Search results for: TCP (Tool Center Point)
10919 Nadler's Fixed Point Theorem on Partial Metric Spaces and its Application to a Homotopy Result
Authors: Hemant Kumar Pathak
Abstract:
In 1994, Matthews (S.G. Matthews, Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci., vol. 728, 1994, pp. 183-197) introduced the concept of a partial metric as a part of the study of denotational semantics of data flow networks. He gave a modified version of the Banach contraction principle, more suitable in this context. In fact, (complete) partial metric spaces constitute a suitable framework to model several distinguished examples of the theory of computation and also to model metric spaces via domain theory. In this paper, we introduce the concept of almost partial Hausdorff metric. We prove a fixed point theorem for multi-valued mappings on partial metric space using the concept of almost partial Hausdorff metric and prove an analogous to the well-known Nadler’s fixed point theorem. In the sequel, we derive a homotopy result as an application of our main result.Keywords: fixed point, partial metric space, homotopy, physical sciences
Procedia PDF Downloads 43610918 Experimental Study and Neural Network Modeling in Prediction of Surface Roughness on Dry Turning Using Two Different Cutting Tool Nose Radii
Authors: Deba Kumar Sarma, Sanjib Kr. Rajbongshi
Abstract:
Surface finish is an important product quality in machining. At first, experiments were carried out to investigate the effect of the cutting tool nose radius (considering 1mm and 0.65mm) in prediction of surface finish with process parameters of cutting speed, feed and depth of cut. For all possible cutting conditions, full factorial design was considered as two levels four parameters. Commercial Mild Steel bar and High Speed Steel (HSS) material were considered as work-piece and cutting tool material respectively. In order to obtain functional relationship between process parameters and surface roughness, neural network was used which was found to be capable for the prediction of surface roughness within a reasonable degree of accuracy. It was observed that tool nose radius of 1mm provides better surface finish in comparison to 0.65 mm. Also, it was observed that feed rate has a significant influence on surface finish.Keywords: full factorial design, neural network, nose radius, surface finish
Procedia PDF Downloads 36410917 Tuberculosis Massive Active Case Discovery in East Jakarta 2016-2017: The Role of Ketuk Pintu Layani Dengan Hati and Juru Pemantau Batuk (Jumantuk) Cadre Programs
Authors: Ngabilas Salama
Abstract:
Background: Indonesia has the 2nd highest number of incidents of tuberculosis (TB). It accounts for 1.020.000 new cases per year, only 30% of which has been reported. To find the lost 70%, a massive active case discovery was conducted through two programs: Ketuk Pintu Layani Dengan Hati (KPLDH) and Kader Juru Pemantau Batuk (Jumantuk cadres), who also plays a role in child TB screening. Methods: Data was collected and analyzed through Tuberculosis Integrated Online System from 2014 to 2017 involving 129 DOTS facility with 86 primary health centers in East Jakarta. Results: East Jakarta consists of 2.900.722 people. KPLDH program started in February 2016 consisting of 84 teams (310 people). Jumantuk cadres was formed 4 months later (218 orang). The number of new TB cases in East Jakarta (primary health center) from 2014 to June 2017 respectively is as follows: 6.499 (2.637), 7.438 (2.651), 8.948 (3.211), 5.701 (1.830). Meanwhile, the percentage of child TB case discovery in primary health center was 8,5%, 9,8%, 12,1% from 2014 to 2016 respectively. In 2017, child TB case discovery was 13,1% for the first 3 months and 16,5% for the next 3 months. Discussion: Increased TB incidence rate from 2014 to 2017 was 14,4%, 20,3%, and 27,4% respectively in East Jakarta, and 0,5%, 21,1%, and 14% in primary health center. This reveals the positive role of KPLDH and Jumantuk in TB detection and reporting. Likewise, these programs were responsible for the increase in child TB case discovery, especially in the first 3 months of 2017 (Ketuk Pintu TB Day program) and the next 3 months (active TB screening). Conclusion: KPLDH dan Jumantuk are actively involved in increasing TB case discovery in both adults and children.Keywords: tuberculosis, case discovery program, primary health center, cadre
Procedia PDF Downloads 32910916 Tool for Maxillary Sinus Quantification in Computed Tomography Exams
Authors: Guilherme Giacomini, Ana Luiza Menegatti Pavan, Allan Felipe Fattori Alves, Marcela de Oliveira, Fernando Antonio Bacchim Neto, José Ricardo de Arruda Miranda, Seizo Yamashita, Diana Rodrigues de Pina
Abstract:
The maxillary sinus (MS), part of the paranasal sinus complex, is one of the most enigmatic structures in modern humans. The literature has suggested that MSs function as olfaction accessories, to heat or humidify inspired air, for thermoregulation, to impart resonance to the voice and others. Thus, the real function of the MS is still uncertain. Furthermore, the MS anatomy is complex and varies from person to person. Many diseases may affect the development process of sinuses. The incidence of rhinosinusitis and other pathoses in the MS is comparatively high, so, volume analysis has clinical value. Providing volume values for MS could be helpful in evaluating the presence of any abnormality and could be used for treatment planning and evaluation of the outcome. The computed tomography (CT) has allowed a more exact assessment of this structure, which enables a quantitative analysis. However, this is not always possible in the clinical routine, and if possible, it involves much effort and/or time. Therefore, it is necessary to have a convenient, robust, and practical tool correlated with the MS volume, allowing clinical applicability. Nowadays, the available methods for MS segmentation are manual or semi-automatic. Additionally, manual methods present inter and intraindividual variability. Thus, the aim of this study was to develop an automatic tool to quantity the MS volume in CT scans of paranasal sinuses. This study was developed with ethical approval from the authors’ institutions and national review panels. The research involved 30 retrospective exams of University Hospital, Botucatu Medical School, São Paulo State University, Brazil. The tool for automatic MS quantification, developed in Matlab®, uses a hybrid method, combining different image processing techniques. For MS detection, the algorithm uses a Support Vector Machine (SVM), by features such as pixel value, spatial distribution, shape and others. The detected pixels are used as seed point for a region growing (RG) segmentation. Then, morphological operators are applied to reduce false-positive pixels, improving the segmentation accuracy. These steps are applied in all slices of CT exam, obtaining the MS volume. To evaluate the accuracy of the developed tool, the automatic method was compared with manual segmentation realized by an experienced radiologist. For comparison, we used Bland-Altman statistics, linear regression, and Jaccard similarity coefficient. From the statistical analyses for the comparison between both methods, the linear regression showed a strong association and low dispersion between variables. The Bland–Altman analyses showed no significant differences between the analyzed methods. The Jaccard similarity coefficient was > 0.90 in all exams. In conclusion, the developed tool to quantify MS volume proved to be robust, fast, and efficient, when compared with manual segmentation. Furthermore, it avoids the intra and inter-observer variations caused by manual and semi-automatic methods. As future work, the tool will be applied in clinical practice. Thus, it may be useful in the diagnosis and treatment determination of MS diseases. Providing volume values for MS could be helpful in evaluating the presence of any abnormality and could be used for treatment planning and evaluation of the outcome. The computed tomography (CT) has allowed a more exact assessment of this structure which enables a quantitative analysis. However, this is not always possible in the clinical routine, and if possible, it involves much effort and/or time. Therefore, it is necessary to have a convenient, robust and practical tool correlated with the MS volume, allowing clinical applicability. Nowadays, the available methods for MS segmentation are manual or semi-automatic. Additionally, manual methods present inter and intraindividual variability. Thus, the aim of this study was to develop an automatic tool to quantity the MS volume in CT scans of paranasal sinuses. This study was developed with ethical approval from the authors’ institutions and national review panels. The research involved 30 retrospective exams of University Hospital, Botucatu Medical School, São Paulo State University, Brazil. The tool for automatic MS quantification, developed in Matlab®, uses a hybrid method, combining different image processing techniques. For MS detection, the algorithm uses a Support Vector Machine (SVM), by features such as pixel value, spatial distribution, shape and others. The detected pixels are used as seed point for a region growing (RG) segmentation. Then, morphological operators are applied to reduce false-positive pixels, improving the segmentation accuracy. These steps are applied in all slices of CT exam, obtaining the MS volume. To evaluate the accuracy of the developed tool, the automatic method was compared with manual segmentation realized by an experienced radiologist. For comparison, we used Bland-Altman statistics, linear regression and Jaccard similarity coefficient. From the statistical analyses for the comparison between both methods, the linear regression showed a strong association and low dispersion between variables. The Bland–Altman analyses showed no significant differences between the analyzed methods. The Jaccard similarity coefficient was > 0.90 in all exams. In conclusion, the developed tool to automatically quantify MS volume proved to be robust, fast and efficient, when compared with manual segmentation. Furthermore, it avoids the intra and inter-observer variations caused by manual and semi-automatic methods. As future work, the tool will be applied in clinical practice. Thus, it may be useful in the diagnosis and treatment determination of MS diseases.Keywords: maxillary sinus, support vector machine, region growing, volume quantification
Procedia PDF Downloads 50310915 High-Tech Based Simulation and Analysis of Maximum Power Point in Energy System: A Case Study Using IT Based Software Involving Regression Analysis
Authors: Enemeri George Uweiyohowo
Abstract:
Improved achievement with respect to output control of photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident to its low carbon emission and efficiency. Power failure or outage from commercial providers, in general, does not promote development to public and private sector, these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost-effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with MPPT from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0∘N, with a corresponding tilt angle of 36∘, 26∘ and 16∘. Preliminary results include regression analysis (normal probability plot) showing the maximum power point in the system as well the best tilt angle for maximum power point tracking.Keywords: poly-crystalline PV panels, information technology (IT), maximum power point tracking (MPPT), pulse width modulation (PWM)
Procedia PDF Downloads 21010914 The Evaluation for Interfacial Adhesion between SOFC and Metal Adhesive in the High Temperature Environment
Authors: Sang Koo Jeon, Seung Hoon Nahm, Oh Heon Kwon
Abstract:
The unit cell of solid oxide fuel cell (SOFC) must be stacked as several layers type to obtain the high power. The most of researcher have concerned about the performance of stacked SOFC rather than the structural stability of stacked SOFC and especially interested how to design for reducing the electrical loss and improving the high efficiency. Consequently, the stacked SOFC able to produce the electrical high power and related parts like as manifold, gas seal, bipolar plate were developed to optimize the stack design. However, the unit cell of SOFC was just layered on the interconnector without the adhesion and the hydrogen and oxygen were injected to the interfacial layer in the high temperature. On the operating condition, the interfacial layer can be the one of the weak point in the stacked SOFC. Therefore the evaluation of the structural safety for the failure is essentially needed. In this study, interfacial adhesion between SOFC and metal adhesive was estimated in the high temperature environment. The metal adhesive was used to strongly connect the unit cell of SOFC with interconnector and provide the electrical conductivity between them. The four point bending test was performed to measure the interfacial adhesion. The unit cell of SOFC and SiO2 wafer were diced and then attached by metal adhesive. The SiO2 wafer had the center notch to initiate a crack from the tip of the notch. The modified stereomicroscope combined with the CCD camera and system for measuring the length was used to observe the fracture behavior. Additionally, the interfacial adhesion was evaluated in the high temperature condition because the metal adhesive was affected by high temperature. Also the specimen was exposed in the furnace during several hours and then the interfacial adhesion was evaluated. Finally, the interfacial adhesion energy was quantitatively determined and compared in the each condition.Keywords: solid oxide fuel cell (SOFC), metal adhesive, adhesion, high temperature
Procedia PDF Downloads 51910913 Service Quality and Consumer Behavior on Metered Taxi Services
Authors: Nattapong Techarattanased
Abstract:
The purposes of this research are to make comparisons in respect of the behaviors on the use of the services of metered taxi classified by the demographic factor and to study the influence of the recognition on service quality having the effect on usage behaviors of metered taxi services of consumers in Bangkok Metropolitan Areas. The samples used in this research are 400 metered taxi service users in Bangkok Metropolitan Areas and use a questionnaire as the tool for collecting the data. Analysis statistics is mean and multiple regression analysis. Results of the research revealed that the consumers recognize the overall quality of services in each aspect include tangible aspects of the service, responses to customers, assurance on the confidence, understanding and knowing of customers which is rated at the moderate level except the aspect of the assurance on the confidence and trustworthiness which are rated at a high level. For the result of a hypothetical test, it is found that the quality in providing the services on the aspect of the assurance given to the customers has the effect on the usage behaviors of metered taxi services and the aspect of the frequency on the use of the services per month which in this connection. Such variable can forecast at one point nine percent (1.9%). In addition, quality in providing the services and the aspect of the responses to customers have the effect on the behaviors on the use of metered taxi services on the aspect of the expenses on the use of services per month which in this connection, such variable can forecast at two point one percent (2.1%).Keywords: consumer behavior, metered taxi service, satisfaction, service quality
Procedia PDF Downloads 22210912 Enhancing Single Channel Minimum Quantity Lubrication through Bypass Controlled Design for Deep Hole Drilling with Small Diameter Tool
Authors: Yongrong Li, Ralf Domroes
Abstract:
Due to significant energy savings, enablement of higher machining speed as well as environmentally friendly features, Minimum Quantity Lubrication (MQL) has been used for many machining processes efficiently. However, in the deep hole drilling field (small tool diameter D < 5 mm) and long tool (length L > 25xD) it is always a bottle neck for a single channel MQL system. The single channel MQL, based on the Venturi principle, faces a lack of enough oil quantity caused by dropped pressure difference during the deep hole drilling process. In this paper, a system concept based on a bypass design has explored its possibility to dynamically reach the required pressure difference between the air inlet and the inside of aerosol generator, so that the deep hole drilling demanded volume of oil can be generated and delivered to tool tips. The system concept has been investigated in static and dynamic laboratory testing. In the static test, the oil volume with and without bypass control were measured. This shows an oil quantity increasing potential up to 1000%. A spray pattern test has demonstrated the differences of aerosol particle size, aerosol distribution and reaction time between single channel and bypass controlled single channel MQL systems. A dynamic trial machining test of deep hole drilling (drill tool D=4.5mm, L= 40xD) has been carried out with the proposed system on a difficult machining material AlSi7Mg. The tool wear along a 100 meter drilling was tracked and analyzed. The result shows that the single channel MQL with a bypass control can overcome the limitation and enhance deep hole drilling with a small tool. The optimized combination of inlet air pressure and bypass control results in a high quality oil delivery to tool tips with a uniform and continuous aerosol flow.Keywords: deep hole drilling, green production, Minimum Quantity Lubrication (MQL), near dry machining
Procedia PDF Downloads 20210911 New Fourth Order Explicit Group Method in the Solution of the Helmholtz Equation
Authors: Norhashidah Hj Mohd Ali, Teng Wai Ping
Abstract:
In this paper, the formulation of a new group explicit method with a fourth order accuracy is described in solving the two-dimensional Helmholtz equation. The formulation is based on the nine-point fourth-order compact finite difference approximation formula. The complexity analysis of the developed scheme is also presented. Several numerical experiments were conducted to test the feasibility of the developed scheme. Comparisons with other existing schemes will be reported and discussed. Preliminary results indicate that this method is a viable alternative high accuracy solver to the Helmholtz equation.Keywords: explicit group method, finite difference, Helmholtz equation, five-point formula, nine-point formula
Procedia PDF Downloads 49710910 Concentric Circle Detection based on Edge Pre-Classification and Extended RANSAC
Authors: Zhongjie Yu, Hancheng Yu
Abstract:
In this paper, we propose an effective method to detect concentric circles with imperfect edges. First, the gradient of edge pixel is coded and a 2-D lookup table is built to speed up normal generation. Then we take an accumulator to estimate the rough center and collect plausible edges of concentric circles through gradient and distance. Later, we take the contour-based method, which takes the contour and edge intersection, to pre-classify the edges. Finally, we use the extended RANSAC method to find all the candidate circles. The center of concentric circles is determined by the two circles with the highest concentricity. Experimental results demonstrate that the proposed method has both good performance and accuracy for the detection of concentric circles.Keywords: concentric circle detection, gradient, contour, edge pre-classification, RANSAC
Procedia PDF Downloads 12810909 Evaluation of the Elastic Mechanical Properties of a Hybrid Adhesive Material
Authors: Moudar H. A. Zgoul, Amin Al Zamer
Abstract:
Adhesive materials and adhesion have been the focal point of multiple research works related to numerous applications, particularly, aerospace, and aviation industries. To enhance the properties of conventional adhesive materials, additives have been introduced to the mix in order to enhance their mechanical and physical properties by creating a hybrid adhesive material. The evaluation of the mechanical properties of such hybrid adhesive materials is thus of an essential requirement for the purpose of properly modeling their behavior accurately. This paper presents an approach/tool to simulate the behavior such hybrid adhesives in a way that will allow researchers to better understand their behavior while in service.Keywords: adhesive materials, analysis, hybrid adhesives, mechanical properties, simulation
Procedia PDF Downloads 41710908 Experimental Investigation on Over-Cut in Ultrasonic Machining of WC-Co Composite
Authors: Ravinder Kataria, Jatinder Kumar, B. S. Pabla
Abstract:
Ultrasonic machining is one of the most widely used non-traditional machining processes for machining of materials that are relatively brittle, hard, and fragile such as advanced ceramics, refractories, crystals, quartz etc. Present article has been targeted at investigating the impact of different experimental conditions (power rating, cobalt content, tool material, thickness of work piece, tool geometry, and abrasive grit size) on over cut in ultrasonic drilling of WC-Co composite material. Taguchi’s L-36 orthogonal array has been employed for conducting the experiments. Significant factors have been identified using analysis of variance (ANOVA) test. The experimental results revealed that abrasive grit size and tool material are most significant factors for over cut.Keywords: ANOVA, abrasive grit size, Taguchi, WC-Co, ultrasonic machining
Procedia PDF Downloads 39710907 Comet Assay: A Promising Tool for the Risk Assessment and Clinical Management of Head and Neck Tumors
Authors: Sarim Ahmad
Abstract:
The Single Cell Gel Electrophoresis Assay (SCGE, known as comet assay) is a potential, uncomplicated, sensitive and state-of-the-art technique for quantitating DNA damage at individual cell level and repair from in vivo and in vitro samples of eukaryotic cells and some prokaryotic cells, being popular in its widespread use in various areas including human biomonitoring, genotoxicology, ecological monitoring and as a tool for research into DNA damage or repair in different cell types in response to a range of DNA damaging agents, cancer risk and therapy. The method involves the encapsulation of cells in a low-melting-point agarose suspension, lysis of the cells in neutral or alkaline (pH > 13) conditions, and electrophoresis of the suspended lysed cells, resulting in structures resembling comets as observed by fluorescence microscopy; the intensity of the comet tail relative to the head reflects the number of DNA breaks. The likely basis for this is that loops containing a break lose their supercoiling and become free to extend towards the anode. This is followed by visual analysis with staining of DNA and calculating fluorescence to determine the extent of DNA damage. This can be performed by manual scoring or automatically by imaging software. The assay can, therefore, predict an individual’s tumor sensitivity to radiation and various chemotherapeutic drugs and further assess the oxidative stress within tumors and to detect the extent of DNA damage in various cancerous and precancerous lesions of oral cavity.Keywords: comet assay, single cell gel electrophoresis, DNA damage, early detection test
Procedia PDF Downloads 29110906 The Interaction and Relations Between Civil and Military Logistics
Authors: Cumhur Cansever, Selcuk Er
Abstract:
There is an increasing cooperation and interaction between the military logistic systems and civil organizations operating in today's market. While the scope and functions of civilian logistics have different characteristics, military logistics tries to import some applications that are conducted by private sectors successfully. Also, at this point, the determination of the optimal point of integration and interaction between civilian and military logistics has emerged as a key issue. In this study, the mutual effects between military and civilian logistics and their most common integration areas, (Supply Chain Management (SCM), Integrated Logistics Support (ILS) and Outsourcing) will be examined with risk analysis and determination of basic skills evaluation methods for determining the optimum point in the integration.Keywords: core competency, integrated logistics support, outsourcing, supply chain management
Procedia PDF Downloads 52410905 3D Model Completion Based on Similarity Search with Slim-Tree
Authors: Alexis Aldo Mendoza Villarroel, Ademir Clemente Villena Zevallos, Cristian Jose Lopez Del Alamo
Abstract:
With the advancement of technology it is now possible to scan entire objects and obtain their digital representation by using point clouds or polygon meshes. However, some objects may be broken or have missing parts; thus, several methods focused on this problem have been proposed based on Geometric Deep Learning, such as GCNN, ACNN, PointNet, among others. In this article an approach from a different paradigm is proposed, using metric data structures to index global descriptors in the spectral domain and allow the recovery of a set of similar models in polynomial time; to later use the Iterative Close Point algorithm and recover the parts of the incomplete model using the geometry and topology of the model with less Hausdorff distance.Keywords: 3D reconstruction method, point cloud completion, shape completion, similarity search
Procedia PDF Downloads 11810904 A Tool for Assessing Performance and Structural Quality of Business Process
Authors: Mariem Kchaou, Wiem Khlif, Faiez Gargouri
Abstract:
Modeling business processes is an essential task when evaluating, improving, or documenting existing business processes. To be efficient in such tasks, a business process model (BPM) must have high structural quality and high performance. Evidently, evaluating the performance of a business process model is a necessary step to reduce time, cost, while assessing the structural quality aims to improve the understandability and the modifiability of the BPMN model. To achieve these objectives, a set of structural and performance measures have been proposed. Since the diversity of measures, we propose a framework that integrates both structural and performance aspects for classifying them. Our measure classification is based on business process model perspectives (e.g., informational, functional, organizational, behavioral, and temporal), and the elements (activity, event, actor, etc.) involved in computing the measures. Then, we implement this framework in a tool assisting the structural quality and the performance of a business process. The tool helps the designers to select an appropriate subset of measures associated with the corresponding perspective and to calculate and interpret their values in order to improve the structural quality and the performance of the model.Keywords: performance, structural quality, perspectives, tool, classification framework, measures
Procedia PDF Downloads 15210903 Sport-Related Hand and Wrist Injuries Treatment
Authors: Sergei Kosarev
Abstract:
Wrong treatment tactics for hand and wrist sport-related injuries can lead to the inability to play sports in the future. It is especially important for professional athletes. The members of the Russian Olympic Team are treated in our hospital -Federal Clinical Research Center (Moscow). For their treatment, we use minimally invasive methods such as wrist arthroscopy and also orthobiologics procedures. In 2022 we had cases with scaphoid fracture and TFCC injuries. In all the cases, we were using the arthroscopy technic for treatment. The scaphoid fracture was fixed by K-wires with free bone grafting. For TFCC injures we used transossal sutures. Rehabilitation started the next day after surgery. Rehabilitation included hand therapy and physiotherapy. All athletes returned to the sport after 8-12 weeks after surgery. One of them had pain in the wrist after 12 weeks after surgery, not more than 4 point VAS. Pain syndrome was blocked after 2 PRP injections in the ulnar side of the wrist.Keywords: sport trauma, wrist arthroscopy, wrist pain, scaphoid fracture
Procedia PDF Downloads 9610902 Tool Condition Monitoring of Ceramic Inserted Tools in High Speed Machining through Image Processing
Authors: Javier A. Dominguez Caballero, Graeme A. Manson, Matthew B. Marshall
Abstract:
Cutting tools with ceramic inserts are often used in the process of machining many types of superalloy, mainly due to their high strength and thermal resistance. Nevertheless, during the cutting process, the plastic flow wear generated in these inserts enhances and propagates cracks due to high temperature and high mechanical stress. This leads to a very variable failure of the cutting tool. This article explores the relationship between the continuous wear that ceramic SiAlON (solid solutions based on the Si3N4 structure) inserts experience during a high-speed machining process and the evolution of sparks created during the same process. These sparks were analysed through pictures of the cutting process recorded using an SLR camera. Features relating to the intensity and area of the cutting sparks were extracted from the individual pictures using image processing techniques. These features were then related to the ceramic insert’s crater wear area.Keywords: ceramic cutting tools, high speed machining, image processing, tool condition monitoring, tool wear
Procedia PDF Downloads 29310901 A Model of Condensation and Solidification of Metallurgical Vapor in a Supersonic Nozzle
Authors: Thien X. Dinh, Peter Witt
Abstract:
A one-dimensional model for the simulation of condensation and solidification of a metallurgical vapor in the mixture of gas during supersonic expansion is presented. In the model, condensation is based on critical nucleation and drop-growth theory. When the temperature falls below the supercooling point, all the formed liquid droplets in the condensation phase are assumed to solidify at an infinite rate. The model was verified with a Computational Fluid Dynamics simulation of magnesium vapor condensation and solidification. The obtained results are in reasonable agreement with CFD data. Therefore, the model is a promising, efficient tool for use in the design process for supersonic nozzles applied in mineral processes since it is faster than the CFD counterpart by an order of magnitude.Keywords: condensation, metallurgical flow, solidification, supersonic expansion
Procedia PDF Downloads 5810900 Electronic Equipment Failure due to Corrosion
Authors: Yousaf Tariq
Abstract:
There are many reasons which are involved in electronic equipment failure i.e. temperature, humidity, dust, smoke etc. Corrosive gases are also one of the factor which may involve in failure of equipment. Sensitivity of electronic equipment increased when “lead-free” regulation enforced on manufacturers. In data center, equipment like hard disk, servers, printed circuit boards etc. have been exposed to gaseous contamination due to increase in sensitivity. There is a worldwide standard to protect electronic industrial electronic from corrosive gases. It is well known as “ANSI/ISA S71.04 – 1985 - Environmental Conditions for Control Systems: Airborne Contaminants. ASHRAE Technical Committee (TC) 9.9 members also recommended ISA standard in their whitepaper on Gaseous and Particulate Contamination Guideline for data centers. TC 9.9 members represented some of the major IT equipment manufacturers e.g. IBM, HP, Cisco etc. As per standard practices, first step is to monitor air quality in data center. If contamination level shows more than G1, it means that gas-phase air filtration is required other than dust/smoke air filtration. It is important that outside fresh air entering in data center should have pressurization/re-circulated process in order to absorb corrosive gases and to maintain level within specified limit. It is also important that air quality monitoring should be conducted once in a year. Temperature and humidity should also be monitored as per standard practices to maintain level within specified limit.Keywords: corrosive gases, corrosion, electronic equipment failure, ASHRAE, hard disk
Procedia PDF Downloads 32410899 Friction Stir Welding Process as a Solid State Joining -A Review
Authors: Mohd Anees Siddiqui, S. A. H. Jafri, Shahnawaz Alam
Abstract:
Through this paper an attempt is made to review a special welding technology of friction stir welding (FSW) which is a solid-state joining. Friction stir welding is used for joining of two plates which are applied compressive force by using fixtures over the work table. This is a non consumable type welding technique in which a rotating tool of cylindrical shape is used. Process parameters such as tool geometry, joint design and process speed are discussed in the paper. Comparative study of Friction stir welding with other welding techniques such as MIG, TIG & GMAW is also done. Some light is put on several major applications of friction stir welding in different industries. Quality and environmental aspects of friction stir welding is also discussed.Keywords: friction stir welding (FSW), process parameters, tool, solid state joining processes
Procedia PDF Downloads 49910898 Technical, Environmental and Financial Assessment for Optimal Sizing of Run-of-River Small Hydropower Project: Case Study in Colombia
Authors: David Calderon Villegas, Thomas Kaltizky
Abstract:
Run-of-river (RoR) hydropower projects represent a viable, clean, and cost-effective alternative to dam-based plants and provide decentralized power production. However, RoR schemes cost-effectiveness depends on the proper selection of site and design flow, which is a challenging task because it requires multivariate analysis. In this respect, this study presents the development of an investment decision support tool for assessing the optimal size of an RoR scheme considering the technical, environmental, and cost constraints. The net present value (NPV) from a project perspective is used as an objective function for supporting the investment decision. The tool has been tested by applying it to an actual RoR project recently proposed in Colombia. The obtained results show that the optimum point in financial terms does not match the flow that maximizes energy generation from exploiting the river's available flow. For the case study, the flow that maximizes energy corresponds to a value of 5.1 m3/s. In comparison, an amount of 2.1 m3/s maximizes the investors NPV. Finally, a sensitivity analysis is performed to determine the NPV as a function of the debt rate changes and the electricity prices and the CapEx. Even for the worst-case scenario, the optimal size represents a positive business case with an NPV of 2.2 USD million and an IRR 1.5 times higher than the discount rate.Keywords: small hydropower, renewable energy, RoR schemes, optimal sizing, objective function
Procedia PDF Downloads 13110897 Investigation of the Possibility of Using Carbon Onion Nanolubrication with DLC Cutting Tool to Reduce the Machining Power Consumption
Authors: Ahmed A. D. Sarhan, M. Sayuti, M. Hamdi
Abstract:
Due to rapid consumption of world's fossil fuel resources and impracticality of large-scale application and production of renewable energy, the significance of energy efficiency improvement of current available energy modes has been widely realized by both industry and academia. In the CNC machining field, the key solution for this issue is by increasing the effectiveness of the existing lubrication systems as it could reduce the power required to overcome the friction component in machining process. For more improvement, introducing the nanolubrication could produce much less power consumption as the rolling action of billions units of nanoparticle in the tool chip interface could reduce the cutting forces significantly. In this research, the possibility of using carbon onion nanolubrication with DLC cutting tool is investigated to reduce the machining power consumption. Carbon onion nanolubrication has been successfully developed with high tribology performance and mixed with ordinary mineral oil. The proper sonification method is used to provide a way to mix and suspend the particles thoroughly and efficiently. Furthermore, Diamond-Like Carbon (DLC) cutting tool is used and expected to play significant role in reducing friction and cutting forces and increasing abrasion resistance. The results showed significant reduction of the cutting force and the working power compared with the other conditions of using carbon black and normal lubrication systems.Keywords: carbon onion, nanolubrication, machining power consumption, DLC cutting tool
Procedia PDF Downloads 42910896 35 MHz Coherent Plane Wave Compounding High Frequency Ultrasound Imaging
Authors: Chih-Chung Huang, Po-Hsun Peng
Abstract:
Ultrasound transient elastography has become a valuable tool for many clinical diagnoses, such as liver diseases and breast cancer. The pathological tissue can be distinguished by elastography due to its stiffness is different from surrounding normal tissues. An ultrafast frame rate of ultrasound imaging is needed for transient elastography modality. The elastography obtained in the ultrafast system suffers from a low quality for resolution, and affects the robustness of the transient elastography. In order to overcome these problems, a coherent plane wave compounding technique has been proposed for conventional ultrasound system which the operating frequency is around 3-15 MHz. The purpose of this study is to develop a novel beamforming technique for high frequency ultrasound coherent plane-wave compounding imaging and the simulated results will provide the standards for hardware developments. Plane-wave compounding imaging produces a series of low-resolution images, which fires whole elements of an array transducer in one shot with different inclination angles and receives the echoes by conventional beamforming, and compounds them coherently. Simulations of plane-wave compounding image and focused transmit image were performed using Field II. All images were produced by point spread functions (PSFs) and cyst phantoms with a 64-element linear array working at 35MHz center frequency, 55% bandwidth, and pitch of 0.05 mm. The F number is 1.55 in all the simulations. The simulated results of PSFs and cyst phantom which were obtained using single, 17, 43 angles plane wave transmission (angle of each plane wave is separated by 0.75 degree), and focused transmission. The resolution and contrast of image were improved with the number of angles of firing plane wave. The lateral resolutions for different methods were measured by -10 dB lateral beam width. Comparison of the plane-wave compounding image and focused transmit image, both images exhibited the same lateral resolution of 70 um as 37 angles were performed. The lateral resolution can reach 55 um as the plane-wave was compounded 47 angles. All the results show the potential of using high-frequency plane-wave compound imaging for realizing the elastic properties of the microstructure tissue, such as eye, skin and vessel walls in the future.Keywords: plane wave imaging, high frequency ultrasound, elastography, beamforming
Procedia PDF Downloads 53610895 Speed up Vector Median Filtering by Quasi Euclidean Norm
Authors: Vinai K. Singh
Abstract:
For reducing impulsive noise without degrading image contours, median filtering is a powerful tool. In multiband images as for example colour images or vector fields obtained by optic flow computation, a vector median filter can be used. Vector median filters are defined on the basis of a suitable distance, the best performing distance being the Euclidean. Euclidean distance is evaluated by using the Euclidean norms which is quite demanding from the point of view of computation given that a square root is required. In this paper an optimal piece-wise linear approximation of the Euclidean norm is presented which is applied to vector median filtering.Keywords: euclidean norm, quasi euclidean norm, vector median filtering, applied mathematics
Procedia PDF Downloads 47010894 Advance Hybrid Manufacturing Supply Chain System to Get Benefits of Push and Pull Systems
Authors: Akhtar Nawaz, Sahar Noor, Iftikhar Hussain
Abstract:
This paper considers advanced hybrid manufacturing planning both push and pull system in which each customer order has a due date by demand forecast and customer orders. We present a tool for model for tool development that requires an absolute due dates and customer orders in a manufacturing supply chain. It is vital for the manufacturing companies to face the problem of variations in demands, increase in varieties by maintaining safety stock and to minimize components obsolescence and uselessness. High inventory cost and low delivery lead time is expected in push type of system and on contrary high delivery lead time and low inventory cost is predicted in the pull type. For this tool for model we need an MRP system for the push and pull environment and control of inventories in push parts and lead time in the pull part. To retain process data quickly, completely and to improve responsiveness and minimize inventory cost, a tool is required to deal with the high product variance and short cycle parts. In practice, planning and scheduling are interrelated and should be solved simultaneously with supply chain to ensure that the due dates of customer orders are met. The proposed tool for model considers alternative process plans for job types, with precedence constraints for job operations. Such a tool for model has not been treated in the literature. To solve the model, tool was developed, so a new technique was required to deal with the issue of high product variance and short life cycles in assemble to order.Keywords: hybrid manufacturing system, supply chain system, make to order, make to stock, assemble to order
Procedia PDF Downloads 56210893 Numerical Simulation and Experimental Validation of the Hydraulic L-Shaped Check Ball Behavior
Authors: Shinji Kajiwara
Abstract:
The spring-driven ball-type check valve is one of the most important components of hydraulic systems: it controls the position of the ball and prevents backward flow. To simplify the structure, the spring must be eliminated, and to accomplish this, the flow pattern and the behavior of the check ball in L-shaped pipe must be determined. In this paper, we present a full-scale model of a check ball made of acrylic resin, and we determine the relationship between the initial position of the ball, the position and diameter of the inflow port. The check flow rate increases in a standard center inflow model, and it is possible to greatly decrease the check-flow rate by shifting the inflow from the center.Keywords: hydraulics, pipe flow, numerical simulation, flow visualization, check ball, L-shaped pipe
Procedia PDF Downloads 29910892 Alternative General Formula to Estimate and Test Influences of Early Diagnosis on Cancer Survival
Authors: Li Yin, Xiaoqin Wang
Abstract:
Background and purpose: Cancer diagnosis is part of a complex stochastic process, in which patients' personal and social characteristics influence the choice of diagnosing methods, diagnosing methods, in turn, influence the initial assessment of cancer stage, the initial assessment, in turn, influences the choice of treating methods, and treating methods in turn influence cancer outcomes such as cancer survival. To evaluate diagnosing methods, one needs to estimate and test the causal effect of a regime of cancer diagnosis and treatments. Recently, Wang and Yin (Annals of statistics, 2020) derived a new general formula, which expresses these causal effects in terms of the point effects of treatments in single-point causal inference. As a result, it is possible to estimate and test these causal effects via point effects. The purpose of the work is to estimate and test causal effects under various regimes of cancer diagnosis and treatments via point effects. Challenges and solutions: The cancer stage has influences from earlier diagnosis as well as on subsequent treatments. As a consequence, it is highly difficult to estimate and test the causal effects via standard parameters, that is, the conditional survival given all stationary covariates, diagnosing methods, cancer stage and prognosis factors, treating methods. Instead of standard parameters, we use the point effects of cancer diagnosis and treatments to estimate and test causal effects under various regimes of cancer diagnosis and treatments. We are able to use familiar methods in the framework of single-point causal inference to accomplish the task. Achievements: we have applied this method to stomach cancer survival from a clinical study in Sweden. We have studied causal effects under various regimes, including the optimal regime of diagnosis and treatments and the effect moderation of the causal effect by age and gender.Keywords: cancer diagnosis, causal effect, point effect, G-formula, sequential causal effect
Procedia PDF Downloads 19310891 Acoustic Emission Monitoring of Surface Roughness in Ultra High Precision Grinding of Borosilicate-Crown Glass
Authors: Goodness Onwuka, Khaled Abou-El-Hossein
Abstract:
The increase in the demand for precision optics, coupled with the absence of much research output in the ultra high precision grinding of precision optics as compared to the ultrahigh precision diamond turning of optical metals has fostered the need for more research in the ultra high precision grinding of an optical lens. Furthermore, the increase in the stringent demands for nanometric surface finishes through lapping, polishing and grinding processes necessary for the use of borosilicate-crown glass in the automotive and optics industries has created the demand to effectively monitor the surface roughness during the production process. Acoustic emission phenomenon has been proven as useful monitoring technique in several manufacturing processes ranging from monitoring of bearing production to tool wear estimation. This paper introduces a rare and unique approach with the application of acoustic emission technique to monitor the surface roughness of borosilicate-crown glass during an ultra high precision grinding process. This research was carried out on a 4-axes Nanoform 250 ultrahigh precision lathe machine using an ultra high precision grinding spindle to machine the flat surface of the borosilicate-crown glass with the tip of the grinding wheel. A careful selection of parameters and design of experiment was implemented using Box-Behnken method to vary the wheel speed, feed rate and depth of cut at three levels with a 3-center point design. Furthermore, the average surface roughness was measured using Taylor Hobson PGI Dimension XL optical profilometer, and an acoustic emission data acquisition device from National Instruments was utilized to acquire the signals while the data acquisition codes were designed with National Instrument LabVIEW software for acquisition at a sampling rate of 2 million samples per second. The results show that the raw and root mean square amplitude values of the acoustic signals increased with a corresponding increase in the measured average surface roughness values for the different parameter combinations. Therefore, this research concludes that acoustic emission monitoring technique is a potential technique for monitoring the surface roughness in the ultra high precision grinding of borosilicate-crown glass.Keywords: acoustic emission, borosilicate-crown glass, surface roughness, ultra high precision grinding
Procedia PDF Downloads 28810890 Co-Development of an Assisted Manual Harvesting Tool for Peach Palm That Avoids the Harvest in Heights
Authors: Mauricio Quintero Angel, Alexander Pereira, Selene Alarcón
Abstract:
One of the elements of greatest importance in agricultural production is the harvesting; an activity associated to different occupational health risks such as harvesting in high altitudes, the transport of heavy materials and the application of excessive muscle strain that leads to muscular-bone disorders. Therefore, there is an urgent necessity to improve and validate interventions to reduce exposition and risk to harvesters. This article has the objective of describing the co-development under the ergonomic analysis framework of an assisted manual harvesting tool for peach palm oriented to reduce the risk of death and accidents as it avoid the harvest in heights. The peach palm is a palm tree that is cultivated in Colombia, Perú, Brasil, Costa Rica, among others and that reaches heights of over 20 m, with stipes covered with spines. The fruits are drupes of variable size. For the harvesting of peach palm, in Colombia farmers use the “Marota” or “Climber”, a tool in a closed X shape built in wood, that has two supports adjusted at the stipe, that elevate alternately until reaching a point high enough to grab the bunch that is brought down using a rope. An activity of high risk since it is done at a high altitude without any type of protection and safety measures. The Marota is alternated with a rod, which as variable height between 5 and 12 Meters with a harness system at one end to hold the bunch that is lowered with the whole system (bamboo bunch). The rod is used from the ground or from the Marota in height. As an alternative to traditional tools, the Bajachonta was co-developed with farmers, a tool that employs a traditional bamboo hook system with modifications, to be able to hold it with a rope that passes through a pulley. Once the bunch is hitched, the hook system is detached and this stays attached to the peduncle of the palm tree, afterwards through a pulling force being exerted towards the ground by tensioning the rope, the bunch comes loose to be taken down using a rope and the pulley system to the ground, reducing the risk and efforts in the operation. The bajachonta was evaluated in tree productive zones of Colombia, with innovative farmers, were the adoption is highly probable, with some modifications to improve its efficiency and effectiveness, keeping in mind that the farmers perceive in it an advantage in the reduction of death and accidents by not having to harvest in heights.Keywords: assisted harvesting, ergonomics, harvesting in high altitudes, participative design, peach palm
Procedia PDF Downloads 403