Search results for: compressive imaging
1745 Undifferentiated Embryonal Sarcoma of Liver: A Rare Case Report
Authors: Thieu-Thi Tra My
Abstract:
Undifferentiated embryonal sarcoma of the liver (UESL), a rare malignant mesenchymal tumor, is commonly seen in children. The symptoms and imaging were not specific, so it could be mimicked with other tumors or liver abscesses. The tumor often appears as a large heterogeneous echoic solid mass with small cystic areas while showing a cyst-like appearance on CT and MRI. The histopathological manifestation of the UESL consisted of stellate-shaped and spindle cells scattered on a myxoid background with high mitotic count. Cells with multiple or bizarre nuclear were also observed. Here, we aimed to describe a 9-year-old male diagnosed with UESL focused on imaging and histopathological characteristics.Keywords: undifferentiated embryonal sarcoma of liver, UESL, liver sarcoma, liver tumor, children
Procedia PDF Downloads 741744 Role of Imaging in Predicting the Receptor Positivity Status in Lung Adenocarcinoma: A Chapter in Radiogenomics
Authors: Sonal Sethi, Mukesh Yadav, Abhimanyu Gupta
Abstract:
The upcoming field of radiogenomics has the potential to upgrade the role of imaging in lung cancer management by noninvasive characterization of tumor histology and genetic microenvironment. Receptor positivity like epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) genotyping are critical in lung adenocarcinoma for treatment. As conventional identification of receptor positivity is an invasive procedure, we analyzed the features on non-invasive computed tomography (CT), which predicts the receptor positivity in lung adenocarcinoma. Retrospectively, we did a comprehensive study from 77 proven lung adenocarcinoma patients with CT images, EGFR and ALK receptor genotyping, and clinical information. Total 22/77 patients were receptor-positive (15 had only EGFR mutation, 6 had ALK mutation, and 1 had both EGFR and ALK mutation). Various morphological characteristics and metastatic distribution on CT were analyzed along with the clinical information. Univariate and multivariable logistic regression analyses were used. On multivariable logistic regression analysis, we found spiculated margin, lymphangitic spread, air bronchogram, pleural effusion, and distant metastasis had a significant predictive value for receptor mutation status. On univariate analysis, air bronchogram and pleural effusion had significant individual predictive value. Conclusions: Receptor positive lung cancer has characteristic imaging features compared with nonreceptor positive lung adenocarcinoma. Since CT is routinely used in lung cancer diagnosis, we can predict the receptor positivity by a noninvasive technique and would follow a more aggressive algorithm for evaluation of distant metastases as well as for the treatment.Keywords: lung cancer, multidisciplinary cancer care, oncologic imaging, radiobiology
Procedia PDF Downloads 1361743 Machine Learning Prediction of Compressive Damage and Energy Absorption in Carbon Fiber-Reinforced Polymer Tubular Structures
Authors: Milad Abbasi
Abstract:
Carbon fiber-reinforced polymer (CFRP) composite structures are increasingly being utilized in the automotive industry due to their lightweight and specific energy absorption capabilities. Although it is impossible to predict composite mechanical properties directly using theoretical methods, various research has been conducted so far in the literature for accurate simulation of CFRP structures' energy-absorbing behavior. In this research, axial compression experiments were carried out on hand lay-up unidirectional CFRP composite tubes. The fabrication method allowed the authors to extract the material properties of the CFRPs using ASTM D3039, D3410, and D3518 standards. A neural network machine learning algorithm was then utilized to build a robust prediction model to forecast the axial compressive properties of CFRP tubes while reducing high-cost experimental efforts. The predicted results have been compared with the experimental outcomes in terms of load-carrying capacity and energy absorption capability. The results showed high accuracy and precision in the prediction of the energy-absorption capacity of the CFRP tubes. This research also demonstrates the effectiveness and challenges of machine learning techniques in the robust simulation of composites' energy-absorption behavior. Interestingly, the proposed method considerably condensed numerical and experimental efforts in the simulation and calibration of CFRP composite tubes subjected to compressive loading.Keywords: CFRP composite tubes, energy absorption, crushing behavior, machine learning, neural network
Procedia PDF Downloads 1531742 Potential Use of Leaching Gravel as a Raw Material in the Preparation of Geo Polymeric Material as an Alternative to Conventional Cement Materials
Authors: Arturo Reyes Roman, Daniza Castillo Godoy, Francisca Balarezo Olivares, Francisco Arriagada Castro, Miguel Maulen Tapia
Abstract:
Mining waste–based geopolymers are a sustainable alternative to conventional cement materials due to their contribution to the valorization of mining wastes as well as to the new construction materials with reduced fingerprints. The objective of this study was to determine the potential of leaching gravel (LG) from hydrometallurgical copper processing to be used as a raw material in the manufacture of geopolymer. NaOH, Na2SiO3 (modulus 1.5), and LG were mixed and then wetted with an appropriate amount of tap water, then stirred until a homogenous paste was obtained. A liquid/solid ratio of 0.3 was used for preparing mixtures. The paste was then cast in cubic moulds of 50 mm for the determination of compressive strengths. The samples were left to dry for 24h at room temperature, then unmoulded before analysis after 28 days of curing time. The compressive test was conducted in a compression machine (15/300 kN). According to the laser diffraction spectroscopy (LDS) analysis, 90% of LG particles were below 500 μm. The X-ray diffraction (XRD) analysis identified crystalline phases of albite (30 %), Quartz (16%), Anorthite (16 %), and Phillipsite (14%). The X-ray fluorescence (XRF) determinations showed mainly 55% of SiO2, 13 % of Al2O3, and 9% of CaO. ICP (OES) concentrations of Fe, Ca, Cu, Al, As, V, Zn, Mo, and Ni were 49.545; 24.735; 6.172; 14.152, 239,5; 129,6; 41,1;15,1, and 13,1 mg kg-1, respectively. The geopolymer samples showed resistance ranging between 2 and 10 MPa. In comparison with the raw material composition, the amorphous percentage of materials in the geopolymer was 35 %, whereas the crystalline percentage of main mineral phases decreased. Further studies are needed to find the optimal combinations of materials to produce a more resistant and environmentally safe geopolymer. Particularly are necessary compressive resistance higher than 15 MPa are necessary to be used as construction unit such as bricks.Keywords: mining waste, geopolymer, construction material, alkaline activation
Procedia PDF Downloads 941741 Characterization of Cement Concrete Pavement
Authors: T. B. Anil Kumar, Mallikarjun Hiremath, V. Ramachandra
Abstract:
The present experimental investigation deals with the quality performance analysis of cement concrete with 0, 15 and 25% fly ash and 0, 0.2, 0.4 and 0.6% of polypropylene fibers by weight of cement. The various test parameters like workability, unit weight, compressive strength, flexural strength, split tensile strength and abrasion resistance are detailed in the analysis. The compressive strength of M40 grade concrete attains higher value by the replacement of cement by 15% fly ash and at 0.4% PP after 28 and 56 days of curing. Higher flexural strength of concrete was observed by the replacement of cement by 15% fly ash with 0.2% PP after 28 and 56 days of curing. Similarly, split tensile strength value also increases and attains higher value by the replacement of cement by 15% fly ash with 0.4% PP after 28 and 56 days of curing. The percentage of wear gets reduced to 30 to 33% by the addition of fibers at 0.2%, 0.4% and 0.6% in cement concrete replaced by 15 and 25% fly ash. Hence, it is found that the pavement thickness gets reduced up to 20% when compared with plain concrete slab by the 15% fly ash treated with 0.2% PP fibers and also reduced up to 27% of surface course cost.Keywords: cement, fly ash, polypropylene fiber, pavement design, cost analysis
Procedia PDF Downloads 3981740 An Ultra-Low Output Impedance Power Amplifier for Tx Array in 7-Tesla Magnetic Resonance Imaging
Authors: Ashraf Abuelhaija, Klaus Solbach
Abstract:
In Ultra high-field MRI scanners (3T and higher), parallel RF transmission techniques using multiple RF chains with multiple transmit elements are a promising approach to overcome the high-field MRI challenges in terms of inhomogeneity in the RF magnetic field and SAR. However, mutual coupling between the transmit array elements disturbs the desirable independent control of the RF waveforms for each element. This contribution demonstrates a 18 dB improvement of decoupling (isolation) performance due to the very low output impedance of our 1 kW power amplifier.Keywords: EM coupling, inter-element isolation, magnetic resonance imaging (mri), parallel transmit
Procedia PDF Downloads 4951739 Effect of Clay Brick Filler on Properties of Self-Compacting Lightweight Concrete
Authors: Sandra Juradin, Lidia Karla Vranjes
Abstract:
The environmental impact of the components of concrete is considerable. The paper presents the influence of ground clay brick filler on the properties of self-compacting lightweight concrete (SCLC). In the manufacture and transport of clay bricks, product damage may occur. The filler was obtained by milling the damaged clay brick and sieved under the 0.04 mm size. The composition of each of SCLC mixture was determined according to the CBI method and compared with EFNARC (European Association) criteria. Self-compacting lightweight concrete has been tested in a fresh (slump flow method, visual assessment of stability, T50 time, V-funnel method, L-box method and J-ring) and hardened state (compressive strengths and dynamic modulus of elasticity). Mixtures with this filler had good results of compressive strength, but in fresh state the mixtures were sticky. All results were analyzed and compared with previous studies.Keywords: CBI methods, ground clay brick, self-compacting lightweight concrete, silica fume
Procedia PDF Downloads 1511738 Microwave Tomography: The Analytical Treatment for Detecting Malignant Tumor Inside Human Body
Authors: Muhammad Hassan Khalil, Xu Jiadong
Abstract:
Early detection through screening is the best tool short of a perfect treatment against the malignant tumor inside the breast of a woman. By detecting cancer in its early stages, it can be recognized and treated before it has the opportunity to spread and change into potentially dangerous. Microwave tomography is a new imaging method based on contrast in dielectric properties of materials. The mathematical theory of microwave tomography involves solving an inverse problem for Maxwell’s equations. In this paper, we present designed antenna for breast cancer detection, which will use in microwave tomography configuration.Keywords: microwave imaging, inverse scattering, breast cancer, malignant tumor detection
Procedia PDF Downloads 3711737 Assessing the Potential of a Waste Material for Cement Replacement and the Effect of Its Fineness in Soft Soil Stabilisation
Authors: Hassnen M. Jafer, W. Atherton, F. Ruddock
Abstract:
This paper represents the results of experimental work to investigate the suitability of a waste material (WM) for soft soil stabilisation. In addition, the effect of particle size distribution (PSD) of the waste material on its performance as a soil stabiliser was investigated. The WM used in this study is produced from the incineration processes in domestic energy power plant and it is available in two different grades of fineness (coarse waste material (CWM) and fine waste material (FWM)). An intermediate plasticity silty clayey soil with medium organic matter content has been used in this study. The suitability of the CWM and FWM to improve the physical and engineering properties of the selected soil was evaluated dependant on the results obtained from the consistency limits, compaction characteristics (optimum moisture content (OMC) and maximum dry density (MDD)); along with the unconfined compressive strength test (UCS). Different percentages of CWM were added to the soft soil (3, 6, 9, 12 and 15%) to produce various admixtures. Then the UCS test was carried out on specimens under different curing periods (zero, 7, 14, and 28 days) to find the optimum percentage of CWM. The optimum and other two percentages (either side of the optimum content) were used for FWM to evaluate the effect of the fineness of the WM on UCS of the stabilised soil. Results indicated that both types of the WM used in this study improved the physical properties of the soft soil where the index of plasticity (IP) was decreased significantly. IP was decreased from 21 to 13.64 and 13.10 with 12% of CWM and 15% of FWM respectively. The results of the unconfined compressive strength test indicated that 12% of CWM was the optimum and this percentage developed the UCS value from 202kPa to 500kPa for 28 days cured samples, which is equal, approximately 2.5 times the UCS value for untreated soil. Moreover, this percentage provided 1.4 times the value of UCS for stabilized soil-CWA by using FWM which recorded just under 700kPa after 28 days curing.Keywords: soft soil stabilisation, waste materials, fineness, unconfined compressive strength
Procedia PDF Downloads 2691736 Technical Non-Destructive Evaluation of Burnt Bridge at CH. 57+450 Along Abuja-Abaji-Lokoja Road, Nigeria
Authors: Abraham O. Olaniyi, Oluyemi Oke, Atilade Otunla
Abstract:
The structural performance of bridges decreases progressively throughout their service life due to many contributing factors (fatigue, carbonation, fire incidents etc.). Around the world, numerous bridges have attained their estimated service life and many have approached this limit. The structural integrity assessment of the burnt composite bridge located at CH57+450, Koita village along Abuja-Abaji-Lokoja road, Nigeria, is presented as a case study and shall be forthwith referred to as the 'Koita bridge' in this paper. From the technical evaluation, the residual compressive strength of the concrete piers was found to be below 16.0 N/mm2. This value is very low compared to the expected design value of 30.0 N/mm2. The pier capping beam at pier location 1 has a very low residual compressive strength. The cover to the reinforcement of certain capping beams has an outline of reinforcement which signifies poor concrete cover and the mean compressive strength is also less than 20.0 N/mm2. The steel girder indicated black colouration as a result of the fire incident without any significant structural defect like buckling or warping of the steel section. This paper reviews the structural integrity assessment and repair methodology of the Koita bridge; a composite bridge damaged by fire, highlighting the various challenges of limited obtainable guidance documents about the bridge. The objectives are to increase the understanding of processes and versatile equipment required to test and assess a fire-damaged bridge in order to improve the quality of structural appraisal and rehabilitation; thus, eliminating the prejudice associated with current visual inspection techniques.Keywords: assessment, bridge, rehabilitation, sustainability
Procedia PDF Downloads 3661735 Development of Non-Structural Crushed Palm Kernel Shell Fine Aggregate Concrete
Authors: Kazeem K. Adewole, Ismail A. Yahya
Abstract:
In the published literature, Palm Kernel Shell (PKS), an agricultural waste has largely been used as a large aggregate in PKS concrete production. In this paper, the development of Crushed Palm Kernel Shell Fine Aggregate Concrete (CPKSFAC) with crushed PKS (CPKS) as the fine aggregate and granite as the coarse aggregate is presented. 100mm x 100mm x 100mm 1:11/2:3 and 1:2:4 CPKSFAC and River Sand Fine Aggregate Concrete (RSFAC) cubes were molded, cured for 28 days and subjected to a compressive strength test. The average wet densities of the 1:11/2:3 and 1:2:4 CPKSFAC cubes are 2240kg/m3 and 2335kg/m3 respectively. The average wet densities of the 1:11/2:3 and 1:2:4 RSFAC cubes are 2606kg/m3 and 2553kg/m3 respectively. The average compressive strengths of the 1:11/2:3 and 1:2:4 CPKSFAC cubes are 15.40MPa and 14.30MPa respectively. This study demonstrates that CPKSFA is suitable for the production of non-structural C8/10 and C12/15 concrete specified in BS EN 206-1:2000.Keywords: crushed palm kernel shell, fine aggregate, lightweight concrete, non-structural concrete
Procedia PDF Downloads 4241734 Use of Non-woven Polyethylene Terephthalate Fabrics to Improve Certain Properties of Concrete
Authors: Sifatullah Bahij, Safiullah Omary, Francoise Feugeas, Amanullah Faqiri
Abstract:
Plastic packages have been broadly used for a long time. Such widespread usage of plastic has resulted in an increased amount of plastic wastes and many environmental impacts. Plastic wastes are one of the most significant types of waste materials because of their non-degradation and low biodegradability. It is why many researchers tried to find a safe and environmentally friendly solution for plastic wastes. In this goal, in the civil engineering industry, many types of plastic wastes have been incorporated, as a partial substitution of aggregates or as additive materials (fibers) in concrete mixtures because of their lengthier lifetime and lower weight. This work aims to study the mechanical properties (compressive, split tensile and flexural strengths) of concrete with a water-cement ratio (w/c) of 0.45 and with the incorporation of non-woven PET plastic sheets. Five configurations -without PET (reference), 1-layer sheet, 2-side, 3-side, and full sample wrapping- were applied. The 7, 14 and 28-days samples’ compressive strengths, flexural strength and split tensile strength were measured. The outcomes of the study show that the compressive strength was improved for the wrapped samples, particularly for the cylindrical specimens. Also, split tensile and flexural behaviors of the wrapped samples improved significantly compared to the reference ones. Moreover, reference samples were damaged into many parts after mechanical testing, while wrapped specimens were taken by the applied configurations and were not divided into many small fragments. Therefore, non-woven fabrics appeared to improve some properties of the concrete.Keywords: solid waste plastic, non-woven polyethylene terephthalate sheets, mechanical behaviors, crack pattern
Procedia PDF Downloads 1291733 Effect of Concrete Strength on the Bond Between Carbon Fiber Reinforced Polymer and Concrete in Hot Weather
Authors: Usama Mohamed Ahamed
Abstract:
This research deals with the bond behavior of carbon FRP composite wraps adhered/bonded to the surface of the concrete. Four concrete mixes were designed to achieve a concrete compressive strength of 18, 22.5,25 and 30 MP after 28 days of curing. The focus of the study is on bond degradation when the hybrid structure is exposed to hot weather conditions. Specimens were exposed to 50 0C temperature duration 6 months and other specimens were sustained in laboratory temperature ( 20-24) 0C. Upon removing the specimens from their conditioning environment, tension tests were performed in the machine using a specially manufactured concrete cube holder. A lightweight mortar layer is used to protect the bonded carbon FRP layer on the concrete surface. The results show that the higher the concrete's compressive, the higher the bond strength. The high temperature decreases the bond strength between concrete and carbon fiber-reinforced polymer. The use of a protection layer is essential for concrete exposed to hot weather.Keywords: concrete, bond, hot weather and carbon fiber, carbon fiber reinforced polymers
Procedia PDF Downloads 1061732 Managing the Magnetic Protection of Workers in Magnetic Resonance Imaging
Authors: Safoin Aktaou, Aya Al Masri, Kamel Guerchouche, Malorie Martin, Fouad Maaloul
Abstract:
Introduction: In the ‘Magnetic Resonance Imaging (MRI)’ department, all workers involved in preparing the patient, setting it up, tunnel cleaning, etc. are likely to be exposed to ‘ElectroMagnetic fields (EMF)’ emitted by the MRI device. Exposure to EMF can cause adverse radio-biological effects to workers. The purpose of this study is to propose an organizational process to manage and control EMF risks. Materials and methods: The study was conducted at seven MRI departments using machines with 1.5 and 3 Tesla magnetic fields. We assessed the exposure of each one by measuring the two electromagnetic fields (static and dynamic) at different distances from the MRI machine both inside and around the examination room. Measurement values were compared with British and American references (those of the UK's ‘Medicines and Healthcare Regulatory Agency (MHRA)’ and the ‘American Radiology Society (ACR)’). Results: Following the results of EMF measurements and their comparison with the recommendations of learned societies, a zoning system that adapts to needs of different MRI services across the country has been proposed. In effect, three risk areas have been identified within the MRI services. This has led to the development of a good practice guide related to the magnetic protection of MRI workers. Conclusion: The guide established by our study is a standard that allows MRI workers to protect themselves against the risk of electromagnetic fields.Keywords: comparison with international references, measurement of electromagnetic fields, magnetic protection of workers, magnetic resonance imaging
Procedia PDF Downloads 1641731 Mechanical Properties of Class F Fly Ash Blended Concrete Incorporation with Natural Admixture
Authors: T. S. Ramesh Babu, D. Neeraja
Abstract:
This research work revealed that effect of Natural admixture (NAD) on Conventional Concrete (CC) and Class F Fly Ash(FA) blended concrete. Broiler hen egg white albumen and yellow yolk were used as Natural Admixture. Cement was replaced by Class F fly ash at various levels of 0%, 25%, 35%, 45% and 55% by its mass and NAD was added to concrete at different replacement dosages of 0%, 0.25%, 0.5%, 0.75% and 1.00% by its volume to water content and liquid to binder ratio was maintained at 0.5. For all replacement levels of FA and NAD, the mechanical properties viz unit weight, compressive strength, splitting tensile strength and modulus of elasticity of CC and Class F fly ash (FA) were studied at 7, 28, 56 and 112 days. From the results, it was concluded that 0.25% of NAD dosage was considered as optimum dosage for both CC and class F fly ash blended concrete. The studies revealed that 35% Class F fly ash blended concrete mix is concluded as optimum mix and 55% Class F fly ash blended concrete mix is concluded as economical mix with 0.25% NAD dosage.Keywords: Class F fly ash, compressive strength, modulus of elasticity, natural admixture, splitting tensile strength, unit weight
Procedia PDF Downloads 2891730 Analysis of Airborne Data Using Range Migration Algorithm for the Spotlight Mode of Synthetic Aperture Radar
Authors: Peter Joseph Basil Morris, Chhabi Nigam, S. Ramakrishnan, P. Radhakrishna
Abstract:
This paper brings out the analysis of the airborne Synthetic Aperture Radar (SAR) data using the Range Migration Algorithm (RMA) for the spotlight mode of operation. Unlike in polar format algorithm (PFA), space-variant defocusing and geometric distortion effects are mitigated in RMA since it does not assume that the illuminating wave-fronts are planar. This facilitates the use of RMA for imaging scenarios involving severe differential range curvatures enabling the imaging of larger scenes at fine resolution and at shorter ranges with low center frequencies. The RMA algorithm for the spotlight mode of SAR is analyzed in this paper using the airborne data. Pre-processing operations viz: - range de-skew and motion compensation to a line are performed on the raw data before being fed to the RMA component. Various stages of the RMA viz:- 2D Matched Filtering, Along Track Fourier Transform and Slot Interpolation are analyzed to find the performance limits and the dependence of the imaging geometry on the resolution of the final image. The ability of RMA to compensate for severe differential range curvatures in the two-dimensional spatial frequency domain are also illustrated in this paper.Keywords: range migration algorithm, spotlight SAR, synthetic aperture radar, matched filtering, slot interpolation
Procedia PDF Downloads 2411729 Effects of Crushed Waste Aggregate from the Manufacture of Clay Bricks on Rendering Cement Mortar Performance
Authors: Benmalek M. Larbi, R. Harbi, S. Boukor
Abstract:
This paper reports an experimental work that aimed to investigate the effects of clay brick waste, as part of fine aggregate, on rendering mortar performance. The brick, in crushed form, was from a local brick manufacturer that was rejected due to being of-standard. It was used to replace 33.33 %, 50 %, 66.66 % and 100 % by weight of the quarry sand in mortar. Effects of the brick replacement on the mortar key properties intended for wall plastering were investigated; these are workability, compressive strength, flexural strength, linear shrinkage, water absorption by total immersion and by capillary suction. The results showed that as the brick replacement level increased, the mortar workability reduced. The linear shrinkage increases over time and decreases with the introduction of brick waste. The compressive and flexural strengths decrease with the increase of brick waste because of their great water absorption.Keywords: clay brick waste, mortar, properties, quarry sand
Procedia PDF Downloads 2621728 Engineering Review of Recycled Concrete Production for Structural and Non-Structural Applications (Green Concrete)
Authors: Hadi Rouhi Belvirdi
Abstract:
With the increasing demand for sustainable development, recycled materials are receiving more attention in construction projects. To promote sustainable development, this review article evaluates the feasibility of using recycled concrete in construction projects from an economic and environmental perspective. The results show that making concrete using recycled concrete is a suitable strategy for sustainable development. A complete examination of the physical and chemical properties of these recycled materials also provides important information about their suitability for use in the construction industry. Most of the studies do not show surprising results of the compressive or bending strength of these materials, and only the aspect of sustainable development of these materials is of interest. Their application can be investigated more in masonry and joinery works, but among them, some studies sometimes obtained more compressive and bending strength than the control sample, which can be used in concrete structures. Most of the cases introduced and discussed in this study can be implemented and help the country and the people of Iran preserve the environment and discuss sustainable development.Keywords: environmental recycling, sustainable development, recycled materials, construction management
Procedia PDF Downloads 271727 Three-Dimensional Positioning Method of Indoor Personnel Based on Millimeter Wave Radar Sensor
Authors: Chao Wang, Zuxue Xia, Wenhai Xia, Rui Wang, Jiayuan Hu, Rui Cheng
Abstract:
Aiming at the application of indoor personnel positioning under smog conditions, this paper proposes a 3D positioning method based on the IWR1443 millimeter wave radar sensor. The problem that millimeter-wave radar cannot effectively form contours in 3D point cloud imaging is solved. The results show that the method can effectively achieve indoor positioning and scene construction, and the maximum positioning error of the system is 0.130m.Keywords: indoor positioning, millimeter wave radar, IWR1443 sensor, point cloud imaging
Procedia PDF Downloads 1121726 Evaluations of 3D Concrete Printing Produced in the Environment of United Arab Emirates
Authors: Adil K. Tamimi, Tarig Ali, Rawan Anoohi, Ahmed Rajput, Kaltham Alkamali
Abstract:
3D concrete printing is one of the most innovative and modern techniques in the field of construction that achieved several milestones in that field for the following advantages: saving project’s time, ability to execute complicated shapes, reduce waste and low cost. However, the concept of 3D printing in UAE is relatively new where construction teams, including clients, consultants, and contractors, do not have the required knowledge and experience in the field. This is the most significant obstacle for the construction parties, which make them refrained from using 3D concrete printing compared to conventional concreting methods. This study shows the historical development of the 3D concrete printing, its advantages, and the challenges facing this innovation. Concrete mixes and materials have been proposed and evaluated to select the best combination for successful 3D concrete printing. The main characteristics of the 3D concrete printing in the fresh and hardened states are considered, such as slump test, flow table, compressive strength, tensile, and flexural strengths. There is need to assess the structural stability of the 3D concrete by testing the bond between interlayers of the concrete.Keywords: 3D printing, workability, compressive strength, robots, dimensions
Procedia PDF Downloads 1461725 The Importance of Imaging and Functional Tests for Early Detection of Occupational Diseases in Kosovo's Miners
Authors: Krenare Shabani, Kreshnike Dedushi Hoti, Serbeze Kabashi, Jeton Shatri, Arben Rroji, Mrikë Bunjaku, Leotrim Berisha, Jona Kosova, Edmond Puca, Bleriana Shabani
Abstract:
Introduction: Workers in Kosovo's mining industry are subjected to hazardous working conditions and airborne particles, such as silica dust, which can cause silicosis and other severe respiratory illnesses. The purpose of this research is to assess the health impacts of such exposures, as well as the importance of imaging and functional testing in detecting pathological changes early on. Methodology: The study is prospective and cross-sectional and was carried out during the year 2024. 626 people (446 miners and 180 non-miners) were enrolled in the study. Subjects underwent spirometry and chest radiography. Data were analysed with SPSS24. Results: The average age of the participants is 48 years. Demographics and Smoking: Smoking was common among young miners. Radiological Changes: Radiographic abnormalities in the lungs were seen in 23.1% of miners and 10.6% of non-miners, including small irregular opacities and emphysematous changes. Lung Function: The FEV1/FVC ratio decreased with increased exposure time, indicating a decline in pulmonary function.Impact of Exposure Duration: Longer exposure duration was associated with a higher number of miners experiencing coughs and requiring medical consultations such as CT scans and biopsies. Conclusions: Medical imaging and functional testing are critical for early diagnosis of lung abnormalities in miners.Findings demonstrate a strong correlation between extended exposure to mine dust and the development of respiratory disorders, emphasising the importance of preventative measures and routine health monitoring.Keywords: silicosis, miners, imaging, spirometry
Procedia PDF Downloads 271724 The Role of Artificial Intelligence in Concrete Constructions
Authors: Ardalan Tofighi Soleimandarabi
Abstract:
Artificial intelligence has revolutionized the concrete construction industry and improved processes by increasing efficiency, accuracy, and sustainability. This article examines the applications of artificial intelligence in predicting the compressive strength of concrete, optimizing mixing plans, and improving structural health monitoring systems. Artificial intelligence-based models, such as artificial neural networks (ANN) and combined machine learning techniques, have shown better performance than traditional methods in predicting concrete properties. In addition, artificial intelligence systems have made it possible to improve quality control and real-time monitoring of structures, which helps in preventive maintenance and increases the life of infrastructure. Also, the use of artificial intelligence plays an effective role in sustainable construction by optimizing material consumption and reducing waste. Although the implementation of artificial intelligence is associated with challenges such as high initial costs and the need for specialized training, it will create a smarter, more sustainable, and more affordable future for concrete structures.Keywords: artificial intelligence, concrete construction, compressive strength prediction, structural health monitoring, stability
Procedia PDF Downloads 151723 Unconfined Strength of Nano Reactive Silica Sand Powder Concrete
Authors: Hossein Kabir, Mojtaba Sadeghi
Abstract:
Nowadays, high-strength concrete is an integral element of a variety of high-rise buildings. On the other hand, finding a suitable aggregate size distribution is a great concern; hence, the concrete mix proportion is presented that has no coarse aggregate, which still withstands enough desirable strength. Nano Reactive Silica sand powder concrete (NRSSPC) is a type of concrete with no coarse material in its own composition. In this concrete, the only aggregate found in the mix design is silica sand powder with a size less than 150 mm that is infinitesimally small regarding the normal concrete. The research aim is to find the compressive strength of this particular concrete under the applied different conditions of curing and consolidation to compare the approaches. In this study, the young concrete specimens were compacted with a pressing or vibrating process. It is worthwhile to mention that in order to show the influence of temperature in the curing process, the concrete specimen was cured either in 20 ⁰C lime water or autoclaved in 90 ⁰C oven.Keywords: reactive silica sand powder concrete (RSSPC), consolidation, compressive strength, normal curing, thermal accelerated curing
Procedia PDF Downloads 2481722 Gadolinium-Based Polymer Nanostructures as Magnetic Resonance Imaging Contrast Agents
Authors: Franca De Sarno, Alfonso Maria Ponsiglione, Enza Torino
Abstract:
Recent advances in diagnostic imaging technology have significantly contributed to a better understanding of specific changes associated with diseases progression. Among different imaging modalities, Magnetic Resonance Imaging (MRI) represents a noninvasive medical diagnostic technique, which shows low sensitivity and long acquisition time and it can discriminate between healthy and diseased tissues by providing 3D data. In order to improve the enhancement of MRI signals, some imaging exams require intravenous administration of contrast agents (CAs). Recently, emerging research reports a progressive deposition of these drugs, in particular, gadolinium-based contrast agents (GBCAs), in the body many years after multiple MRI scans. These discoveries confirm the need to have a biocompatible system able to boost a clinical relevant Gd-chelate. To this aim, several approaches based on engineered nanostructures have been proposed to overcome the common limitations of conventional CAs, such as the insufficient signal-to-noise ratios due to relaxivity and poor safety profile. In particular, nanocarriers, labeling or loading with CAs, capable of carrying high payloads of CAs have been developed. Currently, there’s no a comprehensive understanding of the thermodynamic contributions enable of boosting the efficacy of conventional CAs by using biopolymers matrix. Thus, considering the importance of MRI in diagnosing diseases, here it is reported a successful example of the next generation of these drugs where the commercial gadolinium chelate is incorporate into a biopolymer nanostructure, formed by cross-linked hyaluronic acid (HA), with improved relaxation properties. In addition, they are highlighted the basic principles ruling biopolymer-CA interactions in the perspective of their influence on the relaxometric properties of the CA by adopting a multidisciplinary experimental approach. On the basis of these discoveries, it is clear that the main point consists in increasing the rigidification of readily-available Gd-CAs within the biopolymer matrix by controlling the water dynamics, the physicochemical interactions, and the polymer conformations. In the end, the acquired knowledge about polymer-CA systems has been applied to develop of Gd-based HA nanoparticles with enhanced relaxometric properties.Keywords: biopolymers, MRI, nanoparticles, contrast agent
Procedia PDF Downloads 1491721 Effects of the Compressive Eocene Tectonic Phase in the Bou Kornine-Ressas-Messella Structure and Surroundings (Northern Tunisia)
Authors: Aymen Arfaoui, Abdelkader Soumaya
Abstract:
The Messalla-Ressas-Bou Kornine (MRB) and Hammamet Korbous (HK) major trending North-South fault zones provide a good opportunity to show the effects of the Eocene compressive phase in northern Tunisia. They acted as paleogeographical boundaries during the Mesozoic and belonged to a significant strike-slip corridor called the «North-South Axis,» extending from the Saharan platform at the South to the Gulf of Tunis at the North. Our study area is situated in a relay zone between two significant strike-slip faults (HK and MRB), separating the Atlas domain from the Pelagian Block. We used a multidisciplinary approach, including fieldwork, stress inversion, and geophysical profiles, to argue the shortening event that affected the study region. The MRB and HK contractional duplex is a privileged area for a local stress field and stress nucleation. The stress inversion of fault slip data reveals an Eocene compression with NW-SE trending SHmax, reactivating most of the ancient Mesozoic normal faults in the region. This shortening phase is represented in the MRB belt by an angular unconformity between the Upper Eocene over various Cretaceous strata. The stress inversion data reveal a compressive tectonic with an average NW-SE trending Shmax. The major N-S faults are reactivated under this shortening as sinistral oblique faults. The orientation of SHmax deviates from NW-SE to E-W near the preexisting deep faults of MRB and HK. This E-W stress direction generated the emerging overlap of Ressas-Messella and blind thrust faults in the Cretaceous deposits. The connection of the sub-meridian reverse faults in depth creates "flower structures" under an E-W local compressive stress. In addition, we detected a reorientation of the SHmax into an N-S direction in the central part of the MRB - HK contractional duplex, creating E-W reverse faults and overlapping zones. Finally, the Eocene compression constituted the first major tectonic phase which inverted the Mesozoic preexisting extensive fault system in Northern Tunisia.Keywords: Tunisia, eocene compression, tectonic stress field, Bou Kornine-Ressas-Messella
Procedia PDF Downloads 711720 Human Absorbed Dose Estimation of a New In-111 Imaging Agent Based on Rat Data
Authors: H. Yousefnia, S. Zolghadri
Abstract:
The measurement of organ radiation exposure dose is one of the most important steps to be taken initially, for developing a new radiopharmaceutical. In this study, the dosimetric studies of a novel agent for SPECT-imaging of the bone metastasis, 111In-1,4,7,10-tetraazacyclododecane-1,4,7,10 tetraethylene phosphonic acid (111In-DOTMP) complex, have been carried out to estimate the dose in human organs based on the data derived from rats. The radiolabeled complex was prepared with high radiochemical purity in the optimal conditions. Biodistribution studies of the complex was investigated in the male Syrian rats at selected times after injection (2, 4, 24 and 48 h). The human absorbed dose estimation of the complex was made based on data derived from the rats by the radiation absorbed dose assessment resource (RADAR) method. 111In-DOTMP complex was prepared with high radiochemical purity of >99% (ITLC). Total body effective absorbed dose for 111In-DOTMP was 0.061 mSv/MBq. This value is comparable to the other 111In clinically used complexes. The results show that the dose with respect to the critical organs is satisfactory within the acceptable range for diagnostic nuclear medicine procedures. Generally, 111In-DOTMP has interesting characteristics and can be considered as a viable agent for SPECT-imaging of the bone metastasis in the near future.Keywords: In-111, DOTMP, Internal Dosimetry, RADAR
Procedia PDF Downloads 4071719 Tumor Size and Lymph Node Metastasis Detection in Colon Cancer Patients Using MR Images
Authors: Mohammadreza Hedyehzadeh, Mahdi Yousefi
Abstract:
Colon cancer is one of the most common cancer, which predicted to increase its prevalence due to the bad eating habits of peoples. Nowadays, due to the busyness of people, the use of fast foods is increasing, and therefore, diagnosis of this disease and its treatment are of particular importance. To determine the best treatment approach for each specific colon cancer patients, the oncologist should be known the stage of the tumor. The most common method to determine the tumor stage is TNM staging system. In this system, M indicates the presence of metastasis, N indicates the extent of spread to the lymph nodes, and T indicates the size of the tumor. It is clear that in order to determine all three of these parameters, an imaging method must be used, and the gold standard imaging protocols for this purpose are CT and PET/CT. In CT imaging, due to the use of X-rays, the risk of cancer and the absorbed dose of the patient is high, while in the PET/CT method, there is a lack of access to the device due to its high cost. Therefore, in this study, we aimed to estimate the tumor size and the extent of its spread to the lymph nodes using MR images. More than 1300 MR images collected from the TCIA portal, and in the first step (pre-processing), histogram equalization to improve image qualities and resizing to get the same image size was done. Two expert radiologists, which work more than 21 years on colon cancer cases, segmented the images and extracted the tumor region from the images. The next step is feature extraction from segmented images and then classify the data into three classes: T0N0، T3N1 و T3N2. In this article, the VGG-16 convolutional neural network has been used to perform both of the above-mentioned tasks, i.e., feature extraction and classification. This network has 13 convolution layers for feature extraction and three fully connected layers with the softmax activation function for classification. In order to validate the proposed method, the 10-fold cross validation method used in such a way that the data was randomly divided into three parts: training (70% of data), validation (10% of data) and the rest for testing. It is repeated 10 times, each time, the accuracy, sensitivity and specificity of the model are calculated and the average of ten repetitions is reported as the result. The accuracy, specificity and sensitivity of the proposed method for testing dataset was 89/09%, 95/8% and 96/4%. Compared to previous studies, using a safe imaging technique (MRI) and non-use of predefined hand-crafted imaging features to determine the stage of colon cancer patients are some of the study advantages.Keywords: colon cancer, VGG-16, magnetic resonance imaging, tumor size, lymph node metastasis
Procedia PDF Downloads 591718 Optical Characterization of Anisotropic Thiophene-Phenylene Co-Oligomer Micro Crystals by Spectroscopic Imaging Ellipsometry
Authors: Christian Röling, Elena Y. Poimanova, Vladimir V. Bruevich
Abstract:
Here we demonstrate a non-destructive optical technique to localize and characterize single crystals of semiconductive organic materials – Spectroscopic Imaging Ellipsometry. With a combination of microscopy and ellipsometry, it is possible to characterize even micro-sized thin film crystals on plane surface regarding anisotropy, optical properties, crystalline domains and thickness. The semiconducting thiophene-phenylene co-oligomer 1,4-bis(5'-hexyl-[2,2'-bithiophen]-5-yl)benzene (dHex-TTPTT) crystals were grown by solvent based self-assembly technique on silicon substrate with 300 nm thermally silicon dioxide. The ellipsometric measurements were performed with an Ep4-SE (Accurion). In an ellipsometric high-contrast image of the complete sample, we have localized high-quality single crystals. After demonstrating the uniaxial anisotropy of the crystal by using Müller-Matrix imaging ellipsometry, we determined the optical axes by rotating the sample and performed spectroscopic measurements (λ = 400-700 nm) in 5 nm intervals. The optical properties were described by using a Lorentz term in the Ep4-Model. After determining the dispersion of the crystals, we converted a recorded Delta and Psi-map into a 2D thickness image. Based on a quantitative analysis of the resulting thickness map, we have calculated the height of a molecular layer (3.49 nm).Keywords: anisotropy, ellipsometry, SCFET, thin film
Procedia PDF Downloads 2511717 To Optimise the Mechanical Properties of Structural Concrete by Partial Replacement of Natural Aggregates by Glass Aggregates
Authors: Gavin Gengan, Hsein Kew
Abstract:
Glass from varying recycling processes is considered a material that can be used as aggregate. Waste glass is available from different sources and has been used in the construction industry over the last decades. This current study aims to use recycled glass as a partial replacement for conventional aggregate materials. The experimental programme was designed to optimise the mechanical properties of structural concrete made with recycled glass aggregates (GA). NA (natural aggregates) was partially substituted by GA in a mix design of concrete of 30N/mm2 in proportions of 10%, 20%, and 25% 30%, 40%, and 50%. It was found that with an increasing proportion of GA, there is a decline in compressive strength. The optimum percentage replacement of NA by GA is 25%. The heat of hydration was also investigated with thermocouples placed in the concrete. This revealed an early acceleration of hydration heat in glass concrete, resulting from the thermal properties of glass. The gain in the heat of hydration and the better bonding of glass aggregates together with the pozzolanic activity of the finest glass particles caused the concrete to develop early age and long-term strength higher than that of control concreteKeywords: concrete, compressive strength, glass aggregates, heat of hydration, pozzolanic
Procedia PDF Downloads 2081716 Evaluation of Engineering Cementitious Composites (ECC) with Different Percentage of Fibers
Authors: Bhaumik Merchant, Ajay Gelot
Abstract:
Concrete is good in compression but if any type of strain applied to it, it starts to fail. Where the steel is good tension, it can bear the deflection up to its elastic limits. This project is based on behavior of engineered cementitious composited (ECC) when it is replaced with the different amount of Polyvinyl Alcohol (PVA) Fibers. As for research, PVA fibers is used with cementitious up to 2% to evaluate the optimum amount of fiber on which we can find the maximum compressive, tensile and flexural strength. PVA is basically an adhesive which is used to formulate glue. Generally due to excessive loading, cracks develops which concludes to successive damage to the structural component. In research plasticizer is used to increase workability. With the help of optimum amount of PVA fibers, it can limit the crack widths up to 60µm to 100µm. Also can be used to reduce resources and funds for rehabilitation of structure. At the starting this fiber concrete can be double the cost as compare to conventional concrete but as it can amplify the duration of structure, it will be less costlier than the conventional concrete.Keywords: compressive strength, engineered cementitious composites, flexural strength, polyvinyl alcohol fibers, rehabilitation of structures
Procedia PDF Downloads 290