, sapphire, orthogonal experiment

Procedia PDF Downloads 460
4884 Camera Trapping Coupled With Field Sign Survey Reveal the Mammalian Diversity and Abundance at Murree-Kotli Sattian-Kahuta National Park, Pakistan

Authors: Shehnila Kanwal

Abstract:

Murree-Kotli Sattian-Kahta National Park (MKKNP) was declared in 2009. However, not much is known about the diversity and relative abundance of the mammalian fauna of this park. In the current study, we used field sign survey and infrared camera trapping techniques to get an insight into the diversity of mammalian species and their relative abundance. We conducted field surveys in different areas of the park at various elevations from April 2023 up to March 2024 to record the field signs (scats, pug marks etc.) of the mammals’ species; in addition, we deployed a total of 22 infrared trail camera traps in different areas of the park, for 116 nights. We obtained a total of 5201 photographs using camera trapping. Results of camera trapping coupled with field sign surveys confirmed the presence of a total of twenty-one different mammalian species (large, meso and small mammals) recorded in the study area. The common leopard was recorded at four different sites in the park, with an altitudinal range between 648m-1533m. Distribution of Asiatic jackal and a red fox was recorded positive at all the sites surveyed in the park with an altitudinal range between 498m-1287m and 433m-2049m, respectively. Leopard cats were recorded at two different sites within the altitudinal range between 498m-894m. Jungle cat was recorded at three sites within an altitudinal range between 498m-846. Asian palm civets and small Indian civets were both recorded at three sites. Grey mongoose and small Indian mongoose were recorded at four and three sites. We also collected a total of 75 scats of different mammal species in the park to further confirm their occurrence. For the Indian pangolin, we recorded three field burrows at two different sites. Diversity index (H’=2.369960) and species evenness (E=0.81995) were calculated. Analysis of data revealed that wild boar (Sus sucrofa) was the most abundant species in the park; most of the mammal species were found nocturnal; these remain active from dusk throughout the night, and some of them remain active at dawn time. Leopard and Asian palm civets were highly overlapping species in the study area. Their temporal activity pattern overlapped 61%. Barking deer and Indian crested porcupine were also found to be nocturnal species they remained active throughout the night.

Keywords: MKKNP, diversity, abundance, evenness, distribution, mammals, overlapped

Procedia PDF Downloads 18
4883 Optical Flow Localisation and Appearance Mapping (OFLAAM) for Long-Term Navigation

Authors: Daniel Pastor, Hyo-Sang Shin

Abstract:

This paper presents a novel method to use optical flow navigation for long-term navigation. Unlike standard SLAM approaches for augmented reality, OFLAAM is designed for Micro Air Vehicles (MAV). It uses an optical flow camera pointing downwards, an IMU and a monocular camera pointing frontwards. That configuration avoids the expensive mapping and tracking of the 3D features. It only maps these features in a vocabulary list by a localization module to tackle the loss of the navigation estimation. That module, based on the well-established algorithm DBoW2, will be also used to close the loop and allow long-term navigation in confined areas. That combination of high-speed optical flow navigation with a low rate localization algorithm allows fully autonomous navigation for MAV, at the same time it reduces the overall computational load. This framework is implemented in ROS (Robot Operating System) and tested attached to a laptop. A representative scenarios is used to analyse the performance of the system.

Keywords: vision, UAV, navigation, SLAM

Procedia PDF Downloads 606
4882 Robust Barcode Detection with Synthetic-to-Real Data Augmentation

Authors: Xiaoyan Dai, Hsieh Yisan

Abstract:

Barcode processing of captured images is a huge challenge, as different shooting conditions can result in different barcode appearances. This paper proposes a deep learning-based barcode detection using synthetic-to-real data augmentation. We first augment barcodes themselves; we then augment images containing the barcodes to generate a large variety of data that is close to the actual shooting environments. Comparisons with previous works and evaluations with our original data show that this approach achieves state-of-the-art performance in various real images. In addition, the system uses hybrid resolution for barcode “scan” and is applicable to real-time applications.

Keywords: barcode detection, data augmentation, deep learning, image-based processing

Procedia PDF Downloads 168
4881 Three Visions of a Conflict: The Case of La Araucania, Chile

Authors: Maria Barriga

Abstract:

The article focuses on the analysis of three images of the last five years that represent different visions of social groups in the context of the so call “Conflicto Mapuche” in la Araucanía, Chile. Using a multimodal social semiotic approach, we analyze the meaning making of these images and the social groups strategies to achieve visibility and recognition in political contexts. We explore the making and appropriation of symbols and concepts and analyze the different strategies that groups use to built hegemonic views. Among these strategies, we compare the use of digital technologies in design these images and the influence of Chilean Estate's vision on the Mapuche political conflict. Finally, we propose visual strategies to improve basic conditions for dialogue and recognition among these groups.

Keywords: visual culture, power, conflict, indigenous people

Procedia PDF Downloads 285
4880 Contrast-to-Noise Ratio Comparison of Different Calcification Types in Dual Energy Breast Imaging

Authors: Vaia N. Koukou, Niki D. Martini, George P. Fountos, Christos M. Michail, Athanasios Bakas, Ioannis S. Kandarakis, George C. Nikiforidis

Abstract:

Various substitute materials of calcifications are used in phantom measurements and simulation studies in mammography. These include calcium carbonate, calcium oxalate, hydroxyapatite and aluminum. The aim of this study is to compare the contrast-to-noise ratio (CNR) values of the different calcification types using the dual energy method. The constructed calcification phantom consisted of three different calcification types and thicknesses: hydroxyapatite, calcite and calcium oxalate of 100, 200, 300 thicknesses. The breast tissue equivalent materials were polyethylene and polymethyl methacrylate slabs simulating adipose tissue and glandular tissue, respectively. The total thickness was 4.2 cm with 50% fixed glandularity. The low- (LE) and high-energy (HE) images were obtained from a tungsten anode using 40 kV filtered with 0.1 mm cadmium and 70 kV filtered with 1 mm copper, respectively. A high resolution complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) X-ray detector was used. The total mean glandular dose (MGD) and entrance surface dose (ESD) from the LE and HE images were constrained to typical levels (MGD=1.62 mGy and ESD=1.92 mGy). On average, the CNR of hydroxyapatite calcifications was 1.4 times that of calcite calcifications and 2.5 times that of calcium oxalate calcifications. The higher CNR values of hydroxyapatite are attributed to its attenuation properties compared to the other calcification materials, leading to higher contrast in the dual energy image. This work was supported by Grant Ε.040 from the Research Committee of the University of Patras (Programme K. Karatheodori).

Keywords: calcification materials, CNR, dual energy, X-rays

Procedia PDF Downloads 357
4879 Multiscale Edge Detection Based on Nonsubsampled Contourlet Transform

Authors: Enqing Chen, Jianbo Wang

Abstract:

It is well known that the wavelet transform provides a very effective framework for multiscale edges analysis. However, wavelets are not very effective in representing images containing distributed discontinuities such as edges. In this paper, we propose a novel multiscale edge detection method in nonsubsampled contourlet transform (NSCT) domain, which is based on the dominant multiscale, multidirection edge expression and outstanding edge location of NSCT. Through real images experiments, simulation results demonstrate that the proposed method is better than other edge detection methods based on Canny operator, wavelet and contourlet. Additionally, the proposed method also works well for noisy images.

Keywords: edge detection, NSCT, shift invariant, modulus maxima

Procedia PDF Downloads 488
4878 Digital Image Correlation: Metrological Characterization in Mechanical Analysis

Authors: D. Signore, M. Ferraiuolo, P. Caramuta, O. Petrella, C. Toscano

Abstract:

The Digital Image Correlation (DIC) is a newly developed optical technique that is spreading in all engineering sectors because it allows the non-destructive estimation of the entire surface deformation without any contact with the component under analysis. These characteristics make the DIC very appealing in all the cases the global deformation state is to be known without using strain gages, which are the most used measuring device. The DIC is applicable to any material subjected to distortion caused by either thermal or mechanical load, allowing to obtain high-definition mapping of displacements and deformations. That is why in the civil and the transportation industry, DIC is very useful for studying the behavior of metallic materials as well as of composite materials. DIC is also used in the medical field for the characterization of the local strain field of the vascular tissues surface subjected to uniaxial tensile loading. DIC can be carried out in the two dimension mode (2D DIC) if a single camera is used or in a three dimension mode (3D DIC) if two cameras are involved. Each point of the test surface framed by the cameras can be associated with a specific pixel of the image, and the coordinates of each point are calculated knowing the relative distance between the two cameras together with their orientation. In both arrangements, when a component is subjected to a load, several images related to different deformation states can be are acquired through the cameras. A specific software analyzes the images via the mutual correlation between the reference image (obtained without any applied load) and those acquired during the deformation giving the relative displacements. In this paper, a metrological characterization of the digital image correlation is performed on aluminum and composite targets both in static and dynamic loading conditions by comparison between DIC and strain gauges measures. In the static test, interesting results have been obtained thanks to an excellent agreement between the two measuring techniques. In addition, the deformation detected by the DIC is compliant with the result of a FEM simulation. In the dynamic test, the DIC was able to follow with a good accuracy the periodic deformation of the specimen giving results coherent with the ones given by FEM simulation. In both situations, it was seen that the DIC measurement accuracy depends on several parameters such as the optical focusing, the parameters chosen to perform the mutual correlation between the images and, finally, the reference points on image to be analyzed. In the future, the influence of these parameters will be studied, and a method to increase the accuracy of the measurements will be developed in accordance with the requirements of the industries especially of the aerospace one.

Keywords: accuracy, deformation, image correlation, mechanical analysis

Procedia PDF Downloads 311