Search results for: documents clustering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1522

Search results for: documents clustering

1132 Application of a Model-Free Artificial Neural Networks Approach for Structural Health Monitoring of the Old Lidingö Bridge

Authors: Ana Neves, John Leander, Ignacio Gonzalez, Raid Karoumi

Abstract:

Systematic monitoring and inspection are needed to assess the present state of a structure and predict its future condition. If an irregularity is noticed, repair actions may take place and the adequate intervention will most probably reduce the future costs with maintenance, minimize downtime and increase safety by avoiding the failure of the structure as a whole or of one of its structural parts. For this to be possible decisions must be made at the right time, which implies using systems that can detect abnormalities in their early stage. In this sense, Structural Health Monitoring (SHM) is seen as an effective tool for improving the safety and reliability of infrastructures. This paper explores the decision-making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measurements using the suggested method in this paper, such that action is taken coherently with the information made available by the monitoring system. Artificial Neural Networks are trained and their ability to predict structural behavior is evaluated in the light of a case study where acceleration measurements are acquired from a bridge located in Stockholm, Sweden. This relatively old bridge is presently still in operation despite experiencing obvious problems already reported in previous inspections. The prediction errors provide a measure of the accuracy of the algorithm and are subjected to further investigation, which comprises concepts like clustering analysis and statistical hypothesis testing. These enable to interpret the obtained prediction errors, draw conclusions about the state of the structure and thus support decision making regarding its maintenance.

Keywords: artificial neural networks, clustering analysis, model-free damage detection, statistical hypothesis testing, structural health monitoring

Procedia PDF Downloads 210
1131 Enhancing Large Language Models' Data Analysis Capability with Planning-and-Execution and Code Generation Agents: A Use Case for Southeast Asia Real Estate Market Analytics

Authors: Kien Vu, Jien Min Soh, Mohamed Jahangir Abubacker, Piyawut Pattamanon, Soojin Lee, Suvro Banerjee

Abstract:

Recent advances in Generative Artificial Intelligence (GenAI), in particular Large Language Models (LLMs) have shown promise to disrupt multiple industries at scale. However, LLMs also present unique challenges, notably, these so-called "hallucination" which is the generation of outputs that are not grounded in the input data that hinders its adoption into production. Common practice to mitigate hallucination problem is utilizing Retrieval Agmented Generation (RAG) system to ground LLMs'response to ground truth. RAG converts the grounding documents into embeddings, retrieve the relevant parts with vector similarity between user's query and documents, then generates a response that is not only based on its pre-trained knowledge but also on the specific information from the retrieved documents. However, the RAG system is not suitable for tabular data and subsequent data analysis tasks due to multiple reasons such as information loss, data format, and retrieval mechanism. In this study, we have explored a novel methodology that combines planning-and-execution and code generation agents to enhance LLMs' data analysis capabilities. The approach enables LLMs to autonomously dissect a complex analytical task into simpler sub-tasks and requirements, then convert them into executable segments of code. In the final step, it generates the complete response from output of the executed code. When deployed beta version on DataSense, the property insight tool of PropertyGuru, the approach yielded promising results, as it was able to provide market insights and data visualization needs with high accuracy and extensive coverage by abstracting the complexities for real-estate agents and developers from non-programming background. In essence, the methodology not only refines the analytical process but also serves as a strategic tool for real estate professionals, aiding in market understanding and enhancement without the need for programming skills. The implication extends beyond immediate analytics, paving the way for a new era in the real estate industry characterized by efficiency and advanced data utilization.

Keywords: large language model, reasoning, planning and execution, code generation, natural language processing, prompt engineering, data analysis, real estate, data sense, PropertyGuru

Procedia PDF Downloads 88
1130 Analysis on the Need of Engineering Drawing and Feasibility Study on 3D Model Based Engineering Implementation

Authors: Parthasarathy J., Ramshankar C. S.

Abstract:

Engineering drawings these days play an important role in every part of an industry. By and large, Engineering drawings are influential over every phase of the product development process. Traditionally, drawings are used for communication in industry because they are the clearest way to represent the product manufacturing information. Until recently, manufacturing activities were driven by engineering data captured in 2D paper documents or digital representations of those documents. The need of engineering drawing is inevitable. Still Engineering drawings are disadvantageous in re-entry of data throughout manufacturing life cycle. This document based approach is prone to errors and requires costly re-entry of data at every stage in the manufacturing life cycle. So there is a requirement to eliminate Engineering drawings throughout product development process and to implement 3D Model Based Engineering (3D MBE or 3D MBD). Adopting MBD appears to be the next logical step to continue reducing time-to-market and improve product quality. Ideally, by fully applying the MBD concept, the product definition will no longer rely on engineering drawings throughout the product lifecycle. This project addresses the need of Engineering drawing and its influence in various parts of an industry and the need to implement the 3D Model Based Engineering with its advantages and the technical barriers that must be overcome in order to implement 3D Model Based Engineering. This project also addresses the requirements of neutral formats and its realisation in order to implement the digital product definition principles in a light format. In order to prove the concepts of 3D Model Based Engineering, the screw jack body part is also demonstrated. At ZF Windpower Coimbatore Limited, 3D Model Based Definition is implemented to Torque Arm (Machining and Casting), Steel tube, Pinion shaft, Cover, Energy tube.

Keywords: engineering drawing, model based engineering MBE, MBD, CAD

Procedia PDF Downloads 435
1129 Uplift Segmentation Approach for Targeting Customers in a Churn Prediction Model

Authors: Shivahari Revathi Venkateswaran

Abstract:

Segmenting customers plays a significant role in churn prediction. It helps the marketing team with proactive and reactive customer retention. For the reactive retention, the retention team reaches out to customers who already showed intent to disconnect by giving some special offers. When coming to proactive retention, the marketing team uses churn prediction model, which ranks each customer from rank 1 to 100, where 1 being more risk to churn/disconnect (high ranks have high propensity to churn). The churn prediction model is built by using XGBoost model. However, with the churn rank, the marketing team can only reach out to the customers based on their individual ranks. To profile different groups of customers and to frame different marketing strategies for targeted groups of customers are not possible with the churn ranks. For this, the customers must be grouped in different segments based on their profiles, like demographics and other non-controllable attributes. This helps the marketing team to frame different offer groups for the targeted audience and prevent them from disconnecting (proactive retention). For segmentation, machine learning approaches like k-mean clustering will not form unique customer segments that have customers with same attributes. This paper finds an alternate approach to find all the combination of unique segments that can be formed from the user attributes and then finds the segments who have uplift (churn rate higher than the baseline churn rate). For this, search algorithms like fast search and recursive search are used. Further, for each segment, all customers can be targeted using individual churn ranks from the churn prediction model. Finally, a UI (User Interface) is developed for the marketing team to interactively search for the meaningful segments that are formed and target the right set of audience for future marketing campaigns and prevent them from disconnecting.

Keywords: churn prediction modeling, XGBoost model, uplift segments, proactive marketing, search algorithms, retention, k-mean clustering

Procedia PDF Downloads 71
1128 Trends in Use of Millings in Pavement Maintenance

Authors: Rafiqul Tarefder, Mohiuddin Ahmad, Mohammad Hossain

Abstract:

While milling materials from old pavement surface can be an important component of cost effective maintenance operation, their use in maintenance projects are not uniform and well documented. This study documents the different maintenance practices followed by four transportation districts of New Mexico Department of Transportation (NMDOT) in an attempt to find whether millings are being used in maintenance projects by those districts. Based on existing literature, a questionnaire was developed related to six common maintenance practices. NMDOT district personal were interviewed face to face to discuss and get answers to that questionnaire. It revealed that NMDOT districts mainly use chip seal and patching. Other maintenance procedures such as sand seal, scrub seal, slurry seal, and thin overlay have limited use. Two out of four participating districts do not have any documents on chip sealing; rather they employ the experiences of the chip seal crew. All districts use polymer modified high float emulsion (HFE100P) for chip seal with an application rate ranging from 0.4 to 0.56 gallons per square yard. Chip application rate varies from 15 to 40 lb/ square yard. State wide, the thickness of chip seal varies from 3/8" to 1" and life varies from 3 to 10 years. NMDOT districts mainly use three type of patching: pothole, dig-out and blade patch. Pothole patches are used for small potholes and during emergency, dig-out patches are used for all type of potholes sometimes after pothole patching, and blade patch is used when a significant portion of the pavement is damaged. Pothole patches last as low as three days whereas, blade patch lasts as long as 3 years. It was observed that all participating districts use millings in maintenance projects.

Keywords: chip seal, sand seal, scrub seal, slurry seal, overlay, patching, millings

Procedia PDF Downloads 343
1127 Development of a Robust Protein Classifier to Predict EMT Status of Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (CESC) Tumors

Authors: ZhenlinJu, Christopher P. Vellano, RehanAkbani, Yiling Lu, Gordon B. Mills

Abstract:

The epithelial–mesenchymal transition (EMT) is a process by which epithelial cells acquire mesenchymal characteristics, such as profound disruption of cell-cell junctions, loss of apical-basolateral polarity, and extensive reorganization of the actin cytoskeleton to induce cell motility and invasion. A hallmark of EMT is its capacity to promote metastasis, which is due in part to activation of several transcription factors and subsequent downregulation of E-cadherin. Unfortunately, current approaches have yet to uncover robust protein marker sets that can classify tumors as possessing strong EMT signatures. In this study, we utilize reverse phase protein array (RPPA) data and consensus clustering methods to successfully classify a subset of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) tumors into an EMT protein signaling group (EMT group). The overall survival (OS) of patients in the EMT group is significantly worse than those in the other Hormone and PI3K/AKT signaling groups. In addition to a shrinkage and selection method for linear regression (LASSO), we applied training/test set and Monte Carlo resampling approaches to identify a set of protein markers that predicts the EMT status of CESC tumors. We fit a logistic model to these protein markers and developed a classifier, which was fixed in the training set and validated in the testing set. The classifier robustly predicted the EMT status of the testing set with an area under the curve (AUC) of 0.975 by Receiver Operating Characteristic (ROC) analysis. This method not only identifies a core set of proteins underlying an EMT signature in cervical cancer patients, but also provides a tool to examine protein predictors that drive molecular subtypes in other diseases.

Keywords: consensus clustering, TCGA CESC, Silhouette, Monte Carlo LASSO

Procedia PDF Downloads 469
1126 Ethnic Relations in Social Work Education: A Study of Teachers’ Strategies and Experiences in Sweden

Authors: Helene Jacobson Pettersson, Linda Lill

Abstract:

Research that combines educational science, social work and migration studies shows that ethnic relations tend to be represented from various angles and with different content. As studied here, it is found in steering documents, literature, and teaching that the construction of ethnic relations related to social work varies in education over time. The study has its actuality in changed preconditions to social work education caused by the demographic development and the on-going globalization in the Swedish society. In this presentation we will explore strategies and experiences of teaching ethnic relations at social work educations in Sweden. The purpose is to investigate the strategies that are used and what content is given to ethnic relations in the social work education. University teachers are interviewed concerning their interpretation of steering documents related to the content and how they transform this in their teaching. Even though there has been a tradition to include aspects as intercultural relations and ethnicity, the norms of the welfare state has continued to be the basis for how to conceptualize people’s way of living and social problems. Additionally, the contemporary migration situation with a large number of refugees coming to Sweden peaking in 2015, dramatically changes the conditions for social work as a practice field. Increasing economic and social tensions in Sweden, becomes a challenge for the universities to support the students to achieve theoretical and critical knowledge and skills needed to work for social change, human rights and equality in the ethnic diverse Swedish society. The study raises questions about how teachers interpret the goals of the social work programs in terms of ethnic relations. How do they transform this into teaching? How are ethnic relations in social work described and problematized in lectures, cases and examinations? The empirical material is based on interviews with teachers involved in the social work education at four Swedish universities. The interviewees were key persons in the sense that they could influence the course content, and they were drawn from different semesters of the program. In depth interviews are made on the themes; personal entrance, description and understanding of ethnic relations in social work, teachers’ conception of students understanding of ethnic relations, and the content, form and strategies for teaching used by the teachers. The analysis is thematic and inspired from narrative analysis. The results show that the subject is relatively invisible in steering documents. The interviewees have experienced changes in the teaching over time, with less focus on intercultural relations and specific cultural competence. Instead ethnic relations are treated more contextually and interacting with categories as gender, class and age. The need of theoretical and critical knowledge of migration and ethnic relations in a broad sense but also for specific professional use is emphasized.

Keywords: ethnic relations, social work education, social change, human rights, equality, ethnic diversity in Sweden

Procedia PDF Downloads 283
1125 Deep Learning-Based Approach to Automatic Abstractive Summarization of Patent Documents

Authors: Sakshi V. Tantak, Vishap K. Malik, Neelanjney Pilarisetty

Abstract:

A patent is an exclusive right granted for an invention. It can be a product or a process that provides an innovative method of doing something, or offers a new technical perspective or solution to a problem. A patent can be obtained by making the technical information and details about the invention publicly available. The patent owner has exclusive rights to prevent or stop anyone from using the patented invention for commercial uses. Any commercial usage, distribution, import or export of a patented invention or product requires the patent owner’s consent. It has been observed that the central and important parts of patents are scripted in idiosyncratic and complex linguistic structures that can be difficult to read, comprehend or interpret for the masses. The abstracts of these patents tend to obfuscate the precise nature of the patent instead of clarifying it via direct and simple linguistic constructs. This makes it necessary to have an efficient access to this knowledge via concise and transparent summaries. However, as mentioned above, due to complex and repetitive linguistic constructs and extremely long sentences, common extraction-oriented automatic text summarization methods should not be expected to show a remarkable performance when applied to patent documents. Other, more content-oriented or abstractive summarization techniques are able to perform much better and generate more concise summaries. This paper proposes an efficient summarization system for patents using artificial intelligence, natural language processing and deep learning techniques to condense the knowledge and essential information from a patent document into a single summary that is easier to understand without any redundant formatting and difficult jargon.

Keywords: abstractive summarization, deep learning, natural language Processing, patent document

Procedia PDF Downloads 123
1124 The History of Chartered Certified Accountants: The Case of Tunisia

Authors: Mariam Dammak, Yosra Makni Fourati, Rania Mnejja

Abstract:

This paper aims to highlight the conditions and the context of the birth and the implementation of the Chartered Certified Accountants in Tunisian universities. For this purpose, we present an historical overview of the establishment of institutions that started the courses of Chartered accounting, including the Institute of Higher Commercial Studies (IHEC) of Carthage, the Higher Institute of Management (ISG) of Tunis, the Faculty of Economics and Management (FSEG) of Sfax and later the Higher Institute of Accounting and Administration of Enterprises (ISCAE) of Tunis. Then, it would be relevant to examine the changes, carried out by the Tunisian government, of the regulations in force relating to this academic path, from its birth during the 1970s until nowadays. We conducted a documentary study (archival documents, official documents, etc.) accompanied by semi-structured interviews with key actors (accountants, academics, officials of the Ministry of Higher Education) who marked the history of the studies of Tunisian charted accounting. Addressing this research question in Tunisia may contribute to the literature in three ways. First, previous researches dealing with the history of charted accounting-education are scared. Second, this paper allows us to understand the circumstances and context of the birth and teaching of accounting in Tunisia. Eventually, it helps to position the accounting curriculum in relation to international requirements. In fact, the training of accountants is closely related to the practice of the profession, regulated by the Order of Chartered Accountants in Tunisia (OECT). This Order is a member of the International Federation of Accountants (IFAC), since its creation in the 80s, has obligations to align with international requirements, particularly those relating to higher education, set up in 2005 and updated in 2015 (International Standard Education: IES).

Keywords: accounting history, chartered certified accountants, higher accounting education, Tunisian context

Procedia PDF Downloads 142
1123 The Role of Artificial Intelligence Algorithms in Psychiatry: Advancing Diagnosis and Treatment

Authors: Netanel Stern

Abstract:

Artificial intelligence (AI) algorithms have emerged as powerful tools in the field of psychiatry, offering new possibilities for enhancing diagnosis and treatment outcomes. This article explores the utilization of AI algorithms in psychiatry, highlighting their potential to revolutionize patient care. Various AI algorithms, including machine learning, natural language processing (NLP), reinforcement learning, clustering, and Bayesian networks, are discussed in detail. Moreover, ethical considerations and future directions for research and implementation are addressed.

Keywords: AI, software engineering, psychiatry, neuroimaging

Procedia PDF Downloads 117
1122 From Parchment to Pixels: Digital Preservation for the Future

Authors: Abida Khatoon

Abstract:

This study provides an overview of ancient manuscripts, including their historical significance, current digital preservation methods, and the challenges we face in safeguarding these invaluable resources. India has a long-standing tradition of manuscript preservation, with texts that span a wide range of subjects, from religious scriptures to scientific treatises. These manuscripts were written on various materials, including palm leaves, parchment, metal, bark, wood, animal skin, and paper. These manuscripts offer a deep insight into India's cultural and intellectual history. Ancient manuscripts are crucial historical records, providing valuable insights into past civilizations and knowledge systems. As these physical documents become increasingly fragile, digital preservation methods have become essential to ensure their continued accessibility. Digital preservation involves several key techniques. Scanning and digitization create high-resolution digital images of manuscripts, while reprography produces copies to reduce wear on originals. Digital archiving ensures proper storage and management of these digital files, and preservation of electronic data addresses modern formats like web pages and emails. Despite its benefits, digital preservation faces several challenges. Technological obsolescence, data integrity issues, and the resource-intensive nature of the process are significant hurdles. Securing adequate funding is particularly challenging due to high initial costs and ongoing expenses. Looking ahead, the future of digital preservation is promising. Advancements in technology, increased collaboration among institutions, and the development of sustainable funding models will enhance the preservation and accessibility of these important historical documents.

Keywords: preservation strategies, Indian manuscript, cultural heritage, archiving

Procedia PDF Downloads 19
1121 The Safety Profile of Vilazodone: A Study on Post-Marketing Surveillance

Authors: Humraaz Kaja, Kofi Mensah, Frasia Oosthuizen

Abstract:

Background and Aim: Vilazodone was approved in 2011 as an antidepressant to treat the major depressive disorder. As a relatively new drug, it is not clear if all adverse effects have been identified. The aim of this study was to review the adverse effects reported to the WHO Programme for International Drug Monitoring (PIDM) in order to add to the knowledge about the safety profile and adverse effects caused by vilazodone. Method: Data on adverse effects reported for vilazodone was obtained from the database VigiAccess managed by PIDM. Data was extracted from VigiAccess using Excel® and analyzed using descriptive statistics. The data collected was compared to the patient information leaflet (PIL) of Viibryd® and the FDA documents to determine adverse drug reactions reported post-marketing. Results: A total of 9708 adverse events had been recorded on VigiAccess, of which 6054 were not recorded on the PIL and the FDA approval document. Most of the reports were received from the Americas and were for adult women aged 45-64 years (24%, n=1059). The highest number of adverse events reported were for psychiatric events (19%; n=1889), followed by gastro-intestinal effects (18%; n=1839). Specific psychiatric disorders recorded included anxiety (316), depression (208), hallucination (168) and agitation (142). The systematic review confirmed several psychiatric adverse effects associated with the use of vilazodone. The findings of this study suggested that these common psychiatric adverse effects associated with the use of vilazodone were not known during the time of FDA approval of the drug and is not currently recorded in the patient information leaflet (PIL). Conclusions: In summary, this study found several adverse drug reactions not recorded in documents emanating from clinical trials pre-marketing. This highlights the importance of continued post-marketing surveillance of a drug, as well as the need for further studies on the psychiatric adverse events associated with vilazodone in order to improve the safety profile.

Keywords: adverse drug reactions, pharmacovigilance, post-marketing surveillance, vilazodone

Procedia PDF Downloads 115
1120 GBKMeans: A Genetic Based K-Means Applied to the Capacitated Planning of Reading Units

Authors: Anderson S. Fonseca, Italo F. S. Da Silva, Robert D. A. Santos, Mayara G. Da Silva, Pedro H. C. Vieira, Antonio M. S. Sobrinho, Victor H. B. Lemos, Petterson S. Diniz, Anselmo C. Paiva, Eliana M. G. Monteiro

Abstract:

In Brazil, the National Electric Energy Agency (ANEEL) establishes that electrical energy companies are responsible for measuring and billing their customers. Among these regulations, it’s defined that a company must bill your customers within 27-33 days. If a relocation or a change of period is required, the consumer must be notified in writing, in advance of a billing period. To make it easier to organize a workday’s measurements, these companies create a reading plan. These plans consist of grouping customers into reading groups, which are visited by an employee responsible for measuring consumption and billing. The creation process of a plan efficiently and optimally is a capacitated clustering problem with constraints related to homogeneity and compactness, that is, the employee’s working load and the geographical position of the consuming unit. This process is a work done manually by several experts who have experience in the geographic formation of the region, which takes a large number of days to complete the final planning, and because it’s human activity, there is no guarantee of finding the best optimization for planning. In this paper, the GBKMeans method presents a technique based on K-Means and genetic algorithms for creating a capacitated cluster that respects the constraints established in an efficient and balanced manner, that minimizes the cost of relocating consumer units and the time required for final planning creation. The results obtained by the presented method are compared with the current planning of a real city, showing an improvement of 54.71% in the standard deviation of working load and 11.97% in the compactness of the groups.

Keywords: capacitated clustering, k-means, genetic algorithm, districting problems

Procedia PDF Downloads 199
1119 Lexical Based Method for Opinion Detection on Tripadvisor Collection

Authors: Faiza Belbachir, Thibault Schienhinski

Abstract:

The massive development of online social networks allows users to post and share their opinions on various topics. With this huge volume of opinion, it is interesting to extract and interpret these information for different domains, e.g., product and service benchmarking, politic, system of recommendation. This is why opinion detection is one of the most important research tasks. It consists on differentiating between opinion data and factual data. The difficulty of this task is to determine an approach which returns opinionated document. Generally, there are two approaches used for opinion detection i.e. Lexical based approaches and Machine Learning based approaches. In Lexical based approaches, a dictionary of sentimental words is used, words are associated with weights. The opinion score of document is derived by the occurrence of words from this dictionary. In Machine learning approaches, usually a classifier is trained using a set of annotated document containing sentiment, and features such as n-grams of words, part-of-speech tags, and logical forms. Majority of these works are based on documents text to determine opinion score but dont take into account if these texts are really correct. Thus, it is interesting to exploit other information to improve opinion detection. In our work, we will develop a new way to consider the opinion score. We introduce the notion of trust score. We determine opinionated documents but also if these opinions are really trustable information in relation with topics. For that we use lexical SentiWordNet to calculate opinion and trust scores, we compute different features about users like (numbers of their comments, numbers of their useful comments, Average useful review). After that, we combine opinion score and trust score to obtain a final score. We applied our method to detect trust opinions in TRIPADVISOR collection. Our experimental results report that the combination between opinion score and trust score improves opinion detection.

Keywords: Tripadvisor, opinion detection, SentiWordNet, trust score

Procedia PDF Downloads 200
1118 Occurrence of Porcine circovirus Type 2 in Pigs of Eastern Cape Province South Africa

Authors: Kayode O. Afolabi, Benson C. Iweriebor, Anthony I. Okoh, Larry C. Obi

Abstract:

Porcine circovirus type 2 (PCV2) is the major etiological viral agent of porcine multisystemic wasting syndrome (PWMS) and other porcine circovirus-associated diseases (PCVAD) of great economic importance in pig industry globally. In an effort to determine the status of swine herds in the Province as regarding the ‘small but powerful’ viral pathogen; a total of 375 blood, faecal and nasal swab samples were obtained from seven pig farms (commercial and communal) in Amathole, O.R. Tambo and Chris-Hani District Municipalities of Eastern Cape Province between the year 2015 and 2016. Three hundred and thirty nine (339) samples out of the total sample were subjected to molecular screening using PCV2 specific primers by conventional polymerase chain reaction (PCR). Selected sequences were further analyzed and confirmed through genome sequencing and phylogenetic analyses. The data obtained revealed that 15.93% of the screened samples (54/339) from the swine herds of the studied areas were positive for PCV2; while the severity of occurrence of the viral pathogen as observed at farm level ranges from approximately 5.6% to 60% in the studied farms. The Majority, precisely 15 out of 17 (88%) analyzed sequences were found clustering with other PCV2b reference strains in the phylogenetic analysis. More interestingly, two other sequences obtained were also found clustering within PCV2d genogroup, which is presently another fast-spreading genotype with observable higher virulence in global swine herds. This finding confirmed the presence of this all-important viral pathogen in pigs of the region; which could result in a serious outbreak of PCVAD and huge economic loss at the instances of triggering factors if no appropriate measures are taken to curb its spread effectively.

Keywords: pigs, polymerase chain reaction, porcine circovirus type 2, South Africa

Procedia PDF Downloads 211
1117 Contact Phenomena in Medieval Business Texts

Authors: Carmela Perta

Abstract:

Among the studies flourished in the field of historical sociolinguistics, mainly in the strand devoted to English history, during its Medieval and early modern phases, multilingual texts had been analysed using theories and models coming from contact linguistics, thus applying synchronic models and approaches to the past. This is true also in the case of contact phenomena which would transcend the writing level involving the language systems implicated in contact processes to the point of perceiving a new variety. This is the case for medieval administrative-commercial texts in which, according to some Scholars, the degree of fusion of Anglo-Norman, Latin and middle English is so high a mixed code emerges, and there are recurrent patterns of mixed forms. Interesting is a collection of multilingual business writings by John Balmayn, an Englishman overseeing a large shipment in Tuscany, namely the Cantelowe accounts. These documents display various analogies with multilingual texts written in England in the same period; in fact, the writer seems to make use of the above-mentioned patterns, with Middle English, Latin, Anglo-Norman, and the newly added Italian. Applying an atomistic yet dynamic approach to the study of contact phenomena, we will investigate these documents, trying to explore the nature of the switching forms they contain from an intra-writer variation perspective. After analysing the accounts and the type of multilingualism in them, we will take stock of the assumed mixed code nature, comparing the characteristics found in this genre with modern assumptions. The aim is to evaluate the possibility to consider the switching forms as core elements of a mixed code, used as professional variety among merchant communities, or whether such texts should be analysed from a switching perspective.

Keywords: historical sociolinguistics, historical code switching, letters, medieval england

Procedia PDF Downloads 76
1116 Depollution of the Pinheiros River in the City of São Paulo: Mapping the Dynamics of Conflicts and Coalitions between Actors in Two Recent Depollution Projects

Authors: Adalberto Gregorio Back

Abstract:

Historically, the Pinheiros River, which crosses the urban area of the largest South American metropolis, the city of São Paulo, has been the subject of several interventions involving different interests and multiple demands, including the implementation of road axes and industrial occupation in the city, following its floodplains. the dilution of sewers; generation of electricity, with the reversal of its waters to the Billings Dam; and urban drainage. These processes, together with the exclusionary and peripheral urban sprawl with high population density in the peripheries, result in difficulties for the collection and treatment of household sewage, which flow into the tributaries and the Pinheiros River itself. In the last 20 years, two separate projects have been undertaken to clean up its waters. The first one between 2001-2011 was the flotation system, aimed at cleaning the river in its own gutter with equipment installed near the Bilings Dam; and, more recently, from 2019 to 2022, the proposal to connect about 74 thousand dwellings to the sewage collection and treatment system, as well as to install treatment plants in the tributaries of Pinheiros where the connection to the system is impracticable, given the irregular occupations. The purpose of this paper is to make a comparative analysis on the dynamics of conflicts, interests and opportunities of coalitions between the actors involved in the two referred projects of pollution of the Pinheiros River. For this, we use the analysis of documents produced by the state government; as well as documents related to the legal disputes that occurred in the first attempt of decontamination involving the sanitation company; the Billings Dam management company interested in power generation; the city hall and regular and irregular dwellings not linked to the sanitation system.

Keywords: depollution of the Pinheiros River, interests groups, São Paulo, water energy nexus

Procedia PDF Downloads 106
1115 Synopsis of Izmir Regional Plan and Interpretations about Tourism in Izmir

Authors: Yakin Ekin, Onur Akbulut

Abstract:

This study aims not only to create a summarized background for the effective and efficient use of the potential of Izmir by providing the strategic planning works and institutional and sectoral strategy documents with different purposes realized by all relevant institutions and organizations in Izmir and Aegean Region to steer towards the same priorities and aims, but also focuses on a criticism and comparison viewpoint about tourism sector in Izmir.

Keywords: regional plan, Izmir, tourism, sectoral strategy

Procedia PDF Downloads 454
1114 Clustering and Modelling Electricity Conductors from 3D Point Clouds in Complex Real-World Environments

Authors: Rahul Paul, Peter Mctaggart, Luke Skinner

Abstract:

Maintaining public safety and network reliability are the core objectives of all electricity distributors globally. For many electricity distributors, managing vegetation clearances from their above ground assets (poles and conductors) is the most important and costly risk mitigation control employed to meet these objectives. Light Detection And Ranging (LiDAR) is widely used by utilities as a cost-effective method to inspect their spatially-distributed assets at scale, often captured using high powered LiDAR scanners attached to fixed wing or rotary aircraft. The resulting 3D point cloud model is used by these utilities to perform engineering grade measurements that guide the prioritisation of vegetation cutting programs. Advances in computer vision and machine-learning approaches are increasingly applied to increase automation and reduce inspection costs and time; however, real-world LiDAR capture variables (e.g., aircraft speed and height) create complexity, noise, and missing data, reducing the effectiveness of these approaches. This paper proposes a method for identifying each conductor from LiDAR data via clustering methods that can precisely reconstruct conductors in complex real-world configurations in the presence of high levels of noise. It proposes 3D catenary models for individual clusters fitted to the captured LiDAR data points using a least square method. An iterative learning process is used to identify potential conductor models between pole pairs. The proposed method identifies the optimum parameters of the catenary function and then fits the LiDAR points to reconstruct the conductors.

Keywords: point cloud, LİDAR data, machine learning, computer vision, catenary curve, vegetation management, utility industry

Procedia PDF Downloads 100
1113 Insurance of Agricultural Activities as the Basis for Food Security

Authors: J. B. Akshataeva, G. T. Aigarinova, A. Amankulova, D. S. Kalkanova

Abstract:

This article examines some aspects of the insurance of agricultural activities, strategic documents on deepening investment opportunities. Insurance market development is before the society and the state. It also examines problems of agricultural insurance development in the market economy of Kazakhstan as the basis for food security.

Keywords: agriculture, food safety, insurance, privacy issues

Procedia PDF Downloads 505
1112 A Parallel Implementation of k-Means in MATLAB

Authors: Dimitris Varsamis, Christos Talagkozis, Alkiviadis Tsimpiris, Paris Mastorocostas

Abstract:

The aim of this work is the parallel implementation of k-means in MATLAB, in order to reduce the execution time. Specifically, a new function in MATLAB for serial k-means algorithm is developed, which meets all the requirements for the conversion to a function in MATLAB with parallel computations. Additionally, two different variants for the definition of initial values are presented. In the sequel, the parallel approach is presented. Finally, the performance tests for the computation times respect to the numbers of features and classes are illustrated.

Keywords: K-means algorithm, clustering, parallel computations, Matlab

Procedia PDF Downloads 385
1111 Improving Cell Type Identification of Single Cell Data by Iterative Graph-Based Noise Filtering

Authors: Annika Stechemesser, Rachel Pounds, Emma Lucas, Chris Dawson, Julia Lipecki, Pavle Vrljicak, Jan Brosens, Sean Kehoe, Jason Yap, Lawrence Young, Sascha Ott

Abstract:

Advances in technology make it now possible to retrieve the genetic information of thousands of single cancerous cells. One of the key challenges in single cell analysis of cancerous tissue is to determine the number of different cell types and their characteristic genes within the sample to better understand the tumors and their reaction to different treatments. For this analysis to be possible, it is crucial to filter out background noise as it can severely blur the downstream analysis and give misleading results. In-depth analysis of the state-of-the-art filtering methods for single cell data showed that they do, in some cases, not separate noisy and normal cells sufficiently. We introduced an algorithm that filters and clusters single cell data simultaneously without relying on certain genes or thresholds chosen by eye. It detects communities in a Shared Nearest Neighbor similarity network, which captures the similarities and dissimilarities of the cells by optimizing the modularity and then identifies and removes vertices with a weak clustering belonging. This strategy is based on the fact that noisy data instances are very likely to be similar to true cell types but do not match any of these wells. Once the clustering is complete, we apply a set of evaluation metrics on the cluster level and accept or reject clusters based on the outcome. The performance of our algorithm was tested on three datasets and led to convincing results. We were able to replicate the results on a Peripheral Blood Mononuclear Cells dataset. Furthermore, we applied the algorithm to two samples of ovarian cancer from the same patient before and after chemotherapy. Comparing the standard approach to our algorithm, we found a hidden cell type in the ovarian postchemotherapy data with interesting marker genes that are potentially relevant for medical research.

Keywords: cancer research, graph theory, machine learning, single cell analysis

Procedia PDF Downloads 114
1110 Implications of Learning Resource Centre in a Web Environment

Authors: Darshana Lal, Sonu Rana

Abstract:

Learning Resource Centers (LRC) are acquiring different kinds of documents like books, journals, thesis, dissertations, standard, databases etc. in print and e-form. This article deals with the different types of sources available in LRC. It also discusses the concept of the web, as a tool, as a multimedia system and the different interfaces available on the web. The reasons for establishing LRC are highlighted along with the assignments of LRC. Different features of LRC‘S like self-learning and group learning are described. It also implements a group of activities like reading, learning, educational etc. The use of LRC by students and faculties are given and concluded with the benefits.

Keywords: internet, search engine, resource centre, opac, self-learning, group learning

Procedia PDF Downloads 378
1109 Neural Networks Models for Measuring Hotel Users Satisfaction

Authors: Asma Ameur, Dhafer Malouche

Abstract:

Nowadays, user comments on the Internet have an important impact on hotel bookings. This confirms that the e-reputation issue can influence the likelihood of customer loyalty to a hotel. In this way, e-reputation has become a real differentiator between hotels. For this reason, we have a unique opportunity in the opinion mining field to analyze the comments. In fact, this field provides the possibility of extracting information related to the polarity of user reviews. This sentimental study (Opinion Mining) represents a new line of research for analyzing the unstructured textual data. Knowing the score of e-reputation helps the hotelier to better manage his marketing strategy. The score we then obtain is translated into the image of hotels to differentiate between them. Therefore, this present research highlights the importance of hotel satisfaction ‘scoring. To calculate the satisfaction score, the sentimental analysis can be manipulated by several techniques of machine learning. In fact, this study treats the extracted textual data by using the Artificial Neural Networks Approach (ANNs). In this context, we adopt the aforementioned technique to extract information from the comments available in the ‘Trip Advisor’ website. This actual paper details the description and the modeling of the ANNs approach for the scoring of online hotel reviews. In summary, the validation of this used method provides a significant model for hotel sentiment analysis. So, it provides the possibility to determine precisely the polarity of the hotel users reviews. The empirical results show that the ANNs are an accurate approach for sentiment analysis. The obtained results show also that this proposed approach serves to the dimensionality reduction for textual data’ clustering. Thus, this study provides researchers with a useful exploration of this technique. Finally, we outline guidelines for future research in the hotel e-reputation field as comparing the ANNs with other technique.

Keywords: clustering, consumer behavior, data mining, e-reputation, machine learning, neural network, online hotel ‘reviews, opinion mining, scoring

Procedia PDF Downloads 137
1108 Quantitative, Preservative Methodology for Review of Interview Transcripts Using Natural Language Processing

Authors: Rowan P. Martnishn

Abstract:

During the execution of a National Endowment of the Arts grant, approximately 55 interviews were collected from professionals across various fields. These interviews were used to create deliverables – historical connections for creations that began as art and evolved entirely into computing technology. With dozens of hours’ worth of transcripts to be analyzed by qualitative coders, a quantitative methodology was created to sift through the documents. The initial step was to both clean and format all the data. First, a basic spelling and grammar check was applied, as well as a Python script for normalized formatting which used an open-source grammatical formatter to make the data as coherent as possible. 10 documents were randomly selected to manually review, where words often incorrectly translated during the transcription were recorded and replaced throughout all other documents. Then, to remove all banter and side comments, the transcripts were spliced into paragraphs (separated by change in speaker) and all paragraphs with less than 300 characters were removed. Secondly, a keyword extractor, a form of natural language processing where significant words in a document are selected, was run on each paragraph for all interviews. Every proper noun was put into a data structure corresponding to that respective interview. From there, a Bidirectional and Auto-Regressive Transformer (B.A.R.T.) summary model was then applied to each paragraph that included any of the proper nouns selected from the interview. At this stage the information to review had been sent from about 60 hours’ worth of data to 20. The data was further processed through light, manual observation – any summaries which proved to fit the criteria of the proposed deliverable were selected, as well their locations within the document. This narrowed that data down to about 5 hours’ worth of processing. The qualitative researchers were then able to find 8 more connections in addition to our previous 4, exceeding our minimum quota of 3 to satisfy the grant. Major findings of the study and subsequent curation of this methodology raised a conceptual finding crucial to working with qualitative data of this magnitude. In the use of artificial intelligence there is a general trade off in a model between breadth of knowledge and specificity. If the model has too much knowledge, the user risks leaving out important data (too general). If the tool is too specific, it has not seen enough data to be useful. Thus, this methodology proposes a solution to this tradeoff. The data is never altered outside of grammatical and spelling checks. Instead, the important information is marked, creating an indicator of where the significant data is without compromising the purity of it. Secondly, the data is chunked into smaller paragraphs, giving specificity, and then cross-referenced with the keywords (allowing generalization over the whole document). This way, no data is harmed, and qualitative experts can go over the raw data instead of using highly manipulated results. Given the success in deliverable creation as well as the circumvention of this tradeoff, this methodology should stand as a model for synthesizing qualitative data while maintaining its original form.

Keywords: B.A.R.T.model, keyword extractor, natural language processing, qualitative coding

Procedia PDF Downloads 31
1107 Automated Evaluation Approach for Time-Dependent Question Answering Pairs on Web Crawler Based Question Answering System

Authors: Shraddha Chaudhary, Raksha Agarwal, Niladri Chatterjee

Abstract:

This work demonstrates a web crawler-based generalized end-to-end open domain Question Answering (QA) system. An efficient QA system requires a significant amount of domain knowledge to answer any question with the aim to find an exact and correct answer in the form of a number, a noun, a short phrase, or a brief piece of text for the user's questions. Analysis of the question, searching the relevant document, and choosing an answer are three important steps in a QA system. This work uses a web scraper (Beautiful Soup) to extract K-documents from the web. The value of K can be calibrated on the basis of a trade-off between time and accuracy. This is followed by a passage ranking process using the MS-Marco dataset trained on 500K queries to extract the most relevant text passage, to shorten the lengthy documents. Further, a QA system is used to extract the answers from the shortened documents based on the query and return the top 3 answers. For evaluation of such systems, accuracy is judged by the exact match between predicted answers and gold answers. But automatic evaluation methods fail due to the linguistic ambiguities inherent in the questions. Moreover, reference answers are often not exhaustive or are out of date. Hence correct answers predicted by the system are often judged incorrect according to the automated metrics. One such scenario arises from the original Google Natural Question (GNQ) dataset which was collected and made available in the year 2016. Use of any such dataset proves to be inefficient with respect to any questions that have time-varying answers. For illustration, if the query is where will be the next Olympics? Gold Answer for the above query as given in the GNQ dataset is “Tokyo”. Since the dataset was collected in the year 2016, and the next Olympics after 2016 were in 2020 that was in Tokyo which is absolutely correct. But if the same question is asked in 2022 then the answer is “Paris, 2024”. Consequently, any evaluation based on the GNQ dataset will be incorrect. Such erroneous predictions are usually given to human evaluators for further validation which is quite expensive and time-consuming. To address this erroneous evaluation, the present work proposes an automated approach for evaluating time-dependent question-answer pairs. In particular, it proposes a metric using the current timestamp along with top-n predicted answers from a given QA system. To test the proposed approach GNQ dataset has been used and the system achieved an accuracy of 78% for a test dataset comprising 100 QA pairs. This test data was automatically extracted using an analysis-based approach from 10K QA pairs of the GNQ dataset. The results obtained are encouraging. The proposed technique appears to have the possibility of developing into a useful scheme for gathering precise, reliable, and specific information in a real-time and efficient manner. Our subsequent experiments will be guided towards establishing the efficacy of the above system for a larger set of time-dependent QA pairs.

Keywords: web-based information retrieval, open domain question answering system, time-varying QA, QA evaluation

Procedia PDF Downloads 101
1106 Conjunctive Management of Surface and Groundwater Resources under Uncertainty: A Retrospective Optimization Approach

Authors: Julius M. Ndambuki, Gislar E. Kifanyi, Samuel N. Odai, Charles Gyamfi

Abstract:

Conjunctive management of surface and groundwater resources is a challenging task due to the spatial and temporal variability nature of hydrology as well as hydrogeology of the water storage systems. Surface water-groundwater hydrogeology is highly uncertain; thus it is imperative that this uncertainty is explicitly accounted for, when managing water resources. Various methodologies have been developed and applied by researchers in an attempt to account for the uncertainty. For example, simulation-optimization models are often used for conjunctive water resources management. However, direct application of such an approach in which all realizations are considered at each iteration of the optimization process leads to a very expensive optimization in terms of computational time, particularly when the number of realizations is large. The aim of this paper, therefore, is to introduce and apply an efficient approach referred to as Retrospective Optimization Approximation (ROA) that can be used for optimizing conjunctive use of surface water and groundwater over a multiple hydrogeological model simulations. This work is based on stochastic simulation-optimization framework using a recently emerged technique of sample average approximation (SAA) which is a sampling based method implemented within the Retrospective Optimization Approximation (ROA) approach. The ROA approach solves and evaluates a sequence of generated optimization sub-problems in an increasing number of realizations (sample size). Response matrix technique was used for linking simulation model with optimization procedure. The k-means clustering sampling technique was used to map the realizations. The methodology is demonstrated through the application to a hypothetical example. In the example, the optimization sub-problems generated were solved and analysed using “Active-Set” core optimizer implemented under MATLAB 2014a environment. Through k-means clustering sampling technique, the ROA – Active Set procedure was able to arrive at a (nearly) converged maximum expected total optimal conjunctive water use withdrawal rate within a relatively few number of iterations (6 to 7 iterations). Results indicate that the ROA approach is a promising technique for optimizing conjunctive water use of surface water and groundwater withdrawal rates under hydrogeological uncertainty.

Keywords: conjunctive water management, retrospective optimization approximation approach, sample average approximation, uncertainty

Procedia PDF Downloads 232
1105 Methodology of Automation and Supervisory Control and Data Acquisition for Restructuring Industrial Systems

Authors: Lakhoua Najeh

Abstract:

Introduction: In most situations, an industrial system already existing, conditioned by its history, its culture and its context are in difficulty facing the necessity to restructure itself in an organizational and technological environment in perpetual evolution. This is why all operations of restructuring first of all require a diagnosis based on a functional analysis. After a presentation of the functionality of a supervisory system for complex processes, we present the concepts of industrial automation and supervisory control and data acquisition (SCADA). Methods: This global analysis exploits the various available documents on the one hand and takes on the other hand in consideration the various testimonies through investigations, the interviews or the collective workshops; otherwise, it also takes observations through visits as a basis and even of the specific operations. The exploitation of this diagnosis enables us to elaborate the project of restructuring thereafter. Leaving from the system analysis for the restructuring of industrial systems, and after a technical diagnosis based on visits, an analysis of the various technical documents and management as well as on targeted interviews, a focusing retailing the various levels of analysis has been done according a general methodology. Results: The methodology adopted in order to contribute to the restructuring of industrial systems by its participative and systemic character and leaning on a large consultation a lot of human resources that of the documentary resources, various innovating actions has been proposed. These actions appear in the setting of the TQM gait requiring applicable parameter quantification and a treatment valorising some information. The new management environment will enable us to institute an information and communication system possibility of migration toward an ERP system. Conclusion: Technological advancements in process monitoring, control and industrial automation over the past decades have contributed greatly to improve the productivity of virtually all industrial systems throughout the world. This paper tries to identify the principles characteristics of a process monitoring, control and industrial automation in order to provide tools to help in the decision-making process.

Keywords: automation, supervision, SCADA, TQM

Procedia PDF Downloads 178
1104 On the Road towards Effective Administrative Justice in Macedonia, Albania and Kosovo: Common Challenges and Problems

Authors: Arlinda Memetaj

Abstract:

A sound system of administrative justice represents a vital element of democratic governance. The proper control of public administration consists not only of a sound civil service framework and legislative oversight, but empowerment of the public and courts to hold public officials accountable for their decision-making through the application of fair administrative procedural rules and the use of appropriate administrative appeals processes and judicial review. The establishment of both effective public administration and administrative justice system has been for a long period of time among the most ‘important and urgent’ final strategic objectives of almost any country in the Balkans region, including Macedonia, Albania and Kosovo. Closely related to this is their common strategic goal to enter the membership in the European Union, which requires fulfilling of many criteria and standards as incorporated in EU acquis communautaire. The latter is presently done with the framework of the Stabilization and Association Agreement which each of these countries has concluded with the EU accordingly. To above aims, each of the three countries has so far adopted a huge series of legislative and strategic documents related to any aspects of their individual administrative justice system. ‘Changes and reforms’ in this field have been thus the most frequent terms being used in any of these countries. The three countries have already established their own national administrative judiciary, while permanently amending their laws on the general administrative procedure introducing thereby considerable innovations concerned. National administrative courts are expected to have crucial important role within the broader judiciary systems-related reforms of these countries; they are designed to check the legality of decisions of the state administration with the aim to guarantee an effective protection of human rights and legitimate interests of private persons through a regular, conform, fast and reasonable judicial administrative process. Further improvements in this field are presently an integral crucial part of all the relevant national strategic documents including the ones on judiciary reform and public administration reform, as adopted by each of the three countries; those strategic documents are designed among others to provide effective protection of their citizens` rights` of administrative justice. On the basis of the later, the paper finally is aimed at highlighting selective common challenges and problems of the three countries on their European road, while claiming (among others) that the current status quo situation in each of them may be overcome only if there is a proper implementation of the administrative courts decisions and a far stricter international monitoring process thereof. A new approach and strong political commitment from the highest political leadership is thus absolutely needed to ensure the principles of transparency, accountability and merit in public administration. The main methods used in this paper include the analytical and comparative ones due to the very character of the paper itself.

Keywords: administrative courts , administrative justice, administrative procedure, benefit, effective administrative justice, human rights, implementation, monitoring, reform

Procedia PDF Downloads 154
1103 Exploring the Changing Foreign Policy of Singapore on China: New Ideas of Pragmatism and Hedging Strategy

Authors: Yibo Shao, Jiajie Liu

Abstract:

This article uncovers the practice of pragmatism of Singaporean foreign policy by analyzing its foreign diplomatic behavior. It also points out the Singapore’s hedging strategy on the relations between China and American and how to balance these two greater powers in Southeast Asian. This paper used qualitative approach by reviewing literature and policy documents intensively to find out the responses to our research questions.

Keywords: hedging, pragmatism, Sino-Singapore relations, South China Sea

Procedia PDF Downloads 365