Search results for: artificial neuronal networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4667

Search results for: artificial neuronal networks

4277 Algorithm and Software Based on Multilayer Perceptron Neural Networks for Estimating Channel Use in the Spectral Decision Stage in Cognitive Radio Networks

Authors: Danilo López, Johana Hernández, Edwin Rivas

Abstract:

The use of the Multilayer Perceptron Neural Networks (MLPNN) technique is presented to estimate the future state of use of a licensed channel by primary users (PUs); this will be useful at the spectral decision stage in cognitive radio networks (CRN) to determine approximately in which time instants of future may secondary users (SUs) opportunistically use the spectral bandwidth to send data through the primary wireless network. To validate the results, sequences of occupancy data of channel were generated by simulation. The results show that the prediction percentage is greater than 60% in some of the tests carried out.

Keywords: cognitive radio, neural network, prediction, primary user

Procedia PDF Downloads 372
4276 Process Modeling of Electric Discharge Machining of Inconel 825 Using Artificial Neural Network

Authors: Himanshu Payal, Sachin Maheshwari, Pushpendra S. Bharti

Abstract:

Electrical discharge machining (EDM), a non-conventional machining process, finds wide applications for shaping difficult-to-cut alloys. Process modeling of EDM is required to exploit the process to the fullest. Process modeling of EDM is a challenging task owing to involvement of so many electrical and non-electrical parameters. This work is an attempt to model the EDM process using artificial neural network (ANN). Experiments were carried out on die-sinking EDM taking Inconel 825 as work material. ANN modeling has been performed using experimental data. The prediction ability of trained network has been verified experimentally. Results indicate that ANN can predict the values of performance measures of EDM satisfactorily.

Keywords: artificial neural network, EDM, metal removal rate, modeling, surface roughness

Procedia PDF Downloads 413
4275 Experimental Networks Synchronization of Chua’s Circuit in Different Topologies

Authors: Manuel Meranza-Castillon, Rolando Diaz-Castillo, Adrian Arellano-Delgado, Cesar Cruz-Hernandez, Rosa Martha Lopez-Gutierrez

Abstract:

In this work, we deal with experimental network synchronization of chaotic nodes with different topologies. Our approach is based on complex system theory, and we use a master-slave configuration to couple the nodes in the networks. In particular, we design and implement electronically complex dynamical networks composed by nine coupled chaotic Chua’s circuits with topologies: in nearest-neighbor, small-world, open ring, star, and global. Also, network synchronization is evaluated according to a particular coupling strength for each topology. This study is important by the possible applications to private transmission of information in a chaotic communication network of multiple users.

Keywords: complex networks, Chua's circuit, experimental synchronization, multiple users

Procedia PDF Downloads 350
4274 Metabolic Pathway Analysis of Microbes using the Artificial Bee Colony Algorithm

Authors: Serena Gomez, Raeesa Tanseen, Netra Shaligram, Nithin Francis, Sandesh B. J.

Abstract:

The human gut consists of a community of microbes which has a lot of effects on human health disease. Metabolic modeling can help to predict relative populations of stable microbes and their effect on health disease. In order to study and visualize microbes in the human gut, we developed a tool that offers the following modules: Build a tool that can be used to perform Flux Balance Analysis for microbes in the human gut using the Artificial Bee Colony optimization algorithm. Run simulations for an individual microbe in different conditions, such as aerobic and anaerobic and visualize the results of these simulations.

Keywords: microbes, metabolic modeling, flux balance analysis, artificial bee colony

Procedia PDF Downloads 102
4273 Multiple Query Optimization in Wireless Sensor Networks Using Data Correlation

Authors: Elaheh Vaezpour

Abstract:

Data sensing in wireless sensor networks is done by query deceleration the network by the users. In many applications of the wireless sensor networks, many users send queries to the network simultaneously. If the queries are processed separately, the network’s energy consumption will increase significantly. Therefore, it is very important to aggregate the queries before sending them to the network. In this paper, we propose a multiple query optimization framework based on sensors physical and temporal correlation. In the proposed method, queries are merged and sent to network by considering correlation among the sensors in order to reduce the communication cost between the sensors and the base station.

Keywords: wireless sensor networks, multiple query optimization, data correlation, reducing energy consumption

Procedia PDF Downloads 336
4272 Solar Radiation Time Series Prediction

Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs

Abstract:

A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled DNI field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.

Keywords: artificial neural networks, resilient propagation, solar radiation, time series forecasting

Procedia PDF Downloads 385
4271 Alexa (Machine Learning) in Artificial Intelligence

Authors: Loulwah Bokhari, Jori Nazer, Hala Sultan

Abstract:

Nowadays, artificial intelligence (AI) is used as a foundation for many activities in modern computing applications at home, in vehicles, and in businesses. Many modern machines are built to carry out a specific activity or purpose. This is where the Amazon Alexa application comes in, as it is used as a virtual assistant. The purpose of this paper is to explore the use of Amazon Alexa among people and how it has improved and made simple daily tasks easier for many people. We gave our participants several questions regarding Amazon Alexa and if they had recently used or heard of it, as well as the different tasks it provides and whether it successfully satisfied their needs. Overall, we found that participants who have recently used Alexa have found it to be helpful in their daily tasks.

Keywords: artificial intelligence, Echo system, machine learning, feature for feature match

Procedia PDF Downloads 121
4270 Design of EV Steering Unit Using AI Based on Estimate and Control Model

Authors: Seong Jun Yoon, Jasurbek Doliev, Sang Min Oh, Rodi Hartono, Kyoojae Shin

Abstract:

Electric power steering (EPS), which is commonly used in electric vehicles recently, is an electric-driven steering device for vehicles. Compared to hydraulic systems, EPS offers advantages such as simple system components, easy maintenance, and improved steering performance. However, because the EPS system is a nonlinear model, difficult problems arise in controller design. To address these, various machine learning and artificial intelligence approaches, notably artificial neural networks (ANN), have been applied. ANN can effectively determine relationships between inputs and outputs in a data-driven manner. This research explores two main areas: designing an EPS identifier using an ANN-based backpropagation (BP) algorithm and enhancing the EPS system controller with an ANN-based Levenberg-Marquardt (LM) algorithm. The proposed ANN-based BP algorithm shows superior performance and accuracy compared to linear transfer function estimators, while the LM algorithm offers better input angle reference tracking and faster response times than traditional PID controllers. Overall, the proposed ANN methods demonstrate significant promise in improving EPS system performance.

Keywords: ANN backpropagation modelling, electric power steering, transfer function estimator, electrical vehicle driving system

Procedia PDF Downloads 46
4269 Uplink Throughput Prediction in Cellular Mobile Networks

Authors: Engin Eyceyurt, Josko Zec

Abstract:

The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.

Keywords: drive test, LTE, machine learning, uplink throughput prediction

Procedia PDF Downloads 158
4268 Hybrid Approach for Country’s Performance Evaluation

Authors: C. Slim

Abstract:

This paper presents an integrated model, which hybridized data envelopment analysis (DEA) and support vector machine (SVM) together, to class countries according to their efficiency and performance. This model takes into account aspects of multi-dimensional indicators, decision-making hierarchy and relativity of measurement. Starting from a set of indicators of performance as exhaustive as possible, a process of successive aggregations has been developed to attain an overall evaluation of a country’s competitiveness.

Keywords: Artificial Neural Networks (ANN), Support vector machine (SVM), Data Envelopment Analysis (DEA), Aggregations, indicators of performance

Procedia PDF Downloads 340
4267 A Learning Automata Based Clustering Approach for Underwater ‎Sensor Networks to Reduce Energy Consumption

Authors: Motahareh Fadaei

Abstract:

Wireless sensor networks that are used to monitor a special environment, are formed from a large number of sensor nodes. The role of these sensors is to sense special parameters from ambient and to make connection. In these networks, the most important challenge is the management of energy usage. Clustering is one of the methods that are broadly used to face this challenge. In this paper, a distributed clustering protocol based on learning automata is proposed for underwater wireless sensor networks. The proposed algorithm that is called LA-Clustering forms clusters in the same energy level, based on the energy level of nodes and the connection radius regardless of size and the structure of sensor network. The proposed approach is simulated and is compared with some other protocols with considering some metrics such as network lifetime, number of alive nodes, and number of transmitted data. The simulation results demonstrate the efficiency of the proposed approach.

Keywords: clustering, energy consumption‎, learning automata, underwater sensor networks

Procedia PDF Downloads 317
4266 Exploring Acceptance of Artificial Intelligence Software Solution Amongst Healthcare Personnel: A Case in a Private Medical Centre

Authors: Sandra So, Mohd Roslan Ismail, Safurah Jaafar

Abstract:

With the rapid proliferation of data in healthcare has provided an opportune platform creation of Artificial Intelligence (AI). AI has brought a paradigm shift for healthcare professionals, promising improvement in delivery and quality. This study aims to determine the perception of healthcare personnel on perceived ease of use, perceived usefulness, and subjective norm toward attitude for artificial intelligence acceptance. A cross-sectional single institutional study of employees’ perception of adopting AI in the hospital was conducted. The survey was conducted using a questionnaire adapted from Technology Acceptance Model and a four-point Likert scale was used. There were 96 or 75.5% of the total population responded. This study has shown the significant relationship and the importance of ease of use, perceived usefulness, and subjective norm to the acceptance of AI. In the study results, it concluded that the determining factor to the strong acceptance of AI in their practices is mostly those respondents with the most interaction with the patients and clinical management.

Keywords: artificial intelligence, machine learning, perceived ease of use, perceived usefulness, subjective norm

Procedia PDF Downloads 230
4265 Network Pharmacological Evaluation of Holy Basil Bioactive Phytochemicals for Identifying Novel Potential Inhibitors Against Neurodegenerative Disorder

Authors: Bhuvanesh Baniya

Abstract:

Alzheimer disease is illnesses that are responsible for neuronal cell death and resulting in lifelong cognitive problems. Due to their unclear mechanism, there are no effective drugs available for the treatment. For a long time, herbal drugs have been used as a role model in the field of the drug discovery process. Holy basil in the Indian medicinal system (Ayurveda) is used for several neuronal disorders like insomnia and memory loss for decades. This study aims to identify active components of holy basil as potential inhibitors for the treatment of Alzheimer disease. To fulfill this objective, the Network pharmacology approach, gene ontology, pharmacokinetics analysis, molecular docking, and molecular dynamics simulation (MDS) studies were performed. A total of 7 active components in holy basil, 12 predicted neurodegenerative targets of holy basil, and 8063 Alzheimer-related targets were identified from different databases. The network analysis showed that the top ten targets APP, EGFR, MAPK1, ESR1, HSPA4, PRKCD, MAPK3, ABL1, JUN, and GSK3B were found as significant target related to Alzheimer disease. On the basis of gene ontology and topology analysis results, APP was found as a significant target related to Alzheimer’s disease pathways. Further, the molecular docking results to found that various compounds showed the best binding affinities. Further, MDS top results suggested could be used as potential inhibitors against APP protein and could be useful for the treatment of Alzheimer’s disease.

Keywords: holy basil, network pharmacology, neurodegeneration, active phytochemicals, molecular docking and simulation

Procedia PDF Downloads 102
4264 Indium-Gallium-Zinc Oxide Photosynaptic Device with Alkylated Graphene Oxide for Optoelectronic Spike Processing

Authors: Seyong Oh, Jin-Hong Park

Abstract:

Recently, neuromorphic computing based on brain-inspired artificial neural networks (ANNs) has attracted huge amount of research interests due to the technological abilities to facilitate massively parallel, low-energy consuming, and event-driven computing. In particular, research on artificial synapse that imitate biological synapses responsible for human information processing and memory is in the spotlight. Here, we demonstrate a photosynaptic device, wherein a synaptic weight is governed by a mixed spike consisting of voltage and light spikes. Compared to the device operated only by the voltage spike, ∆G in the proposed photosynaptic device significantly increased from -2.32nS to 5.95nS with no degradation of nonlinearity (NL) (potentiation/depression values were changed from 4.24/8 to 5/8). Furthermore, the Modified National Institute of Standards and Technology (MNIST) digit pattern recognition rates improved from 36% and 49% to 50% and 62% in ANNs consisting of the synaptic devices with 20 and 100 weight states, respectively. We expect that the photosynaptic device technology processed by optoelectronic spike will play an important role in implementing the neuromorphic computing systems in the future.

Keywords: optoelectronic synapse, IGZO (Indium-Gallium-Zinc Oxide) photosynaptic device, optoelectronic spiking process, neuromorphic computing

Procedia PDF Downloads 175
4263 New Gas Geothermometers for the Prediction of Subsurface Geothermal Temperatures: An Optimized Application of Artificial Neural Networks and Geochemometric Analysis

Authors: Edgar Santoyo, Daniel Perez-Zarate, Agustin Acevedo, Lorena Diaz-Gonzalez, Mirna Guevara

Abstract:

Four new gas geothermometers have been derived from a multivariate geo chemometric analysis of a geothermal fluid chemistry database, two of which use the natural logarithm of CO₂ and H2S concentrations (mmol/mol), respectively, and the other two use the natural logarithm of the H₂S/H₂ and CO₂/H₂ ratios. As a strict compilation criterion, the database was created with gas-phase composition of fluids and bottomhole temperatures (BHTM) measured in producing wells. The calibration of the geothermometers was based on the geochemical relationship existing between the gas-phase composition of well discharges and the equilibrium temperatures measured at bottomhole conditions. Multivariate statistical analysis together with the use of artificial neural networks (ANN) was successfully applied for correlating the gas-phase compositions and the BHTM. The predicted or simulated bottomhole temperatures (BHTANN), defined as output neurons or simulation targets, were statistically compared with measured temperatures (BHTM). The coefficients of the new geothermometers were obtained from an optimized self-adjusting training algorithm applied to approximately 2,080 ANN architectures with 15,000 simulation iterations each one. The self-adjusting training algorithm used the well-known Levenberg-Marquardt model, which was used to calculate: (i) the number of neurons of the hidden layer; (ii) the training factor and the training patterns of the ANN; (iii) the linear correlation coefficient, R; (iv) the synaptic weighting coefficients; and (v) the statistical parameter, Root Mean Squared Error (RMSE) to evaluate the prediction performance between the BHTM and the simulated BHTANN. The prediction performance of the new gas geothermometers together with those predictions inferred from sixteen well-known gas geothermometers (previously developed) was statistically evaluated by using an external database for avoiding a bias problem. Statistical evaluation was performed through the analysis of the lowest RMSE values computed among the predictions of all the gas geothermometers. The new gas geothermometers developed in this work have been successfully used for predicting subsurface temperatures in high-temperature geothermal systems of Mexico (e.g., Los Azufres, Mich., Los Humeros, Pue., and Cerro Prieto, B.C.) as well as in a blind geothermal system (known as Acoculco, Puebla). The last results of the gas geothermometers (inferred from gas-phase compositions of soil-gas bubble emissions) compare well with the temperature measured in two wells of the blind geothermal system of Acoculco, Puebla (México). Details of this new development are outlined in the present research work. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).

Keywords: artificial intelligence, gas geochemistry, geochemometrics, geothermal energy

Procedia PDF Downloads 354
4262 Detecting Black Hole Attacks in Body Sensor Networks

Authors: Sara Alshehri, Bayan Alenzi, Atheer Alshehri, Samia Chelloug, Zainab Almry, Hussah Albugmai

Abstract:

This paper concerns body area networks sensor that collect signals around a human body. The black hole attacks are the main security challenging problem because the data traffic can be dropped at any node. The focus of our proposed solution is to efficiently route data packets while detecting black hole nodes.

Keywords: body sensor networks, security, black hole, routing, broadcasting, OMNeT++

Procedia PDF Downloads 647
4261 Artificial Intelligence in Enterprise Information Systems: A Review

Authors: Danah S. Alabdulmohsin

Abstract:

Due to the fast growth of organizational data as well as the emergence of new technologies such as artificial intelligence (AI), organizations tend to utilize these new technologies in their enterprise information systems (EIS) either to overcome the issues they struggle with or to enhance their functions. The aim of this paper is to review the potential role of AI technologies in EIS, namely: enterprise resource planning systems (ERP), customer relation management systems (CRM), supply chain management systems (SCM), knowledge systems (KM), and human resources management systems (HRM). The paper provided the definitions of these systems as well as the definitions of AI technologies that have been used in EIS. In addition, the paper discussed the challenges that organizations might face while integrating AI with their information systems and explained why some organizations fail in achieving successful implementations of the integration.

Keywords: artificial intelligence, AI, enterprise information system, EIS, integration

Procedia PDF Downloads 97
4260 Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System

Authors: M. Hassani, Y. Hassani, N. Ajudanioskooei, N. N. Benvid

Abstract:

Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.

Keywords: artificial neural network, bending angle, fuzzy logic, laser forming

Procedia PDF Downloads 599
4259 Detecting and Secluding Route Modifiers by Neural Network Approach in Wireless Sensor Networks

Authors: C. N. Vanitha, M. Usha

Abstract:

In a real world scenario, the viability of the sensor networks has been proved by standardizing the technologies. Wireless sensor networks are vulnerable to both electronic and physical security breaches because of their deployment in remote, distributed, and inaccessible locations. The compromised sensor nodes send malicious data to the base station, and thus, the total network effectiveness will possibly be compromised. To detect and seclude the Route modifiers, a neural network based Pattern Learning predictor (PLP) is presented. This algorithm senses data at any node on present and previous patterns obtained from the en-route nodes. The eminence of any node is upgraded by their predicted and reported patterns. This paper propounds a solution not only to detect the route modifiers, but also to seclude the malevolent nodes from the network. The simulation result proves the effective performance of the network by the presented methodology in terms of energy level, routing and various network conditions.

Keywords: neural networks, pattern learning, security, wireless sensor networks

Procedia PDF Downloads 405
4258 Adequacy of Museums' Internet Resources to Infantile and Young Public

Authors: Myriam Ferreira

Abstract:

Websites and social networks allow museums to divulge their works by new and attractive means. Besides, these technologies provide tools to generate a new history of art’s contents and promote visits to their installations. At the same time, museums are proposing more and more activities to families, children and young people. However, these activities usually take place in the museum’s physical installations, while websites and social networks seem to be mainly targeted to adults. The problem is that being children and young people digital natives, they feel apart from museums, so they need a presence of museums in digital means to feel attracted to them. Some institutions are making efforts to fill this vacuum. In this paper, resources designed specifically for children and teenagers have been selected from websites and social networks of five Spanish Museums: Prado Museum, Thyssen Museum, Guggenheim Museum, America Museum and Cerralbo Museum. After that, we have carried out an investigation in a school with children and teenagers between 11 and 15 years old. Those young people have been asked about their valuation of those web pages and social networks, with quantitative-qualitative questions. The results show that the least rated resources were videos and social networks because they were considered ‘too serious’, while the most rated were games and augmented reality. These ratings confirm theoretical papers that affirm that the future of technologies applied to museums is edutainment and interaction.

Keywords: children, museums, social networks, teenagers, websites

Procedia PDF Downloads 153
4257 A Fast Community Detection Algorithm

Authors: Chung-Yuan Huang, Yu-Hsiang Fu, Chuen-Tsai Sun

Abstract:

Community detection represents an important data-mining tool for analyzing and understanding real-world complex network structures and functions. We believe that at least four criteria determine the appropriateness of a community detection algorithm: (a) it produces useable normalized mutual information (NMI) and modularity results for social networks, (b) it overcomes resolution limitation problems associated with synthetic networks, (c) it produces good NMI results and performance efficiency for Lancichinetti-Fortunato-Radicchi (LFR) benchmark networks, and (d) it produces good modularity and performance efficiency for large-scale real-world complex networks. To our knowledge, no existing community detection algorithm meets all four criteria. In this paper, we describe a simple hierarchical arc-merging (HAM) algorithm that uses network topologies and rule-based arc-merging strategies to identify community structures that satisfy the criteria. We used five well-studied social network datasets and eight sets of LFR benchmark networks to validate the ground-truth community correctness of HAM, eight large-scale real-world complex networks to measure its performance efficiency, and two synthetic networks to determine its susceptibility to resolution limitation problems. Our results indicate that the proposed HAM algorithm is capable of providing satisfactory performance efficiency and that HAM-identified communities were close to ground-truth communities in social and LFR benchmark networks while overcoming resolution limitation problems.

Keywords: complex network, social network, community detection, network hierarchy

Procedia PDF Downloads 229
4256 Analysis of Delivery of Quad Play Services

Authors: Rahul Malhotra, Anurag Sharma

Abstract:

Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice, and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.

Keywords: FTTH, quad play, play service, access networks, data rate

Procedia PDF Downloads 417
4255 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study

Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa

Abstract:

The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.

Keywords: angle of internal friction, cone penetrating test, general regression neural network, soil modulus of elasticity

Procedia PDF Downloads 416
4254 Study on the Efficient Routing Algorithms in Delay-Tolerant Networks

Authors: Si-Gwan Kim

Abstract:

In Delay Tolerant Networks (DTN), there may not exist an end-to-end path between source and destination at the time of message transmission. Employing ‘Store Carry and Forward’ delivery mechanism for message transmission in such networks usually incurs long message delays. In this paper, we present the modified Binary Spray and Wait (BSW) routing protocol that enhances the performance of the original one. Our proposed algorithm adjusts the number of forward messages depending on the number of neighbor nodes. By using beacon messages periodically, the number of neighbor nodes can be managed. The simulation using ONE simulator results shows that our modified version gives higher delivery ratio and less latency as compared to BSW.

Keywords: delay tolerant networks, store carry and forward, one simulator, binary spray and wait

Procedia PDF Downloads 125
4253 Attitude of University Students in the Use of Artificial Intelligence

Authors: Ricardo Merlo, María González, Zully Rivero, Laura González

Abstract:

This exploratory work was to know the perception of the use of artificial intelligence (AI) that university students have during their passage through the classroom. The significance of using AI in education, the degree of interest, knowledge acquisition, and how it would influence an interactive resource for acquiring skills were explored. Within this framework, a test with 30 items was designed and administered to 800 volunteer first-year university students of natural and exact sciences. Based on a randomized pilot test, it was validated with Cronbach's Alpha coefficient. Subsequently, the descriptive statistics of the sample used allowed us to observe the preponderance of the dimensions that constitute the attitude construct. Then, the factorial analysis by dimensions contributed to discern about the students' habits according to the knowledge acquired and the emotions put into play in the topics developed in the classroom.

Keywords: attitude, artificial intelligence, didactics, teaching

Procedia PDF Downloads 45
4252 Comparison of Classical Computer Vision vs. Convolutional Neural Networks Approaches for Weed Mapping in Aerial Images

Authors: Paulo Cesar Pereira Junior, Alexandre Monteiro, Rafael da Luz Ribeiro, Antonio Carlos Sobieranski, Aldo von Wangenheim

Abstract:

In this paper, we present a comparison between convolutional neural networks and classical computer vision approaches, for the specific precision agriculture problem of weed mapping on sugarcane fields aerial images. A systematic literature review was conducted to find which computer vision methods are being used on this specific problem. The most cited methods were implemented, as well as four models of convolutional neural networks. All implemented approaches were tested using the same dataset, and their results were quantitatively and qualitatively analyzed. The obtained results were compared to a human expert made ground truth for validation. The results indicate that the convolutional neural networks present better precision and generalize better than the classical models.

Keywords: convolutional neural networks, deep learning, digital image processing, precision agriculture, semantic segmentation, unmanned aerial vehicles

Procedia PDF Downloads 261
4251 Application of Artificial Neural Network for Single Horizontal Bare Tube and Bare Tube Bundles (Staggered) of Large Particles: Heat Transfer Prediction

Authors: G. Ravindranath, S. Savitha

Abstract:

This paper presents heat transfer analysis of single horizontal bare tube and heat transfer analysis of staggered arrangement of bare tube bundles bare tube bundles in gas-solid (air-solid) fluidized bed and predictions are done by using Artificial Neural Network (ANN) based on experimental data. Fluidized bed provide nearly isothermal environment with high heat transfer rate to submerged objects i.e. due to through mixing and large contact area between the gas and the particle, a fully fluidized bed has little temperature variation and gas leaves at a temperature which is close to that of the bed. Measurement of average heat transfer coefficient was made by local thermal simulation technique in a cold bubbling air-fluidized bed of size 0.305 m. x 0.305 m. Studies were conducted for single horizontal Bare Tube of length 305mm and 28.6mm outer diameter and for bare tube bundles of staggered arrangement using beds of large (average particle diameter greater than 1 mm) particle (raagi and mustard). Within the range of experimental conditions influence of bed particle diameter ( Dp), Fluidizing Velocity (U) were studied, which are significant parameters affecting heat transfer. Artificial Neural Networks (ANNs) have been receiving an increasing attention for simulating engineering systems due to some interesting characteristics such as learning capability, fault tolerance, and non-linearity. Here, feed-forward architecture and trained by back-propagation technique is adopted to predict heat transfer analysis found from experimental results. The ANN is designed to suit the present system which has 3 inputs and 2 out puts. The network predictions are found to be in very good agreement with the experimental observed values of bare heat transfer coefficient (hb) and nusselt number of bare tube (Nub).

Keywords: fluidized bed, large particles, particle diameter, ANN

Procedia PDF Downloads 366
4250 Urban Design via Estimation Model for Traffic Index of Cities Based on an Artificial Intelligence

Authors: Seyed Sobhan Alvani, Mohammad Gohari

Abstract:

By developing cities and increasing the population, traffic congestion has become a vital problem. Due to this crisis, urban designers try to present solutions to decrease this difficulty. On the other hand, predicting the model with perfect accuracy is essential for solution-providing. The current study presents a model based on artificial intelligence which can predict traffic index based on city population, growth rate, and area. The accuracy of the model was evaluated, which is acceptable and it is around 90%. Thus, urban designers and planners can employ it for predicting traffic index in the future to provide strategies.

Keywords: traffic index, population growth rate, cities wideness, artificial neural network

Procedia PDF Downloads 44
4249 Expanding Trading Strategies By Studying Sentiment Correlation With Data Mining Techniques

Authors: Ved Kulkarni, Karthik Kini

Abstract:

This experiment aims to understand how the media affects the power markets in the mainland United States and study the duration of reaction time between news updates and actual price movements. it have taken into account electric utility companies trading in the NYSE and excluded companies that are more politically involved and move with higher sensitivity to Politics. The scrapper checks for any news related to keywords, which are predefined and stored for each specific company. Based on this, the classifier will allocate the effect into five categories: positive, negative, highly optimistic, highly negative, or neutral. The effect on the respective price movement will be studied to understand the response time. Based on the response time observed, neural networks would be trained to understand and react to changing market conditions, achieving the best strategy in every market. The stock trader would be day trading in the first phase and making option strategy predictions based on the black holes model. The expected result is to create an AI-based system that adjusts trading strategies within the market response time to each price movement.

Keywords: data mining, language processing, artificial neural networks, sentiment analysis

Procedia PDF Downloads 20
4248 Three Issues for Integrating Artificial Intelligence into Legal Reasoning

Authors: Fausto Morais

Abstract:

Artificial intelligence has been widely used in law. Programs are able to classify suits, to identify decision-making patterns, to predict outcomes, and to formalize legal arguments as well. In Brazil, the artificial intelligence victor has been classifying cases to supreme court’s standards. When those programs act doing those tasks, they simulate some kind of legal decision and legal arguments, raising doubts about how artificial intelligence can be integrated into legal reasoning. Taking this into account, the following three issues are identified; the problem of hypernormatization, the argument of legal anthropocentrism, and the artificial legal principles. Hypernormatization can be seen in the Brazilian legal context in the Supreme Court’s usage of the Victor program. This program generated efficiency and consistency. On the other hand, there is a feasible risk of over standardizing factual and normative legal features. Then legal clerks and programmers should work together to develop an adequate way to model legal language into computational code. If this is possible, intelligent programs may enact legal decisions in easy cases automatically cases, and, in this picture, the legal anthropocentrism argument takes place. Such an argument argues that just humans beings should enact legal decisions. This is so because human beings have a conscience, free will, and self unity. In spite of that, it is possible to argue against the anthropocentrism argument and to show how intelligent programs may work overcoming human beings' problems like misleading cognition, emotions, and lack of memory. In this way, intelligent machines could be able to pass legal decisions automatically by classification, as Victor in Brazil does, because they are binding by legal patterns and should not deviate from them. Notwithstanding, artificial intelligent programs can be helpful beyond easy cases. In hard cases, they are able to identify legal standards and legal arguments by using machine learning. For that, a dataset of legal decisions regarding a particular matter must be available, which is a reality in Brazilian Judiciary. Doing such procedure, artificial intelligent programs can support a human decision in hard cases, providing legal standards and arguments based on empirical evidence. Those legal features claim an argumentative weight in legal reasoning and should serve as references for judges when they must decide to maintain or overcome a legal standard.

Keywords: artificial intelligence, artificial legal principles, hypernormatization, legal anthropocentrism argument, legal reasoning

Procedia PDF Downloads 147