Search results for: aspect series
3966 Structural Behavior of Laterally Loaded Precast Foamed Concrete Sandwich Panel
Authors: Y. H. Mugahed Amran, Raizal S. M. Rashid, Farzad Hejazi, Nor Azizi Safiee, A. A. Abang Ali
Abstract:
Experimental and analytical studies were carried out to investigate the structural behavior of precast foamed concrete sandwich panels (PFCSP) of total number (6) as one-way action slab tested under lateral load. The details of the test setup and procedures were illustrated. The results obtained from the experimental tests were discussed which include the observation of cracking patterns and influence of aspect ratio (L/b). Analytical study of finite element analysis was implemented and degree of composite action of the test panels was also examined in both experimental and analytical studies. Result shows that crack patterns appeared in only one-direction, similar to reports on solid slabs, particularly when both concrete wythes act in a composite manner. Foamed concrete was briefly reviewed and experimental results were compared with the finite element analyses data which gives a reasonable degree of accuracy. Therefore, based on the results obtained, PFCSP slab can be used as an alternative to conventional flooring system.Keywords: aspect ratio (L/b), finite element analyses (FEA), foamed concrete (FC), precast foamed concrete sandwich panel (PFCSP), ultimate flexural strength capacity
Procedia PDF Downloads 3163965 Optimization of Double-Layered Microchannel Heat Sinks
Authors: Tu-Chieh Hung, Wei-Mon Yan, Xiao-Dong Wang, Yu-Xian Huang
Abstract:
This work employs a combined optimization procedure including a simplified conjugate-gradient method and a three-dimensional fluid flow and heat transfer model to study the optimal geometric parameter design of double-layered microchannel heat sinks. The overall thermal resistance RT is the objective function to be minimized with number of channels, N, the channel width ratio, β, the bottom channel aspect ratio, αb, and upper channel aspect ratio, αu, as the search variables. It is shown that, for the given bottom area (10 mm×10 mm) and heat flux (100 W cm-2), the optimal (minimum) thermal resistance of double-layered microchannel heat sinks is about RT=0.12 ℃/m2W with the corresponding optimal geometric parameters N=73, β=0.50, αb=3.52, and, αu= 7.21 under a constant pumping power of 0.05 W. The optimization process produces a maximum reduction by 52.8% in the overall thermal resistance compared with an initial guess (N=112, β=0.37, αb=10.32 and, αu=10.93). The results also show that the optimal thermal resistance decreases rapidly with the pumping power and tends to be a saturated value afterward. The corresponding optimal values of parameters N, αb, and αu increase while that of β decrease as the pumping power increases. However, further increasing pumping power is not always cost-effective for the application of heat sink designs.Keywords: optimization, double-layered microchannel heat sink, simplified conjugate-gradient method, thermal resistance
Procedia PDF Downloads 4903964 A Comparative Time-Series Analysis and Deep Learning Projection of Innate Radon Gas Risk in Canadian and Swedish Residential Buildings
Authors: Selim M. Khan, Dustin D. Pearson, Tryggve Rönnqvist, Markus E. Nielsen, Joshua M. Taron, Aaron A. Goodarzi
Abstract:
Accumulation of radioactive radon gas in indoor air poses a serious risk to human health by increasing the lifetime risk of lung cancer and is classified by IARC as a category one carcinogen. Radon exposure risks are a function of geologic, geographic, design, and human behavioural variables and can change over time. Using time series and deep machine learning modelling, we analyzed long-term radon test outcomes as a function of building metrics from 25,489 Canadian and 38,596 Swedish residential properties constructed between 1945 to 2020. While Canadian and Swedish properties built between 1970 and 1980 are comparable (96–103 Bq/m³), innate radon risks subsequently diverge, rising in Canada and falling in Sweden such that 21st Century Canadian houses show 467% greater average radon (131 Bq/m³) relative to Swedish equivalents (28 Bq/m³). These trends are consistent across housing types and regions within each country. The introduction of energy efficiency measures within Canadian and Swedish building codes coincided with opposing radon level trajectories in each nation. Deep machine learning modelling predicts that, without intervention, average Canadian residential radon levels will increase to 176 Bq/m³ by 2050, emphasizing the importance and urgency of future building code intervention to achieve systemic radon reduction in Canada.Keywords: radon health risk, time-series, deep machine learning, lung cancer, Canada, Sweden
Procedia PDF Downloads 863963 Generativism in Language Design and Their Effects on String of Constructions
Authors: Christian Uchechukwu Gilbert
Abstract:
Generativism in language design investigates the framework on which varying sentence structures are built in the English language. Propounded by Noam Chomsky in 1965, the theory transforms sentences from an active structure to a passive one by the application of established rules of the theory. Resident in the body of syntax, the rules include movement, insertion, substitution, and deletion rules. Using the movement rule, the analysis is armed with the qualitative research method, on which the works of scholars were duly consulted for more insight and in line with the academic practice in research activities. The investigation showed that the rules of competent grammar explain the formulation of sentences in a language and how transformation takes place among sentences from a deep structure to a surface structure with accurate results. The structural differences that could be got through dative movement and the deletion of the preposition; passivisation got from an active sentence by the insertion of the preposition “by” a “be verb” and the aspect tense marker “–en”, held as the creative aspect of language vocabulary and the subject-auxiliary inversion that exchanges the auxiliary of a sentence with the subject of the same sentence thereby transforming a kennel sentence to a polar question, viewed as an external argument under θ-theory. Generativism in language design, therefore, changes available types of sentences and relates one form of linguistic category with others in language design.Keywords: language, generate, transformation, structure, design
Procedia PDF Downloads 703962 KUCERIA: A Media to Increase Students’ Reading Interest and Nutrition Knowledge
Authors: Luthfia A. Eka, Bertri M. Masita, G. Indah Lestari, Rizka. Ryanindya, Anindita D. Nur, Asih. Setiarini
Abstract:
The preferred habit nowadays is to watch television or listen to the radio rather than reading a newspaper or magazine. The low interest in reading is the reason to the Indonesian government passed a regulation to foster interest in reading early in schoolchildren through literacy programs. Literacy programs are held for the first 10 - 15 minutes before classes begin and children are asked to read books other than textbooks such as storybooks or magazines. In addition, elementary school children have a tendency to buy less healthy snacks around the school and do not know the nutrition fact from the food purchased. Whereas snacks contribute greatly in the fulfillment of energy and nutrients of children every day. The purpose of this study was to increase reading interest as well as knowledge of nutrition and health for elementary school students. This study used quantitative method with experimental study design for four months with twice intervention per week and deepened by qualitative method in the form of interview. The participants were 130 students consisting of 3rd and 4th graders in selected elementary school in Depok City. The Interventions given using KUCERIA (Child Storybook) which were storybooks with pictures consisting of 12 series about nutrition and health given at school literacy hours. There were five questions given by using the crossword method to find out the students' understanding of the story content in each series. To maximize the understanding and absorption of information, two students were asked to retell the story in front of the class and one student to fill the crossword on the board for each series. In addition, interviews were conducted by asking questions about students' interest in reading books. Intervention involved not only students but also teachers and parents in order to optimize students' reading habits. Analysis showed > 80% of student could answer 3 of 5 questions correctly in each series, which showed they had an interest in what they read. Research data on nutrition and health knowledge were analyzed using Wilcoxon and Chi-Square Test to see the relationship. However, only 46% of students completed 12 series and the rest lost to follow up due to school schedule incompatibility with the program. The results showed that there was a significant increase of knowledge (p = 0.000) between before intervention with 66,53 score and after intervention with 81,47 score. Retention of knowledge was conducted one month after the last intervention was administered and the analysis result showed no significant decrease of knowledge (p = 0,000) from 79,17 score to 75,48 score. There is also no relationship between sex and class with knowledge. Hence, an increased interest in reading of elementary school students and nutritional knowledge interventions using KUCERIA was proved successful. These interventions may be replicated in other schools or learning communities.Keywords: literation, reading interest, nutrition knowledge, school children
Procedia PDF Downloads 1483961 Forecasting Residential Water Consumption in Hamilton, New Zealand
Authors: Farnaz Farhangi
Abstract:
Many people in New Zealand believe that the access to water is inexhaustible, and it comes from a history of virtually unrestricted access to it. For the region like Hamilton which is one of New Zealand’s fastest growing cities, it is crucial for policy makers to know about the future water consumption and implementation of rules and regulation such as universal water metering. Hamilton residents use water freely and they do not have any idea about how much water they use. Hence, one of proposed objectives of this research is focusing on forecasting water consumption using different methods. Residential water consumption time series exhibits seasonal and trend variations. Seasonality is the pattern caused by repeating events such as weather conditions in summer and winter, public holidays, etc. The problem with this seasonal fluctuation is that, it dominates other time series components and makes difficulties in determining other variations (such as educational campaign’s effect, regulation, etc.) in time series. Apart from seasonality, a stochastic trend is also combined with seasonality and makes different effects on results of forecasting. According to the forecasting literature, preprocessing (de-trending and de-seasonalization) is essential to have more performed forecasting results, while some other researchers mention that seasonally non-adjusted data should be used. Hence, I answer the question that is pre-processing essential? A wide range of forecasting methods exists with different pros and cons. In this research, I apply double seasonal ARIMA and Artificial Neural Network (ANN), considering diverse elements such as seasonality and calendar effects (public and school holidays) and combine their results to find the best predicted values. My hypothesis is the examination the results of combined method (hybrid model) and individual methods and comparing the accuracy and robustness. In order to use ARIMA, the data should be stationary. Also, ANN has successful forecasting applications in terms of forecasting seasonal and trend time series. Using a hybrid model is a way to improve the accuracy of the methods. Due to the fact that water demand is dominated by different seasonality, in order to find their sensitivity to weather conditions or calendar effects or other seasonal patterns, I combine different methods. The advantage of this combination is reduction of errors by averaging of each individual model. It is also useful when we are not sure about the accuracy of each forecasting model and it can ease the problem of model selection. Using daily residential water consumption data from January 2000 to July 2015 in Hamilton, I indicate how prediction by different methods varies. ANN has more accurate forecasting results than other method and preprocessing is essential when we use seasonal time series. Using hybrid model reduces forecasting average errors and increases the performance.Keywords: artificial neural network (ANN), double seasonal ARIMA, forecasting, hybrid model
Procedia PDF Downloads 3393960 The Reconstruction of Paleoenvironment Aptian Sediments of the Massive Serdj, North Central Tunisia
Authors: H. Khaled, F. Chaabani, F. Boulvain
Abstract:
This paper focuses on the studied of Aptian series that crops out at the Jebel Serdj in the north central Tunisia. The study series is about 590 meters thick and it is consisting of limestones, marly limestones associated with some levels of siltstones and marls. Two sections are studied in detail regarding lithology, microfacies, magnetic susceptibility and mineralogical composition to provide new insights into the paleoenvironmental evolution and paleoclimatological implications during this period. The following facies associations representing different ramp palaeoenvironments have been identified: mudstone–wackestone outer ramp facies; skeletal grainstone- packstone mid-ramp facies, packstone-grainstone inner-ramp facies which include a variety of organisms such as rudists and ooids and mudstone–wackestone coastal facies rich with miliolidea and orbitolines. The magnetic susceptibility (Xᵢₙ) of all samples was compared with the lithological and microfacies variation. We show that high values of magnetic susceptibility are correlated with the distal facies.Keywords: Aptian, Serdj Formation, geochemical, mineralogy
Procedia PDF Downloads 1483959 The Key Role of Yttrium Oxide on Devitrification Resilience of Barium Gallo-germanate Glasses: Physicochemical Properties and Crystallization Study
Authors: Samar Aoujia, Théo Guérineaub, Rayan Zaitera, Evelyne Fargina, Younès Messaddeqb, Thierry Cardinala
Abstract:
Two barium gallo-germanate glass series were elaborated to investigate the effect of the yttrium introduction on the glass physicochemical properties and crystallization behavior. One to twenty mol% of YO3/2 were either added into the glass matrix or substituted for gallium oxide. The glass structure was studied by Raman spectroscopy, and the thermal, optical, thermo-mechanical and physical properties are examined. The introduction of yttrium ions in both glass series increases the glass transition temperature, crystallization temperature, softening temperature, coefficient of linear thermal expansion and density. Through differential scanning calorimetry and X-ray diffraction analyses, it was found that competition occurs between the gallo-germanate zeolite-type phase and the yttrium-containing phase. From 13 mol% of YO3/2, the yttrium introduction impedes the formation of surface crystallization in these glasses.Keywords: photonic, heavy-metal oxide, glass, crystallization
Procedia PDF Downloads 1453958 The Kinks, the Solitons, and the Shocks in Series Connected Discrete Josephson Transmission Lines
Authors: Eugene Kogan
Abstract:
We analytically study the localized running waves in the discrete Josephson transmission lines (JTL), constructed from Josephson junctions (JJ) and capacitors. The quasi-continuum approximation reduces the calculation of the running wave properties to the problem of equilibrium of an elastic rod in the potential field. Making additional approximations, we reduce the problem to the motion of the fictitious Newtonian particle in the potential well. We show that there exist running waves in the form of supersonic kinks and solitons and calculate their velocities and profiles. We show that the nonstationary smooth waves, which are small perturbations on the homogeneous non-zero background, are described by Korteweg-de Vries equation, and those on zero background -by the modified Korteweg-de Vries equation. We also study the effect of dissipation on the running waves in JTL and find that in the presence of the resistors, shunting the JJ and/or in series with the ground capacitors, the only possible stationary running waves are the shock waves, whose profiles are also found.Keywords: Josephson transmission line, shocks, solitary waves, nonlinear waves
Procedia PDF Downloads 1153957 The Conceptual and Procedural Knowledge of Rational Numbers in Primary School Teachers
Authors: R. M. Kashim
Abstract:
The study investigates the conceptual and procedural knowledge of rational number in primary school teachers, specifically, the primary school teachers level of conceptual knowledge about rational number and the primary school teachers level of procedural knowledge about rational numbers. The study was carried out in Bauchi metropolis in Bauchi state of Nigeria. A Conceptual and Procedural Knowledge Test was used as the instrument for data collection, 54 mathematics teachers in Bauchi primary schools were involved in the study. The collections were analyzed using mean and standard deviation. The findings revealed that the primary school mathematics teachers in Bauchi metropolis posses a low level of conceptual knowledge of rational number and also possess a high level of Procedural knowledge of rational number. It is therefore recommended that to be effective, teachers teaching mathematics most posses a deep understanding of both conceptual and procedural knowledge. That way the most knowledgeable teachers in mathematics deliver highly effective rational number instructions. Teachers should not ignore the mathematical concept aspect of rational number teaching. This is because only the procedural aspect of Rational number is highlighted during instructions; this often leads to rote - learning of procedures without understanding the meanings. It is necessary for teachers to learn rational numbers teaching method that focus on both conceptual knowledge and procedural knowledge teaching.Keywords: conceptual knowledge, primary school teachers, procedural knowledge, rational numbers
Procedia PDF Downloads 3293956 Design of Reconfigurable Supernumerary Robotic Limb Based on Differential Actuated Joints
Authors: Qinghua Zhang, Yanhe Zhu, Xiang Zhao, Yeqin Yang, Hongwei Jing, Guoan Zhang, Jie Zhao
Abstract:
This paper presents a wearable reconfigurable supernumerary robotic limb with differential actuated joints, which is lightweight, compact and comfortable for the wearers. Compared to the existing supernumerary robotic limbs which mostly adopted series structure with large movement space but poor carrying capacity, a prototype with the series-parallel configuration to better adapt to different task requirements has been developed in this design. To achieve a compact structure, two kinds of cable-driven mechanical structures based on guide pulleys and differential actuated joints were designed. Moreover, two different tension devices were also designed to ensure the reliability and accuracy of the cable-driven transmission. The proposed device also employed self-designed bearings which greatly simplified the structure and reduced the cost.Keywords: cable-driven, differential actuated joints, reconfigurable, supernumerary robotic limb
Procedia PDF Downloads 2223955 Active Power Flow Control Using a TCSC Based Backstepping Controller in Multimachine Power System
Authors: Naimi Abdelhamid, Othmane Abdelkhalek
Abstract:
With the current rise in the demand of electrical energy, present-day power systems which are large and complex, will continue to grow in both size and complexity. Flexible AC Transmission System (FACTS) controllers provide new facilities, both in steady state power flow control and dynamic stability control. Thyristor Controlled Series Capacitor (TCSC) is one of FACTS equipment, which is used for power flow control of active power in electric power system and for increase of capacities of transmission lines. In this paper, a Backstepping Power Flow Controller (BPFC) for TCSC in multimachine power system is developed and tested. The simulation results show that the TCSC proposed controller is capable of controlling the transmitted active power and improving the transient stability when compared with conventional PI Power Flow Controller (PIPFC).Keywords: FACTS, thyristor controlled series capacitor (TCSC), backstepping, BPFC, PIPFC
Procedia PDF Downloads 5303954 A Survey on the Blockchain Smart Contract System: Security Strengths and Weaknesses
Authors: Malaw Ndiaye, Karim Konate
Abstract:
Smart contracts are computer protocols that facilitate, verify, and execute the negotiation or execution of a contract, or that render a contractual term unnecessary. Blockchain and smart contracts can be used to facilitate almost any financial transaction. Thanks to these smart contracts, the settlement of dividends and coupons could be automated. Smart contracts have become lucrative and profitable targets for attackers because they can hold a great amount of money. Smart contracts, although widely used in blockchain technology, are far from perfect due to security concerns. Since there are recent studies on smart contract security, none of them systematically study the strengths and weaknesses of smart contract security. Some have focused on an analysis of program-related vulnerabilities by providing a taxonomy of vulnerabilities. Other studies are responsible for listing the series of attacks linked to smart contracts. Although a series of attacks are listed, there is a lack of discussions and proposals on improving security. This survey takes stock of smart contract security from a more comprehensive perspective by correlating the level of vulnerability and systematic review of security levels in smart contracts.Keywords: blockchain, Bitcoin, smart contract, criminal smart contract, security
Procedia PDF Downloads 1683953 CFD-DEM Modelling of Liquid Fluidizations of Ellipsoidal Particles
Authors: Esmaeil Abbaszadeh Molaei, Zongyan Zhou, Aibing Yu
Abstract:
The applications of liquid fluidizations have been increased in many parts of industries such as particle classification, backwashing of granular filters, crystal growth, leaching and washing, and bioreactors due to high-efficient liquid–solid contact, favorable mass and heat transfer, high operation flexibilities, and reduced back mixing of phases. In most of these multiphase operations the particles properties, i.e. size, density, and shape, may change during the process because of attrition, coalescence or chemical reactions. Previous studies, either experimentally or numerically, mainly have focused on studies of liquid-solid fluidized beds containing spherical particles; however, the role of particle shape on the hydrodynamics of liquid fluidized beds is still not well-known. A three-dimensional Discrete Element Model (DEM) and Computational Fluid Dynamics (CFD) are coupled to study the influence of particles shape on particles and liquid flow patterns in liquid-solid fluidized beds. In the simulations, ellipsoid particles are used to study the shape factor since they can represent a wide range of particles shape from oblate and sphere to prolate shape particles. Different particle shapes from oblate (disk shape) to elongated particles (rod shape) are selected to investigate the effect of aspect ratio on different flow characteristics such as general particles and liquid flow pattern, pressure drop, and particles orientation. First, the model is verified based on experimental observations, then further detail analyses are made. It was found that spherical particles showed a uniform particle distribution in the bed, which resulted in uniform pressure drop along the bed height. However for particles with aspect ratios less than one (disk-shape), some particles were carried into the freeboard region, and the interface between the bed and freeboard was not easy to be determined. A few particle also intended to leave the bed. On the other hand, prolate particles showed different behaviour in the bed. They caused unstable interface and some flow channeling was observed for low liquid velocities. Because of the non-uniform particles flow pattern for particles with aspect ratios lower (oblate) and more (prolate) than one, the pressure drop distribution in the bed was not observed as uniform as what was found for spherical particles.Keywords: CFD, DEM, ellipsoid, fluidization, multiphase flow, non-spherical, simulation
Procedia PDF Downloads 3113952 Preparation of Sorbent Materials for the Removal of Hardness and Organic Pollutants from Water and Wastewater
Authors: Thanaa Abdel Moghny, Mohamed Keshawy, Mahmoud Fathy, Abdul-Raheim M. Abdul-Raheim, Khalid I. Kabel, Ahmed F. El-Kafrawy, Mahmoud Ahmed Mousa, Ahmed E. Awadallah
Abstract:
Ecological pollution is of great concern for human health and the environment. Numerous organic and inorganic pollutants usually discharged into the water caused carcinogenic or toxic effect for human and different life form. In this respect, this work aims to treat water contaminated by organic and inorganic waste using sorbent based on polystyrene. Therefore, two different series of adsorbent material were prepared; the first one included the preparation of polymeric sorbent from the reaction of styrene acrylate ester and alkyl acrylate. The second series involved syntheses of composite ion exchange resins of waste polystyrene and amorphous carbon thin film (WPS/ACTF) by solvent evaporation using micro emulsion polymerization. The produced ACTF/WPS nanocomposite was sulfonated to produce cation exchange resins ACTF/WPSS nanocomposite. The sorbents of the first series were characterized using FTIR, 1H NMR, and gel permeation chromatography. The thermal properties of the cross-linked sorbents were investigated using thermogravimetric analysis, and the morphology was characterized by scanning electron microscope (SEM). The removal of organic pollutant was determined through absorption tests in a various organic solvent. The chemical and crystalline structure of nanocomposite of second series has been proven by studies of FTIR spectrum, X-rays, thermal analysis, SEM and TEM analysis to study morphology of resins and ACTF that assembled with polystyrene chain. It is found that the composite resins ACTF/WPSS are thermally stable and show higher chemical stability than ion exchange WPSS resins. The composite resin was evaluated for calcium hardness removal. The result is evident that the ACTF/WPSS composite has more prominent inorganic pollutant removal than WPSS resin. So, we recommend the using of nanocomposite resin as new potential applications for water treatment process.Keywords: nanocomposite, sorbent materials, waste water, waste polystyrene
Procedia PDF Downloads 4303951 Synthesis, Characterization, and Evaluation of New Series of Oil Sorbers Based on Maleate Esters
Authors: Nora A. Hamad, Ayman M. Atta, Adel A. H. Abdel-Rahman
Abstract:
Two malice anhydride esters were prepared using long chain aliphatic alcohols (C8H17OH and C12H25OH, 1:1 mole ratio). Three series of crosslinked homo and copolymers of maleate esters with octadecyl acrylate and acrylic acid were prepared respectively through suspension copolymerization. The monomers were mixed with 0.02 Wt% of BP initiator, PVA 1% (170 ml for each 100g of monomers) and different weight ratios of DVB crosslinked (1% and 4%) in cyclohexane. The prepared crosslinked homo and copolymers were characterized by SEM, TGA and FTIR spectroscopic analyses. The prepared polymers were coated onto poly (ethylene terephethalate) nonwoven fiber (NWPET). The effect of copolymerization feed composition, crosslinker wt% and reaction media or solvent on swelling properties of crosslinked polymers were studied through the oil absorption tests in toluene and 10% of diluted crude oil with toluene.Keywords: acrylic acid, crosslinked copolymers, maleate ester, poly(ethylene terephethalate) nonwoven fiber (NWPET), oil absorbency, octadecyl acrylat
Procedia PDF Downloads 3923950 Probing Language Models for Multiple Linguistic Information
Authors: Bowen Ding, Yihao Kuang
Abstract:
In recent years, large-scale pre-trained language models have achieved state-of-the-art performance on a variety of natural language processing tasks. The word vectors produced by these language models can be viewed as dense encoded presentations of natural language that in text form. However, it is unknown how much linguistic information is encoded and how. In this paper, we construct several corresponding probing tasks for multiple linguistic information to clarify the encoding capabilities of different language models and performed a visual display. We firstly obtain word presentations in vector form from different language models, including BERT, ELMo, RoBERTa and GPT. Classifiers with a small scale of parameters and unsupervised tasks are then applied on these word vectors to discriminate their capability to encode corresponding linguistic information. The constructed probe tasks contain both semantic and syntactic aspects. The semantic aspect includes the ability of the model to understand semantic entities such as numbers, time, and characters, and the grammatical aspect includes the ability of the language model to understand grammatical structures such as dependency relationships and reference relationships. We also compare encoding capabilities of different layers in the same language model to infer how linguistic information is encoded in the model.Keywords: language models, probing task, text presentation, linguistic information
Procedia PDF Downloads 1143949 Innovation Trends in Latin America Countries
Authors: José Carlos Rodríguez, Mario Gómez
Abstract:
This paper analyses innovation trends in Latin America countries by means of the number of patent applications filed by residents and non-residents during the period 1965 to 2012. Making use of patent data released by the World Intellectual Property Organization (WIPO), we search for the presence of multiple structural changes in patent application series in Argentina, Brazil Chile, and Mexico. These changes may suggest that firms’ innovative activity has been modified as a result of implementing a particular science, technology and innovation (STI) policy. Accordingly, the new regulations implemented in these countries during 1980s and 1990s have influenced their intellectual property regimes. The question conducting this research is thus how STI policies in these countries have affected their innovation activity? The results achieved in this research confirm the existence of multiple structural changes in the series of patent applications resulting from STI policies implemented in these countries.Keywords: econometric methods, innovation activity, Latin America countries, patents, science, technology and innovation policy
Procedia PDF Downloads 2833948 Brand Placement Strategies in Turkey: The Case of “Yalan Dünya”
Authors: Burçe Boyraz
Abstract:
This study examines appearances of brand placement as an alternative communication strategy in television series by focusing on Yalan Dünya which is one of the most popular television series in Turkey. Consequently, this study has a descriptive research design and quantitative content analysis method is used in order to analyze frequency and time data of brand placement appearances in first 3 seasons of Yalan Dünya with 16 episodes. Analysis of brand placement practices in Yalan Dünya is dealt in three categories: episode-based analysis, season-based analysis and comparative analysis. At the end, brand placement practices in Yalan Dünya are evaluated in terms of type, form, duration and legal arrangements. As a result of this study, it is seen that brand placement plays a determinant role in Yalan Dünya content. Also, current legal arrangements make brand placement closer to other traditional communication strategies instead of differing brand placement from them distinctly.Keywords: advertising, alternative communication strategy, brand placement, Yalan Dünya
Procedia PDF Downloads 2483947 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue
Authors: Rachel Y. Zhang, Christopher K. Anderson
Abstract:
A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine
Procedia PDF Downloads 1343946 Implementation in Python of a Method to Transform One-Dimensional Signals in Graphs
Authors: Luis Andrey Fajardo Fajardo
Abstract:
We are immersed in complex systems. The human brain, the galaxies, the snowflakes are examples of complex systems. An area of interest in Complex systems is the chaos theory. This revolutionary field of science presents different ways of study than determinism and reductionism. Here is where in junction with the Nonlinear DSP, chaos theory offer valuable techniques that establish a link between time series and complex theory in terms of complex networks, so that, the study of signals can be explored from the graph theory. Recently, some people had purposed a method to transform time series in graphs, but no one had developed a suitable implementation in Python with signals extracted from Chaotic Systems or Complex systems. That’s why the implementation in Python of an existing method to transform one dimensional chaotic signals from time domain to graph domain and some measures that may reveal information not extracted in the time domain is proposed.Keywords: Python, complex systems, graph theory, dynamical systems
Procedia PDF Downloads 5113945 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model
Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li
Abstract:
Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.Keywords: spatial information network, traffic prediction, wavelet decomposition, time series model
Procedia PDF Downloads 1493944 Time-Series Load Data Analysis for User Power Profiling
Authors: Mahdi Daghmhehci Firoozjaei, Minchang Kim, Dima Alhadidi
Abstract:
In this paper, we present a power profiling model for smart grid consumers based on real time load data acquired smart meters. It profiles consumers’ power consumption behaviour using the dynamic time warping (DTW) clustering algorithm. Due to the invariability of signal warping of this algorithm, time-disordered load data can be profiled and consumption features be extracted. Two load types are defined and the related load patterns are extracted for classifying consumption behaviour by DTW. The classification methodology is discussed in detail. To evaluate the performance of the method, we analyze the time-series load data measured by a smart meter in a real case. The results verify the effectiveness of the proposed profiling method with 90.91% true positive rate for load type clustering in the best case.Keywords: power profiling, user privacy, dynamic time warping, smart grid
Procedia PDF Downloads 1553943 Topic Prominence and Temporal Encoding in Mandarin Chinese
Authors: Tzu-I Chiang
Abstract:
A central question for finite-nonfinite distinction in Mandarin Chinese is how does Mandarin encode temporal information without the grammatical contrast between past and present tense. Moreover, how do L2 learners of Mandarin whose native language is English and whose L1 system has tense morphology, acquire the temporal encoding system in L2 Mandarin? The current study reports preliminary findings on the relationship between topic prominence and the temporal encoding in L1 and L2 Chinese. Oral narratives data from 30 natives and learners of Mandarin Chinese were collected via a film-retell task. In terms of coding, predicates collected from the narratives were transcribed and then coded based on four major verb types: n-degree Statives (quality-STA), point-scale Statives (status-STA), n-atom EVENT (ACT), and point EVENT (resultative-ACT). How native speakers and non-native speakers started retelling the story was calculated. Results of the study show that native speakers of Chinese tend to express Topic Time (TT) syntactically at the topic position; whereas L2 learners of Chinese across levels rely mainly on the default time encoded in the event types. Moreover, as the proficiency level of the learner increases, learners’ appropriate use of the event predicates increased, which supports the argument that L2 development of temporal encoding is affected by lexical aspect.Keywords: topic prominence, temporal encoding, lexical aspect, L2 acquisition
Procedia PDF Downloads 2023942 A Case Study of Ontology-Based Sentiment Analysis for Fan Pages
Authors: C. -L. Huang, J. -H. Ho
Abstract:
Social media has become more and more important in our life. Many enterprises promote their services and products to fans via the social media. The positive or negative sentiment of feedbacks from fans is very important for enterprises to improve their products, services, and promotion activities. The purpose of this paper is to understand the sentiment of the fan’s responses by analyzing the responses posted by fans on Facebook. The entity and aspect of fan’s responses were analyzed based on a predefined ontology. The ontology for cell phone sentiment analysis consists of aspect categories on the top level as follows: overall, shape, hardware, brand, price, and service. Each category consists of several sub-categories. All aspects for a fan’s response were found based on the ontology, and their corresponding sentimental terms were found using lexicon-based approach. The sentimental scores for aspects of fan responses were obtained by summarizing the sentimental terms in responses. The frequency of 'like' was also weighted in the sentimental score calculation. Three famous cell phone fan pages on Facebook were selected as demonstration cases to evaluate performances of the proposed methodology. Human judgment by several domain experts was also built for performance comparison. The performances of proposed approach were as good as those of human judgment on precision, recall and F1-measure.Keywords: opinion mining, ontology, sentiment analysis, text mining
Procedia PDF Downloads 2333941 Nutrition of Preschool Children in the Aspect of Nutritional Status
Authors: Klaudia Tomala, Elzbieta Grochowska-Niedworok, Katarzyna Brukalo, Marek Kardas, Beata Calyniuk, Renata Polaniak
Abstract:
Background. Nutrition plays an important role in the psychophysical growth of children and has effects on their health. Providing children with the appropriate supply of macro- and micro-nutrients requires dietary diversity across every food group. Meals in kindergartens should provide 70-75% of their daily food requirement. Aim. The aim of this study was to determine the vitamin content in the food rations of children attending kindergarten in the wider aspect of nutritional status. Material and Methods. Kindergarten menus from the spring and autumn seasons of 2015 were analyzed. In these meals, fat content and levels of water-soluble vitamins were estimated. The vitamin content was evaluated using the diet calculator “Aliant”. Statistical analysis was done in MS Office Excel 2007. Results. Vitamin content in the analyzed menus in many cases is too high with reference to dietary intake, with only vitamin D intake being insufficient. Vitamin E intake was closest to the dietary reference intake. Conclusion. The results show that vitamin intake is usually too high, and menus should, therefore, be modified. Also, nutrition education among kindergarten staff is needed. The identified errors in the composition of meals will affect the nutritional status of children and their proper composition in the body.Keywords: children, nutrition status, vitamins, preschool
Procedia PDF Downloads 1623940 A Study on Changing of Energy-Saving Performance of GHP Air Conditioning System with Time-Series Variation
Authors: Ying Xin, Shigeki Kametani
Abstract:
This paper deals the energy saving performance of GHP (Gas engine heat pump) air conditioning system has improved with time-series variation. There are two types of air conditioning systems, VRF (Variable refrigerant flow) and central cooling and heating system. VRF is classified as EHP (Electric driven heat pump) and GHP. EHP drives the compressor with electric motor. GHP drives the compressor with the gas engine. The electric consumption of GHP is less than one tenth of EHP does. In this study, the energy consumption data of GHP installed the junior high schools was collected. An annual and monthly energy consumption per rated thermal output power of each apparatus was calculated, and then their energy efficiency was analyzed. From these data, we investigated improvement of the energy saving of the GHP air conditioning system by the change in the generation.Keywords: energy-saving, variable refrigerant flow, gas engine heat pump, electric driven heat pump, air conditioning system
Procedia PDF Downloads 2983939 Establishment of the Regression Uncertainty of the Critical Heat Flux Power Correlation for an Advanced Fuel Bundle
Authors: L. Q. Yuan, J. Yang, A. Siddiqui
Abstract:
A new regression uncertainty analysis methodology was applied to determine the uncertainties of the critical heat flux (CHF) power correlation for an advanced 43-element bundle design, which was developed by Canadian Nuclear Laboratories (CNL) to achieve improved economics, resource utilization and energy sustainability. The new methodology is considered more appropriate than the traditional methodology in the assessment of the experimental uncertainty associated with regressions. The methodology was first assessed using both the Monte Carlo Method (MCM) and the Taylor Series Method (TSM) for a simple linear regression model, and then extended successfully to a non-linear CHF power regression model (CHF power as a function of inlet temperature, outlet pressure and mass flow rate). The regression uncertainty assessed by MCM agrees well with that by TSM. An equation to evaluate the CHF power regression uncertainty was developed and expressed as a function of independent variables that determine the CHF power.Keywords: CHF experiment, CHF correlation, regression uncertainty, Monte Carlo Method, Taylor Series Method
Procedia PDF Downloads 4173938 Impact of Economic Globalization on Ecological Footprint in India: Evidenced with Dynamic ARDL Simulations
Authors: Muhammed Ashiq Villanthenkodath, Shreya Pal
Abstract:
Purpose: This study scrutinizes the impact of economic globalization on ecological footprint while endogenizing economic growth and energy consumption from 1990 to 2018 in India. Design/methodology/approach: The standard unit root test has been employed for time series analysis to unveil the integration order. Then, the cointegration was confirmed using autoregressive distributed lag (ARDL) analysis. Further, the study executed the dynamic ARDL simulation model to estimate long-run and short-run results along with simulation and robotic prediction. Findings: The cointegration analysis confirms the existence of a long-run association among variables. Further, economic globalization reduces the ecological footprint in the long run. Similarly, energy consumption decreases the ecological footprint. In contrast, economic growth spurs the ecological footprint in India. Originality/value: This study contributes to the literature in many ways. First, unlike studies that employ CO2 emissions and globalization nexus, this study employs ecological footprint for measuring environmental quality; since it is the broader measure of environmental quality, it can offer a wide range of climate change mitigation policies for India. Second, the study executes a multivariate framework with updated series from 1990 to 2018 in India to explore the link between EF, economic globalization, energy consumption, and economic growth. Third, the dynamic autoregressive distributed lag (ARDL) model has been used to explore the short and long-run association between the series. Finally, to our limited knowledge, this is the first study that uses economic globalization in the EF function of India amid facing a trade-off between sustainable economic growth and the environment in the era of globalization.Keywords: economic globalization, ecological footprint, India, dynamic ARDL simulation model
Procedia PDF Downloads 1253937 Times2D: A Time-Frequency Method for Time Series Forecasting
Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan
Abstract:
Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation
Procedia PDF Downloads 44