Search results for: linear fractional transformation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5049

Search results for: linear fractional transformation

909 Analyzing Nonsimilar Convective Heat Transfer in Copper/Alumina Nanofluid with Magnetic Field and Thermal Radiations

Authors: Abdulmohsen Alruwaili

Abstract:

A partial differential system featuring momentum and energy balance is often used to describe simulations of flow initiation and thermal shifting in boundary layers. The buoyancy force in terms of temperature is factored in the momentum balance equation. Buoyancy force causes the flow quantity to fluctuate along the streamwise direction 𝑋; therefore, the problem can be, to our best knowledge, analyzed through nonsimilar modeling. In this analysis, a nonsimilar model is evolved for radiative mixed convection of a magnetized power-law nanoliquid flow on top of a vertical plate installed in a stationary fluid. The upward linear stretching initiated the flow in the vertical direction. Assuming nanofluids are composite of copper (Cu) and alumina (Al₂O₃) nanoparticles, the viscous dissipation in this case is negligible. The nonsimilar system is dealt with analytically by local nonsimilarity (LNS) via numerical algorithm bvp4c. Surface temperature and flow field are shown visually in relation to factors like mixed convection, magnetic field strength, nanoparticle volume fraction, radiation parameters, and Prandtl number. The repercussions of magnetic and mixed convection parameters on the rate of energy transfer and friction coefficient are represented in tabular forms. The results obtained are compared to the published literature. It is found that the existence of nanoparticles significantly improves the temperature profile of considered nanoliquid. It is also observed that when the estimates of the magnetic parameter increase, the velocity profile decreases. Enhancement in nanoparticle concentration and mixed convection parameter improves the velocity profile.

Keywords: nanofluid, power law model, mixed convection, thermal radiation

Procedia PDF Downloads 12
908 Alternating Expectation-Maximization Algorithm for a Bilinear Model in Isoform Quantification from RNA-Seq Data

Authors: Wenjiang Deng, Tian Mou, Yudi Pawitan, Trung Nghia Vu

Abstract:

Estimation of isoform-level gene expression from RNA-seq data depends on simplifying assumptions, such as uniform reads distribution, that are easily violated in real data. Such violations typically lead to biased estimates. Most existing methods provide a bias correction step(s), which is based on biological considerations, such as GC content–and applied in single samples separately. The main problem is that not all biases are known. For example, new technologies such as single-cell RNA-seq (scRNA-seq) may introduce new sources of bias not seen in bulk-cell data. This study introduces a method called XAEM based on a more flexible and robust statistical model. Existing methods are essentially based on a linear model Xβ, where the design matrix X is known and derived based on the simplifying assumptions. In contrast, XAEM considers Xβ as a bilinear model with both X and β unknown. Joint estimation of X and β is made possible by simultaneous analysis of multi-sample RNA-seq data. Compared to existing methods, XAEM automatically performs empirical correction of potentially unknown biases. XAEM implements an alternating expectation-maximization (AEM) algorithm, alternating between estimation of X and β. For speed XAEM utilizes quasi-mapping for read alignment, thus leading to a fast algorithm. Overall XAEM performs favorably compared to other recent advanced methods. For simulated datasets, XAEM obtains higher accuracy for multiple-isoform genes, particularly for paralogs. In a differential-expression analysis of a real scRNA-seq dataset, XAEM achieves substantially greater rediscovery rates in an independent validation set.

Keywords: alternating EM algorithm, bias correction, bilinear model, gene expression, RNA-seq

Procedia PDF Downloads 135
907 Modelling of Heat Generation in a 18650 Lithium-Ion Battery Cell under Varying Discharge Rates

Authors: Foo Shen Hwang, Thomas Confrey, Stephen Scully, Barry Flannery

Abstract:

Thermal characterization plays an important role in battery pack design. Lithium-ion batteries have to be maintained between 15-35 °C to operate optimally. Heat is generated (Q) internally within the batteries during both the charging and discharging phases. This can be quantified using several standard methods. The most common method of calculating the batteries heat generation is through the addition of both the joule heating effects and the entropic changes across the battery. In addition, such values can be derived by identifying the open-circuit voltage (OCV), nominal voltage (V), operating current (I), battery temperature (T) and the rate of change of the open-circuit voltage in relation to temperature (dOCV/dT). This paper focuses on experimental characterization and comparative modelling of the heat generation rate (Q) across several current discharge rates (0.5C, 1C, and 1.5C) of a 18650 cell. The analysis is conducted utilizing several non-linear mathematical functions methods, including polynomial, exponential, and power models. Parameter fitting is carried out over the respective function orders; polynomial (n = 3~7), exponential (n = 2) and power function. The generated parameter fitting functions are then used as heat source functions in a 3-D computational fluid dynamics (CFD) solver under natural convection conditions. Generated temperature profiles are analyzed for errors based on experimental discharge tests, conducted at standard room temperature (25°C). Initial experimental results display low deviation between both experimental and CFD temperature plots. As such, the heat generation function formulated could be easier utilized for larger battery applications than other methods available.

Keywords: computational fluid dynamics, curve fitting, lithium-ion battery, voltage drop

Procedia PDF Downloads 87
906 Patient Perspectives on the Role of Orthopedic Nurse Practitioners: A Cross-Sectional Study

Authors: Merav Ben Natan, May Revach, Or Sade, Yaniv Yonay, Yaron Berkovich

Abstract:

Background: The inclusion of nurse practitioners (NPs) specializing in orthopedics holds promise for enhancing the quality of care for orthopedic patients. Understanding patients’ perspectives on this role is crucial for evaluating the feasibility and acceptance of integrating NPs into orthopedic settings. This study aims to explore the receptiveness of orthopedic patients to treatment by orthopedic NPs and examines potential associations between patients’ willingness to engage with NPs, their familiarity with the NP role, perceptions of nursing, and satisfaction with orthopedic nursing care. Methods: This cross-sectional study involved patients admitted to an orthopedic department at a central Israeli hospital between January and February 2023. Data was collected using a validated questionnaire consisting of five sections, reviewed by content experts. Statistical analyses were conducted using SPSS and included descriptive statistics, independent samples t-tests, Pearson correlations, and linear regression. Results: Participants in the study showed a moderate willingness to receive treatment from orthopedic NPs, with more than two-thirds expressing strong openness. Patients were generally receptive to NPs performing various clinical tasks, though there was less enthusiasm for NPs’ involvement in medication management and preoperative evaluations. Positive attitudes towards nurses and familiarity with the NP role were significant predictors of patient receptiveness to NP treatment. Conclusion: Patient acceptance of orthopedic NPs varies across different aspects of care. While there is a general willingness to receive care from NPs, these nuanced preferences must be considered when implementing NPs in orthopedic settings. Awareness and positive perceptions of the NP role play crucial roles in shaping patients’ willingness to engage with NPs.

Keywords: orthopedic nurse practitioners, patient receptiveness, perceptions of nursing, clinical tasks

Procedia PDF Downloads 18
905 Simulation of GAG-Analogue Biomimetics for Intervertebral Disc Repair

Authors: Dafna Knani, Sarit S. Sivan

Abstract:

Aggrecan, one of the main components of the intervertebral disc (IVD), belongs to the family of proteoglycans (PGs) that are composed of glycosaminoglycan (GAG) chains covalently attached to a core protein. Its primary function is to maintain tissue hydration and hence disc height under the high loads imposed by muscle activity and body weight. Significant PG loss is one of the first indications of disc degeneration. A possible solution to recover disc functions is by injecting a synthetic hydrogel into the joint cavity, hence mimicking the role of PGs. One of the hydrogels proposed is GAG-analogues, based on sulfate-containing polymers, which are responsible for hydration in disc tissue. In the present work, we used molecular dynamics (MD) to study the effect of the hydrogel crosslinking (type and degree) on the swelling behavior of the suggested GAG-analogue biomimetics by calculation of cohesive energy density (CED), solubility parameter, enthalpy of mixing (ΔEmix) and the interactions between the molecules at the pure form and as a mixture with water. The simulation results showed that hydrophobicity plays an important role in the swelling of the hydrogel, as indicated by the linear correlation observed between solubility parameter values of the copolymers and crosslinker weight ratio (w/w); this correlation was found useful in predicting the amount of PEGDA needed for the desirable hydration behavior of (CS)₄-peptide. Enthalpy of mixing calculations showed that all the GAG analogs, (CS)₄ and (CS)₄-peptide are water-soluble; radial distribution function analysis revealed that they form interactions with water molecules, which is important for the hydration process. To conclude, our simulation results, beyond supporting the experimental data, can be used as a useful predictive tool in the future development of biomaterials, such as disc replacement.

Keywords: molecular dynamics, proteoglycans, enthalpy of mixing, swelling

Procedia PDF Downloads 68
904 Understanding the Interactive Nature in Auditory Recognition of Phonological/Grammatical/Semantic Errors at the Sentence Level: An Investigation Based upon Japanese EFL Learners’ Self-Evaluation and Actual Language Performance

Authors: Hirokatsu Kawashima

Abstract:

One important element of teaching/learning listening is intensive listening such as listening for precise sounds, words, grammatical, and semantic units. Several classroom-based investigations have been conducted to explore the usefulness of auditory recognition of phonological, grammatical and semantic errors in such a context. The current study reports the results of one such investigation, which targeted auditory recognition of phonological, grammatical, and semantic errors at the sentence level. 56 Japanese EFL learners participated in this investigation, in which their recognition performance of phonological, grammatical and semantic errors was measured on a 9-point scale by learners’ self-evaluation from the perspective of 1) two types of similar English sound (vowel and consonant minimal pair words), 2) two types of sentence word order (verb phrase-based and noun phrase-based word orders), and 3) two types of semantic consistency (verb-purpose and verb-place agreements), respectively, and their general listening proficiency was examined using standardized tests. A number of findings have been made about the interactive relationships between the three types of auditory error recognition and general listening proficiency. Analyses based on the OPLS (Orthogonal Projections to Latent Structure) regression model have disclosed, for example, that the three types of auditory error recognition are linked in a non-linear way: the highest explanatory power for general listening proficiency may be attained when quadratic interactions between auditory recognition of errors related to vowel minimal pair words and that of errors related to noun phrase-based word order are embraced (R2=.33, p=.01).

Keywords: auditory error recognition, intensive listening, interaction, investigation

Procedia PDF Downloads 507
903 Effect of Concentration Level and Moisture Content on the Detection and Quantification of Nickel in Clay Agricultural Soil in Lebanon

Authors: Layan Moussa, Darine Salam, Samir Mustapha

Abstract:

Heavy metal contamination in agricultural soils in Lebanon poses serious environmental and health problems. Intensive efforts are employed to improve existing quantification methods of heavy metals in contaminated environments since conventional detection techniques have shown to be time-consuming, tedious, and costly. The implication of hyperspectral remote sensing in this field is possible and promising. However, factors impacting the efficiency of hyperspectral imaging in detecting and quantifying heavy metals in agricultural soils were not thoroughly studied. This study proposes to assess the use of hyperspectral imaging for the detection of Ni in agricultural clay soil collected from the Bekaa Valley, a major agricultural area in Lebanon, under different contamination levels and soil moisture content. Soil samples were contaminated with Ni, with concentrations ranging from 150 mg/kg to 4000 mg/kg. On the other hand, soil with background contamination was subjected to increased moisture levels varying from 5 to 75%. Hyperspectral imaging was used to detect and quantify Ni contamination in the soil at different contamination levels and moisture content. IBM SPSS statistical software was used to develop models that predict the concentration of Ni and moisture content in agricultural soil. The models were constructed using linear regression algorithms. The spectral curves obtained reflected an inverse correlation between both Ni concentration and moisture content with respect to reflectance. On the other hand, the models developed resulted in high values of predicted R2 of 0.763 for Ni concentration and 0.854 for moisture content. Those predictions stated that Ni presence was well expressed near 2200 nm and that of moisture was at 1900 nm. The results from this study would allow us to define the potential of using the hyperspectral imaging (HSI) technique as a reliable and cost-effective alternative for heavy metal pollution detection in contaminated soils and soil moisture prediction.

Keywords: heavy metals, hyperspectral imaging, moisture content, soil contamination

Procedia PDF Downloads 90
902 In vivo Mechanical Characterization of Facial Skin Combining Digital Image Correlation and Finite Element

Authors: Huixin Wei, Shibin Wang, Linan Li, Lei Zhou, Xinhao Tu

Abstract:

Facial skin is a biomedical material with complex mechanical properties of anisotropy, viscoelasticity, and hyperelasticity. The mechanical properties of facial skin are crucial for a number of applications including facial plastic surgery, animation, dermatology, cosmetic industry, and impact biomechanics. Skin is a complex multi-layered material which can be broadly divided into three main layers, the epidermis, the dermis, and the hypodermis. Collagen fibers account for 75% of the dry weight of dermal tissue, and it is these fibers which are responsible for the mechanical properties of skin. Many research on the anisotropic mechanical properties are mainly concentrated on in vitro, but there is a great difference between in vivo and in vitro for mechanical properties of the skin. In this study, we presented a method to measure the mechanical properties of facial skin in vivo. Digital image correlation (DIC) and indentation tests were used to obtain the experiment data, including the deformation of facial surface and indentation force-displacement curve. Then, the experiment was simulated using a finite element (FE) model. Application of Computed Tomography (CT) and reconstruction techniques obtained the real tissue geometry. A three-dimensional FE model of facial skin, including a bi-layer system, was obtained. As the epidermis is relatively thin, the epidermis and dermis were regarded as one layer and below it was hypodermis in this study. The upper layer was modeled as a Gasser-Ogden-Holzapfel (GOH) model to describe hyperelastic and anisotropic behaviors of the dermis. The under layer was modeled as a linear elastic model. In conclusion, the material properties of two-layer were determined by minimizing the error between the FE data and experimental data.

Keywords: facial skin, indentation test, finite element, digital image correlation, computed tomography

Procedia PDF Downloads 105
901 Analysis of Environmental Sustainability in Post- Earthquake Reconstruction : A Case of Barpak, Nepal

Authors: Sudikshya Bhandari, Jonathan K. London

Abstract:

Barpak in northern Nepal represents a unique identity expressed through the local rituals, values, lifeways and the styles of vernacular architecture. The traditional residential buildings and construction practices adopted by the dominant ethnic groups: Ghales and Gurungs, reflect environmental, social, cultural and economic concerns. However, most of these buildings did not survive the Gorkha earthquake in 2015 that made many residents skeptical about their strength to resist future disasters. This led Barpak residents to prefer modern housing designs primarily for the strength but additionally for convenience and access to earthquake relief funds. Post-earthquake reconstruction has transformed the cohesive community, developed over hundreds of years into a haphazard settlement with the imposition of externally-driven building models. Housing guidelines provided for the community reconstruction and earthquake resilience have been used as a singular template, similar to other communities on different geographical locations. The design and construction of these buildings do not take into account the local, historical, environmental, social, cultural and economic context of Barpak. In addition to the physical transformation of houses and the settlement, the consequences continue to develop challenges to sustainability. This paper identifies the major challenges for environmental sustainability with the construction of new houses in post-earthquake Barpak. Mixed methods such as interviews, focus groups, site observation, and documentation, and analysis of housing and neighborhood design have been used for data collection. The discernible changing situation of this settlement due to the new housing has included reduced climatic adaptation and thermal comfort, increased consumption of agricultural land and water, minimized use of local building materials, and an increase in energy demand. The research has identified that reconstruction housing practices happening in Barpak, while responding to crucial needs for disaster recovery and resilience, are also leading this community towards an unsustainable future. This study has also integrated environmental, social, cultural and economic parameters into an assessment framework that could be used to develop place-based design guidelines in the context of other post-earthquake reconstruction efforts. This framework seeks to minimize the unintended repercussions of unsustainable reconstruction interventions, support the vitality of vernacular architecture and traditional lifeways and respond to context-based needs in coordination with residents.

Keywords: earthquake, environment, reconstruction, sustainability

Procedia PDF Downloads 111
900 Thermo-Mechanical Analysis of Composite Structures Utilizing a Beam Finite Element Based on Global-Local Superposition

Authors: Andre S. de Lima, Alfredo R. de Faria, Jose J. R. Faria

Abstract:

Accurate prediction of thermal stresses is particularly important for laminated composite structures, as large temperature changes may occur during fabrication and field application. The normal transverse deformation plays an important role in the prediction of such stresses, especially for problems involving thick laminated plates subjected to uniform temperature loads. Bearing this in mind, the present study aims to investigate the thermo-mechanical behavior of laminated composite structures using a new beam element based on global-local superposition, accounting for through-the-thickness effects. The element formulation is based on a global-local superposition in the thickness direction, utilizing a cubic global displacement field in combination with a linear layerwise local displacement distribution, which assures zig-zag behavior of the stresses and displacements. By enforcing interlaminar stress (normal and shear) and displacement continuity, as well as free conditions at the upper and lower surfaces, the number of degrees of freedom in the model is maintained independently of the number of layers. Moreover, the proposed formulation allows for the determination of transverse shear and normal stresses directly from the constitutive equations, without the need of post-processing. Numerical results obtained with the beam element were compared to analytical solutions, as well as results obtained with commercial finite elements, rendering satisfactory results for a range of length-to-thickness ratios. The results confirm the need for an element with through-the-thickness capabilities and indicate that the present formulation is a promising alternative to such analysis.

Keywords: composite beam element, global-local superposition, laminated composite structures, thermal stresses

Procedia PDF Downloads 150
899 Smart BIM Documents - the Development of the Ontology-Based Tool for Employer Information Requirements (OntEIR), and its Transformation into SmartEIR

Authors: Shadan Dwairi

Abstract:

Defining proper requirements is one of the key factors for a successful construction projects. Although there have been many attempts put forward in assist in identifying requirements, but still this area is under developed. In Buildings Information Modelling (BIM) projects. The Employer Information Requirements (EIR) is the fundamental requirements document and a necessary ingredient in achieving a successful BIM project. The provision on full and clear EIR is essential to achieving BIM Level-2. As Defined by PAS 1192-2, EIR is a “pre-tender document that sets out the information to be delivered and the standards and processes to be adopted by the supplier as part of the project delivery process”. It also notes that “EIR should be incorporated into tender documentation to enable suppliers to produce an initial BIM Execution Plan (BEP)”. The importance of effective definition of EIR lies in its contribution to a better productivity during the construction process in terms of cost and time, in addition to improving the quality of the built asset. Proper and clear information is a key aspect of the EIR, in terms of the information it contains and more importantly the information the client receives at the end of the project that will enable the effective management and operation of the asset, where typically about 60%-80% of the cost is spent. This paper reports on the research done in developing the Ontology-based tool for Employer Information Requirements (OntEIR). OntEIR has proven the ability to produce a full and complete set of EIRs, which ensures that the clients’ information needs for the final model delivered by BIM is clearly defined from the beginning of the process. It also reports on the work being done into transforming OntEIR into a smart tool for Defining Employer Information Requirements (smartEIR). smartEIR transforms the OntEIR tool into enabling it to develop custom EIR- tailored for the: Project Type, Project Requirements, and the Client Capabilities. The initial idea behind smartEIR is moving away from the notion “One EIR fits All”. smartEIR utilizes the links made in OntEIR and creating a 3D matrix that transforms it into a smart tool. The OntEIR tool is based on the OntEIR framework that utilizes both Ontology and the Decomposition of Goals to elicit and extract the complete set of requirements needed for a full and comprehensive EIR. A new ctaegorisation system for requirements is also introduced in the framework and tool, which facilitates the understanding and enhances the clarification of the requirements especially for novice clients. Findings of the evaluation of the tool that was done with experts in the industry, showed that the OntEIR tool contributes towards effective and efficient development of EIRs that provide a better understanding of the information requirements as requested by BIM, and support the production of a complete BIM Execution Plan (BEP) and a Master Information Delivery Plan (MIDP).

Keywords: building information modelling, employer information requirements, ontology, web-based, tool

Procedia PDF Downloads 116
898 EverPro as the Missing Piece in the Plant Protein Portfolio to Aid the Transformation to Sustainable Food Systems

Authors: Aylin W Sahin, Alice Jaeger, Laura Nyhan, Gregory Belt, Steffen MĂźnch, Elke K. Arendt

Abstract:

Our current food systems cause an increase in malnutrition resulting in more people being overweight or obese in the Western World. Additionally, our natural resources are under enormous pressure and the greenhouse gas emission increases yearly with a significant contribution to climate change. Hence, transforming our food systems is of highest priority. Plant-based food products have a lower environmental impact compared to their animal-based counterpart, representing a more sustainable protein source. However, most plant-based protein ingredients, such as soy and pea, are lacking indispensable amino acids and extremely limited in their functionality and, thus, in their food application potential. They are known to have a low solubility in water and change their properties during processing. The low solubility displays the biggest challenge in the development of milk alternatives leading to inferior protein content and protein quality in dairy alternatives on the market. Moreover, plant-based protein ingredients often possess an off-flavour, which makes them less attractive to consumers. EverPro, a plant-protein isolate originated from Brewer’s Spent Grain, the most abundant by-product in the brewing industry, represents the missing piece in the plant protein portfolio. With a protein content of >85%, it is of high nutritional value, including all indispensable amino acids which allows closing the protein quality gap of plant proteins. Moreover, it possesses high techno-functional properties. It is fully soluble in water (101.7 ± 2.9%), has a high fat absorption capacity (182.4 ± 1.9%), and a foaming capacity which is superior to soy protein or pea protein. This makes EverPro suitable for a vast range of food applications. Furthermore, it does not cause changes in viscosity during heating and cooling of dispersions, such as beverages. Besides its outstanding nutritional and functional characteristics, the production of EverPro has a much lower environmental impact compared to dairy or other plant protein ingredients. Life cycle assessment analysis showed that EverPro has the lowest impact on global warming compared to soy protein isolate, pea protein isolate, whey protein isolate, and egg white powder. It also contributes significantly less to freshwater eutrophication, marine eutrophication and land use compared the protein sources mentioned above. EverPro is the prime example of sustainable ingredients, and the type of plant protein the food industry was waiting for: nutritious, multi-functional, and environmentally friendly.

Keywords: plant-based protein, upcycled, brewers' spent grain, low environmental impact, highly functional ingredient

Procedia PDF Downloads 76
897 A Systematic Analysis of Knowledge Development Trends in Industrial Maintenance Projects

Authors: Lilian Ogechi Iheukwumere-Esotu, Akilu Yunusa-Kaltungo, Paul Chan

Abstract:

Industrial assets are prone to degradation and eventual failures due to repetitive loads and harsh environments in which they operate. These failures often lead to costly downtimes, which may involve loss of critical assets and/or human lives. The rising pressures from stakeholders for optimized systems’ outputs have further placed strains on business organizations. Traditional means of combating such failures are by adopting strategies capable of predicting, controlling, and/or reducing the likelihood of systems’ failures. Turnarounds, shutdowns, and outages (TSOs) projects are popular maintenance management activities conducted over a certain period of time. However, despite the critical and significant cost implications of TSOs, the management of the interface of knowledge between academia and industry to our best knowledge has not been fully explored in comparison to other aspects of industrial operations. This is perhaps one of the reasons for the limited knowledge transfer between academia and industry, which has affected the outcomes of most TSOs. Prior to now, the study of knowledge development trends as a failure analysis tool in the management of TSOs projects have not gained the required level of attention. Hence, this review provides useful references and their implications for future studies in this field. This study aims to harmonize the existing research trends of TSOs through a systematic review of more than 3,000 research articles published over 7 decades (1940- till date) which were extracted using very specific research criteria and later streamlined using nominated inclusion and exclusion parameters. The information obtained from the analysis were then synthesized and coded into 8 parameters, thereby allowing for a transformation into actionable outputs. The study revealed a variety of information, but the most critical findings can be classified into 4 folds: (1) Empirical validation of available conceptual frameworks and models is still a far cry in practice, (2) traditional project management views for managing uncertainties are still dominant, (3) Inconsistent approaches towards the adoption and promotion of knowledge management systems which supports creation, transfer and application of knowledge within and outside the project organization and, (4) exploration of social practices in industrial maintenance project environments are under-represented within the existing body of knowledge. Thus, the intention of this study is to depict the usefulness of a framework which incorporates fact findings emanating from careful analysis and illustrations of evidence based results as a suitable approach which can tackle reoccurring failures in industrial maintenance projects.

Keywords: industrial maintenance, knowledge management, maintenance projects, systematic review, TSOs

Procedia PDF Downloads 113
896 Synthesized Doped TiO2 Photocatalysts for Mineralization of Quinalphos from Aqueous Streams

Authors: Nidhi Sharotri, Dhiraj Sud

Abstract:

Water pollution by pesticides constitutes a serious ecological problem due to their potential toxicity and bioaccumulation. The widespread use of pesticides in industry and agriculture along with their resistance to natural decomposition, biodegradation, chemical and photochemical degradation under typical environmental conditions has resulted in the emergence of these chemicals and their transformed products in natural water. Among AOP’s, heterogeneous photocatalysis using TiO2 as photocatalyst appears as the most emerging destructive technology for mineralization of the pollutant in aquatic streams. Among the various semiconductors (TiO2, ZnO, CdS, FeTiO3, MnTiO3, SrTiO2 and SnO2), TiO2 has proven to be the most efficient photocatalyst for environmental applications due to its biological and chemical inertness, high photo reactivity, non-toxicity, and photo stability. Semiconductor photocatalysts are characterized by an electronic band structure in which valence band and conduction band are separated by a band gap, i.e. a region of forbidden energy. Semiconductor based photocatalysts produces e-/h+ pairs which have been employed for degradation of organic pollutants. The present paper focuses on modification of TiO2 photocatalyst in order to shift its absorption edge towards longer wavelength to make it active under natural light. Semiconductor TiO2 photocatalysts was prepared by doping with anion (N), cation (Mn) and double doped (Mn, N) using greener approach. Titanium isopropoxide is used as titania precursor and ethanedithiol, hydroxyl amine hydrochloride, manganous chloride as sulphur, nitrogen and manganese precursors respectively. Synthesized doped TiO2 nanomaterials are characterized for surface morphology (SEM, TEM), crystallinity (XRD) and optical properties (absorption spectra and band gap). EPR data confirms the substitutional incorporation of Mn2+ in TiO2 lattice. The doping influences the phase transformation of rutile and anatase phase crystal and thereby the absorption spectrum changes were observed. The effect of variation of reaction parameters such as solvent, reaction time and calcination temperature on the yield, surface morphology and optical properties was also investigated. The TEM studies show the particle size of nanomaterials varies from 10-50 nm. The calculated band gap of nanomaterials varies from 2.30-2.60 eV. The photocatalytic degradation of organic pollutant organophosphate pesticide (Quinalphos) has been investigated by studying the changes in UV absorption spectrum and the promising results were obtained under visible light. The complete mineralization of quinalphos has occurred as no intermediates were recorded after 8 hrs of degradation confirmed from the HPLC studies.

Keywords: quinalphos, doped-TiO2, mineralization, EPR

Procedia PDF Downloads 325
895 Evaluation of the Gamma-H2AX Expression as a Biomarker of DNA Damage after X-Ray Radiation in Angiography Patients

Authors: Reza Fardid, Aliyeh Alipour

Abstract:

Introduction: Coronary heart disease (CHD) is the most common and deadliest diseases. A coronary angiography is an important tool for the diagnosis and treatment of this disease. Because angiography is performed by exposure to ionizing radiation, it can lead to harmful effects. Ionizing radiation induces double-stranded breaks in DNA, which is a potentially life-threatening injury. The purpose of the present study is an investigation of the phosphorylation of histone H2AX in the location of the double-stranded break in Peripheral blood lymphocytes as an indication of Biological effects of radiation on angiography patients. Materials and Methods: This method is based on measurement of the phosphorylation of histone (gamma-H2AX, gH2AX) level on serine 139 after formation of DNA double-strand break. 5 cc of blood from 24 patients with angiography were sampled before and after irradiation. Blood lymphocytes were removed, fixed and were stained with specific ϒH2AX antibodies. Finally, ϒH2AX signal as an indicator of the double-strand break was measured with Flow Cytometry Technique. Results and discussion: In all patients, an increase was observed in the number of breaks in double-stranded DNA after irradiation (20.15 ± 14.18) compared to before exposure (1.52 ± 0.34). Also, the mean of DNA double-strand break was showed a linear correlation with DAP. However, although induction of DNA double-strand breaks associated with radiation dose in patients, the effect of individual factors such as radiosensitivity and regenerative capacity should not be ignored. If in future we can measure DNA damage response in every patient angiography and it will be used as a biomarker patient dose, will look very impressive on the public health level. Conclusion: Using flow cytometry readings which are done automatically, it is possible to detect ϒH2AX in the number of blood cells. Therefore, the use of this technique could play a significant role in monitoring patients.

Keywords: coronary angiography, DSB of DNA, ϒH2AX, ionizing radiation

Procedia PDF Downloads 177
894 Assessment of the Effects of Urban Development on Urban Heat Islands and Community Perception in Semi-Arid Climates: Integrating Remote Sensing, GIS Tools, and Social Analysis - A Case Study of the Aures Region (Khanchela), Algeria

Authors: Amina Naidja, Zedira Khammar, Ines Soltani

Abstract:

This study investigates the impact of urban development on the urban heat island (UHI) effect in the semi-arid Aures region of Algeria, integrating remote sensing data with statistical analysis and community surveys to examine the interconnected environmental and social dynamics. Using Landsat 8 satellite imagery, temporal variations in the Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), and land use/land cover (LULC) changes are analyzed to understand patterns of urbanization and environmental transformation. These environmental metrics are correlated with land surface temperature (LST) data derived from remote sensing to quantify the UHI effect. To incorporate the social dimension, a structured questionnaire survey is conducted among residents in selected urban areas. The survey assesses community perceptions of urban heat, its impacts on daily life, health concerns, and coping strategies. Statistical analysis is employed to analyze survey responses, identifying correlations between demographic factors, socioeconomic status, and perceived heat stress. Preliminary findings reveal significant correlations between built-up areas (NDBI) and higher LST, indicating the contribution of urbanization to local warming. Conversely, areas with higher vegetation cover (NDVI) exhibit lower LST, highlighting the cooling effect of green spaces. Social survey results provide insights into how UHI affects different demographic groups, with vulnerable populations experiencing greater heat-related challenges. By integrating remote sensing analysis with statistical modeling and community surveys, this study offers a comprehensive understanding of the environmental and social implications of urban development in semi-arid climates. The findings contribute to evidence-based urban planning strategies that prioritize environmental sustainability and social well-being. Future research should focus on policy recommendations and community engagement initiatives to mitigate UHI impacts and promote climate-resilient urban development.

Keywords: urban heat island, remote sensing, social analysis, NDVI, NDBI, LST, community perception

Procedia PDF Downloads 32
893 Validation of the Recovery of House Dust Mites from Fabrics by Means of Vacuum Sampling

Authors: A. Aljohani, D. Burke, D. Clarke, M. Gormally, M. Byrne, G. Fleming

Abstract:

Introduction: House Dust Mites (HDMs) are a source of allergen particles embedded in textiles and furnishings. Vacuum sampling is commonly used to recover and determine the abundance of HDMs but the efficiency of this method is less than standardized. Here, the efficiency of recovery of HDMs was evaluated from home-associated textiles using vacuum sampling protocols.Methods/Approach: Living Mites (LMs) or dead Mites (DMs) House Dust Mites (Dermatophagoides pteronyssinus: FERA, UK) were separately seeded onto the surfaces of Smooth Cotton, Denim and Fleece (25 mites/10x10cm2 squares) and left for 10 minutes before vacuuming. Fabrics were vacuumed (SKC Flite 2 pump) at a flow rate of 14 L/min for 60, 90 or 120 seconds and the number of mites retained by the filter (0.4Îźm x 37mm) unit was determined. Vacuuming was carried out in a linear direction (Protocol 1) or in a multidirectional pattern (Protocol 2). Additional fabrics with LMs were also frozen and then thawed, thereby euthanizing live mites (now termed EMs). Results/Findings: While there was significantly greater (p=0.000) recovery of mites (76% greater) in fabrics seeded with DMs than LMs irrespective of vacuuming protocol or fabric type, the efficiency of recovery of DMs (72%-76%) did not vary significantly between fabrics. For fabrics containing EMs, recovery was greatest for Smooth Cotton and Denim (65-73% recovered) and least for Fleece (15% recovered). There was no significant difference (p=0.99) between the recovery of mites across all three mite categories from Smooth Cotton and Denim but significantly fewer (p=0.000) mites were recovered from Fleece. Scanning Electron Microscopy images of HMD-seeded fabrics showed that live mites burrowed deeply into the Fleece weave which reduced their efficiency of recovery by vacuuming. Research Implications: Results presented here have implications for the recovery of HDMs by vacuuming and the choice of fabric to ameliorate HDM-dust sensitization.

Keywords: allergy, asthma, dead, fabric, fleece, live mites, sampling

Procedia PDF Downloads 132
892 Assessment of the Spatio-Temporal Distribution of Pteridium aquilinum (Bracken Fern) Invasion on the Grassland Plateau in Nyika National Park

Authors: Andrew Kanzunguze, Lusayo Mwabumba, Jason K. Gilbertson, Dominic B. Gondwe, George Z. Nxumayo

Abstract:

Knowledge about the spatio-temporal distribution of invasive plants in protected areas provides a base from which hypotheses explaining proliferation of plant invasions can be made alongside development of relevant invasive plant monitoring programs. The aim of this study was to investigate the spatio-temporal distribution of bracken fern on the grassland plateau of Nyika National Park over the past 30 years (1986-2016) as well as to determine the current extent of the invasion. Remote sensing, machine learning, and statistical modelling techniques (object-based image analysis, image classification and linear regression analysis) in geographical information systems were used to determine both the spatial and temporal distribution of bracken fern in the study area. Results have revealed that bracken fern has been increasing coverage on the Nyika plateau at an estimated annual rate of 87.3 hectares since 1986. This translates to an estimated net increase of 2,573.1 hectares, which was recorded from 1,788.1 hectares (1986) to 4,361.9 hectares (2016). As of 2017 bracken fern covered 20,940.7 hectares, approximately 14.3% of the entire grassland plateau. Additionally, it was observed that the fern was distributed most densely around Chelinda camp (on the central plateau) as well as in forest verges and roadsides across the plateau. Based on these results it is recommended that Ecological Niche Modelling approaches be employed to (i) isolate the most important factors influencing bracken fern proliferation as well as (ii) identify and prioritize areas requiring immediate control interventions so as to minimize bracken fern proliferation in Nyika National Park.

Keywords: bracken fern, image classification, Landsat-8, Nyika National Park, spatio-temporal distribution

Procedia PDF Downloads 174
891 Differences in Vitamin D Status in Caucasian and Asian Women Following Ultraviolet Radiation (UVR) Exposure

Authors: O. Hakim, K. Hart, P. McCabe, J. Berry, L. E. Rhodes, N. Spyrou, A. Alfuraih, S. Lanham-New

Abstract:

It is known that skin pigmentation reduces the penetration of ultraviolet radiation (UVR) and thus photosynthesis of 25(OH)D. However, the ethnic differences in 25(OH)D production remain to be fully elucidated. This study aimed to investigate the differences in vitamin D production between Asian and Caucasian postmenopausal women, in response to a defined, controlled UVB exposure. Seventeen women; nine white Caucasian (skin phototype II and III), eight South Asian women (skin phototype IV and V) participated in the study, acting as their controls. Three blood samples were taken for measurement of 25(OH)D during the run-in period (nine days, no sunbed exposure) after which all subjects underwent an identical UVR exposure protocol irrespective of skin colour (nine days, three sunbed sessions: 6, 8 and 8 minutes respectively with approximately 80% of body surface exposed). Skin tone was measured four times during the study. Both groups showed a gradual increase in 25(OH)D with final levels significantly higher than baseline (p<0.01). 25(OH)D concentration mean from a baseline of 43.58Âą19.65 to 57.80Âą17.11 nmol/l among Caucasian and from 27.03Âą23.92 to 44.73Âą17.74 nmol/l among Asian women. The baseline status of vitamin D was classified as deficient among the Asian women and insufficient among the Caucasian women. The percentage increase in vitamin D3 among Caucasians was 39.86% (21.02) and 207.78% (286.02) in Asian subjects respectively. This greater response to UVR exposure reflects the lower baseline levels of the Asian subjects. The mixed linear model analysis identified a significant effect of duration of UVR exposure on the production of 25(OH)D. However, the model shows no significant effect of ethnicity and skin tone on the production of 25(OH)D. These novel findings indicate that people of Asian ethnicity have the full capability to produce a similar amount of vitamin D compared to the Caucasian group; initial vitamin D concentration influences the amount of UVB needed to reach equal serum concentrations.

Keywords: ethnicity, Caucasian, South Asian, vitamin D, ultraviolet radiation, UVR

Procedia PDF Downloads 528
890 Classifying Affective States in Virtual Reality Environments Using Physiological Signals

Authors: Apostolos Kalatzis, Ashish Teotia, Vishnunarayan Girishan Prabhu, Laura Stanley

Abstract:

Emotions are functional behaviors influenced by thoughts, stimuli, and other factors that induce neurophysiological changes in the human body. Understanding and classifying emotions are challenging as individuals have varying perceptions of their environments. Therefore, it is crucial that there are publicly available databases and virtual reality (VR) based environments that have been scientifically validated for assessing emotional classification. This study utilized two commercially available VR applications (Guided Meditation VR™ and Richie’s Plank Experience™) to induce acute stress and calm state among participants. Subjective and objective measures were collected to create a validated multimodal dataset and classification scheme for affective state classification. Participants’ subjective measures included the use of the Self-Assessment Manikin, emotional cards and 9 point Visual Analogue Scale for perceived stress, collected using a Virtual Reality Assessment Tool developed by our team. Participants’ objective measures included Electrocardiogram and Respiration data that were collected from 25 participants (15 M, 10 F, Mean = 22.28  4.92). The features extracted from these data included heart rate variability components and respiration rate, both of which were used to train two machine learning models. Subjective responses validated the efficacy of the VR applications in eliciting the two desired affective states; for classifying the affective states, a logistic regression (LR) and a support vector machine (SVM) with a linear kernel algorithm were developed. The LR outperformed the SVM and achieved 93.8%, 96.2%, 93.8% leave one subject out cross-validation accuracy, precision and recall, respectively. The VR assessment tool and data collected in this study are publicly available for other researchers.

Keywords: affective computing, biosignals, machine learning, stress database

Procedia PDF Downloads 135
889 Sacred Echoes: The Shamanic Journey of Hushahu and the Empowerment of Indigenous Women

Authors: Nadia K. Thalji

Abstract:

The shamanic odyssey of Hushahu, a courageous indigenous woman from the Amazon, reverberates with profound significance, resonating far beyond the confines of her tribal boundaries. This abstract explores Hushahu's transformative journey, which serves as a beacon of empowerment for indigenous women across the Amazon region. Hushahu's narrative unfolds against the backdrop of entrenched gender norms and colonial legacies that have historically marginalized women from spiritual leadership and ritual practices. Despite societal expectations and entrenched traditions, Hushahu boldly embraces her calling as a shaman, defying cultural constraints and challenging prevailing gender norms. Her journey represents a symbolic uprising against centuries of patriarchal dominance, offering a glimpse into the resilience and strength of indigenous women. Drawing upon Jungian psychology, Hushahu's quest can be understood as a profound exploration of the symbolic dimensions of the psyche. Through Hushahu’s initiation rituals and visionary experiences, the initiate embarks on a transformative journey of self-discovery, encountering archetypal symbols and tapping into the collective unconscious. Symbolism permeates the path, guiding Hushahu through the depths of the rainforest and illuminating the hidden realms of consciousness. Central to Hushahu's narrative is the theme of empowerment—a theme that transcends individual experience to catalyze broader social change. As Hushahu finds a voice amidst the echoes of ancestral wisdom, the journey inspires a ripple effect of empowerment throughout indigenous communities. Other women within Hushahu's tribe and neighboring societies are emboldened to challenge traditional gender roles, stepping into leadership positions and reclaiming their rightful place in spiritual practices. The resonance of Hushahu's journey extends beyond the Amazon, reverberating across cultural boundaries and igniting conversations about gender equality and indigenous rights. Through courageous defiance of cultural norms, Hushahu emerges as a symbol of resilience and empowerment, offering hope and inspiration to marginalized women around the world. In conclusion, Hushahu's shamanic journey embodies the sacred echoes of empowerment, echoing across generations and landscapes. The story serves as a testament to the enduring power of the human spirit and the transformative potential of reclaiming one's voice in the face of adversity. As indigenous women continue to rise, Hushahu's legacy stands as a beacon of hope, illuminating the path towards a more equitable and inclusive world.

Keywords: shamanic leadership, indigenous empowerment, gender norms, cultural transformation

Procedia PDF Downloads 40
888 Urban and Building Information Modeling’s Applications for Environmental Education: Case Study of Educational Campuses

Authors: Samar Alarif

Abstract:

Smart sustainable educational campuses are the latest paradigm of innovation in the education domain. Campuses become a hub for sustainable environmental innovations. University has a vital role in paving the road for digital transformations in the infrastructure domain by preparing skilled engineers and specialists. The open digital platform enables smart campuses to simulate real education experience by managing their infrastructure within the curriculums. Moreover, it allows the engagement between governments, businesses, and citizens to push for innovation and sustainable services. Urban and building information modeling platforms have recently attained widespread attention in smart campuses due to their applications and benefits for creating the campus's digital twin in the form of an open digital platform. Qualitative and quantitative strategies were used in directing this research to develop and validate the UIM/BIM platform benefits for smart campuses FM and its impact on the institution's sustainable vision. The research findings are based on literature reviews and case studies of the TU berlin El-Gouna campus. Textual data will be collected using semi-structured interviews with actors, secondary data like BIM course student projects, documents, and publications related to the campus actors. The study results indicated that UIM/BIM has several benefits for the smart campus. Universities can achieve better capacity-building by integrating all the actors in the UIM/BIM process. Universities would achieve their community outreach vision by launching an online outreach of UIM/BIM course for the academic and professional community. The UIM/BIM training courses would integrate students from different disciplines and alumni graduated as well as engineers and planners and technicians. Open platforms enable universities to build a partnership with the industry; companies should be involved in the development of BIM technology courses. The collaboration between academia and the industry would fix the gap, promote the academic courses to reply to the professional requirements, and transfer the industry's academic innovations. In addition to that, the collaboration between academia, industry, government vocational and training centers, and civil society should be promoted by co-creation workshops, a series of seminars, and conferences. These co-creation activities target the capacity buildings and build governmental strategies and policies to support expanding the sustainable innovations and to agree on the expected role of all the stakeholders to support the transformation.

Keywords: smart city, smart educational campus, UIM, urban platforms, sustainable campus

Procedia PDF Downloads 117
887 Building Environmental Citizenship in Spain: Urban Movements and Ecologist Protest in Las Palmas De Gran Canaria, 1970-1983

Authors: Juan Manuel Brito-Diaz

Abstract:

The emergence of urban environmentalism in Spain is related to the processes of economic transformation and growing urbanization that occurred during the end of the Franco regime and the democratic transition. This paper analyzes the urban environmental mobilizations and their impacts as relevant democratizing agents in the processes of political change in cities. It’s an under-researched topic and studies on environmental movements in Spain have paid little attention to it. This research takes as its starting point the close link between democratization and environmentalism, since it considers that environmental conflicts are largely a consequence of democratic problems, and that the impacts of environmental movements are directly linked to the democratization. The study argues that the environmental movements that emerged in Spain at the end of the dictatorship and the democratic transition are an important part of the broad and complex associative fabric that promoted the democratization process. The research focuses on investigating the environmental protest in Las Palmas de Gran Canaria—the most important city in the Canary Islands—between 1970 and 1983, concurrently with the last local governments of the dictatorship and the first democratic city councils. As it is a case study, it opens up the possibility to ask multiple specific questions and assess each of the responses obtained. Although several research methodologies have been applied, such as the analysis of historical archives documentation or oral history interviews, mainly a very widespread methodology in the sociology of social movements, although very little used by social historians, has been used: the Protest Event Analysis (PEA). This methodology, which consists of generating a catalog of protest events by coding data around previously established variables, has allowed me to map, analyze and interpret the occurrence of protests over time and space, and associated factors, through content analysis. For data collection, news from local newspapers have provided a large enough sample to analyze the properties of social protest -frequency, size, demands, forms, organizers, etc.—and relate them to another type of information related to political structures and mobilization repertoires, encouraging the establishment of connections between the protest and the political impacts of urban movements. Finally, the study argues that the environmental movements of this period were essential to the construction of the new democratic city in Spain, not only because they established the issues of sustainability and urban environmental justice on the public agenda, but also because they proposed that conflicts derived from such matters should ultimately be resolved through public deliberation and citizen participation.

Keywords: democratization, environmental movements, political impacts, social movements

Procedia PDF Downloads 174
886 The Logistics Equation and Fractal Dimension in Escalators Operations

Authors: Ali Albadri

Abstract:

The logistics equation has never been used or studied in scientific fields outside the field of ecology. It has never been used to understand the behavior of a dynamic system of mechanical machines, like an escalator. We have studied the compatibility of the logistic map against real measurements from an escalator. This study has proven that there is good compatibility between the logistics equation and the experimental measurements. It has discovered the potential of a relationship between the fractal dimension and the non-linearity parameter, R, in the logistics equation. The fractal dimension increases as the R parameter (non-linear parameter) increases. It implies that the fractal dimension increases as the phase of the life span of the machine move from the steady/stable phase to the periodic double phase to a chaotic phase. The fractal dimension and the parameter R can be used as a tool to verify and check the health of machines. We have come up with a theory that there are three areas of behaviors, which they can be classified during the life span of a machine, a steady/stable stage, a periodic double stage, and a chaotic stage. The level of attention to the machine differs depending on the stage that the machine is in. The rate of faults in a machine increases as the machine moves through these three stages. During the double period and the chaotic stages, the number of faults starts to increase and become less predictable. The rate of predictability improves as our monitoring of the changes in the fractal dimension and the parameter R improves. The principles and foundations of our theory in this work have and will have a profound impact on the design of systems, on the way of operation of systems, and on the maintenance schedules of the systems. The systems can be mechanical, electrical, or electronic. The discussed methodology in this paper will give businesses the chance to be more careful at the design stage and planning for maintenance to control costs. The findings in this paper can be implied and used to correlate the three stages of a mechanical system to more in-depth mechanical parameters like wear and fatigue life.

Keywords: logistcs map, bifurcation map, fractal dimension, logistics equation

Procedia PDF Downloads 95
885 A Proposal for an Excessivist Social Welfare Ordering

Authors: V. De Sandi

Abstract:

In this paper, we characterize a class of rank-weighted social welfare orderings that we call ”Excessivist.” The Excessivist Social Welfare Ordering (eSWO) judges incomes above a fixed threshold θ as detrimental to society. To accomplish this, the identification of a richness or affluence line is necessary. We employ a fixed, exogenous line of excess. We define an eSWF in the form of a weighted sum of individual’s income. This requires introducing n+1 vectors of weights, one for all possible numbers of individuals below the threshold. To do this, the paper introduces a slight modification of the class of rank weighted class of social welfare function. Indeed, in our excessivist social welfare ordering, we allow the weights to be both positive (for individuals below the line) and negative (for individuals above). Then, we introduce ethical concerns through an axiomatic approach. The following axioms are required: continuity above and below the threshold (Ca, Cb), anonymity (A), absolute aversion to excessive richness (AER), pigou dalton positive weights preserving transfer (PDwpT), sign rank preserving full comparability (SwpFC) and strong pareto below the threshold (SPb). Ca, Cb requires that small changes in two income distributions above and below θ do not lead to changes in their ordering. AER suggests that if two distributions are identical in any respect but for one individual above the threshold, who is richer in the first, then the second should be preferred by society. This means that we do not care about the waste of resources above the threshold; the priority is the reduction of excessive income. According to PDwpT, a transfer from a better-off individual to a worse-off individual despite their relative position to the threshold, without reversing their ranks, leads to an improved distribution if the number of individuals below the threshold is the same after the transfer or the number of individuals below the threshold has increased. SPb holds only for individuals below the threshold. The weakening of strong pareto and our ethics need to be justified; we support them through the notion of comparative egalitarianism and income as a source of power. SwpFC is necessary to ensure that, following a positive affine transformation, an individual does not become excessively rich in only one distribution, thereby reversing the ordering of the distributions. Given the axioms above, we can characterize the class of the eSWO, getting the following result through a proof by contradiction and exhaustion: Theorem 1. A social welfare ordering satisfies the axioms of continuity above and below the threshold, anonymity, sign rank preserving full comparability, aversion to excessive richness, Pigou Dalton positive weight preserving transfer, and strong pareto below the threshold, if and only if it is an Excessivist-social welfare ordering. A discussion about the implementation of different threshold lines reviewing the primary contributions in this field follows. What the commonly implemented social welfare functions have been overlooking is the concern for extreme richness at the top. The characterization of Excessivist Social Welfare Ordering, given the axioms above, aims to fill this gap.

Keywords: comparative egalitarianism, excess income, inequality aversion, social welfare ordering

Procedia PDF Downloads 53
884 Gender-Transformative Education: A Pathway to Nourishing and Evolving Gender Equality in the Higher Education of Iran

Authors: Sepideh Mirzaee

Abstract:

Gender-transformative (G-TE) education is a challenging concept in the field of education and it is a matter of hot debate in the contemporary world. Paulo Freire as the prominent advocate of transformative education considers it as an alternative to conventional banking model of education. Besides, a more inclusive concept has been introduced, namely, G-TE, as an unbiased education fostering an environment of gender justice. As its main tenet, G-TE eliminates obstacles to education and improves social shifts. A plethora of contemporary research indicates that G-TE could completely revolutionize education systems by displacing inequalities and changing gender stereotypes. Despite significant progress in female education and its effects on gender equality in Iran, challenges persist. There are some deficiencies regarding gender disparities in the society and, education, specifically. As an example, the number of women with university degrees is on the rise; thus, there will be an increasing demand for employment in the society by them. Instead, many job opportunities remain occupied by men and it is seen as intolerable for the society to assign such occupations to women. In fact, Iran is regarded as a patriarchal society where educational contexts can play a critical role to assign gender ideology to its learners. Thus, such gender ideologies in the education can become the prevailing ideologies in the entire society. Therefore, improving education in this regard, can lead to a significant change in a society subsequently influencing the status of women not only within their own country but also on a global scale. Notably, higher education plays a vital role in this empowerment and social change. Particularly higher education can have a crucial part in imparting gender neutral ideologies to its learners and bringing about substantial change. It has the potential to alleviate the detrimental effects of gender inequalities. Therefore, this study aims to conceptualize the pivotal role of G-TE and its potential power in developing gender equality within the higher educational system of Iran presented within a theoretical framework. The study emphasizes the necessity of stablishing a theoretical grounding for citizenship, and transformative education while distinguishing gender related issues including gender equality, equity and parity. This theoretical foundation will shed lights on the decisions made by policy-makers, syllabus designers, material developers, and specifically professors and students. By doing so, they will be able to promote and implement gender equality recognizing the determinants, obstacles, and consequences of sustaining gender-transformative approaches in their classes within the Iranian higher education system. The expected outcomes include the eradication of gender inequality, transformation of gender stereotypes and provision of equal opportunities for both males and females in education.

Keywords: citizenship education, gender inequality, higher education, patriarchal society, transformative education

Procedia PDF Downloads 63
883 dynr.mi: An R Program for Multiple Imputation in Dynamic Modeling

Authors: Yanling Li, Linying Ji, Zita Oravecz, Timothy R. Brick, Michael D. Hunter, Sy-Miin Chow

Abstract:

Assessing several individuals intensively over time yields intensive longitudinal data (ILD). Even though ILD provide rich information, they also bring other data analytic challenges. One of these is the increased occurrence of missingness with increased study length, possibly under non-ignorable missingness scenarios. Multiple imputation (MI) handles missing data by creating several imputed data sets, and pooling the estimation results across imputed data sets to yield final estimates for inferential purposes. In this article, we introduce dynr.mi(), a function in the R package, Dynamic Modeling in R (dynr). The package dynr provides a suite of fast and accessible functions for estimating and visualizing the results from fitting linear and nonlinear dynamic systems models in discrete as well as continuous time. By integrating the estimation functions in dynr and the MI procedures available from the R package, Multivariate Imputation by Chained Equations (MICE), the dynr.mi() routine is designed to handle possibly non-ignorable missingness in the dependent variables and/or covariates in a user-specified dynamic systems model via MI, with convergence diagnostic check. We utilized dynr.mi() to examine, in the context of a vector autoregressive model, the relationships among individuals’ ambulatory physiological measures, and self-report affect valence and arousal. The results from MI were compared to those from listwise deletion of entries with missingness in the covariates. When we determined the number of iterations based on the convergence diagnostics available from dynr.mi(), differences in the statistical significance of the covariate parameters were observed between the listwise deletion and MI approaches. These results underscore the importance of considering diagnostic information in the implementation of MI procedures.

Keywords: dynamic modeling, missing data, mobility, multiple imputation

Procedia PDF Downloads 161
882 A Segmentation Method for Grayscale Images Based on the Firefly Algorithm and the Gaussian Mixture Model

Authors: Donatella Giuliani

Abstract:

In this research, we propose an unsupervised grayscale image segmentation method based on a combination of the Firefly Algorithm and the Gaussian Mixture Model. Firstly, the Firefly Algorithm has been applied in a histogram-based research of cluster means. The Firefly Algorithm is a stochastic global optimization technique, centered on the flashing characteristics of fireflies. In this context it has been performed to determine the number of clusters and the related cluster means in a histogram-based segmentation approach. Successively these means are used in the initialization step for the parameter estimation of a Gaussian Mixture Model. The parametric probability density function of a Gaussian Mixture Model is represented as a weighted sum of Gaussian component densities, whose parameters are evaluated applying the iterative Expectation-Maximization technique. The coefficients of the linear super-position of Gaussians can be thought as prior probabilities of each component. Applying the Bayes rule, the posterior probabilities of the grayscale intensities have been evaluated, therefore their maxima are used to assign each pixel to the clusters, according to their gray-level values. The proposed approach appears fairly solid and reliable when applied even to complex grayscale images. The validation has been performed by using different standard measures, more precisely: the Root Mean Square Error (RMSE), the Structural Content (SC), the Normalized Correlation Coefficient (NK) and the Davies-Bouldin (DB) index. The achieved results have strongly confirmed the robustness of this gray scale segmentation method based on a metaheuristic algorithm. Another noteworthy advantage of this methodology is due to the use of maxima of responsibilities for the pixel assignment that implies a consistent reduction of the computational costs.

Keywords: clustering images, firefly algorithm, Gaussian mixture model, meta heuristic algorithm, image segmentation

Procedia PDF Downloads 211
881 Designing Form, Meanings, and Relationships for Future Industrial Products. Case Study Observation of PAD

Authors: Elisabetta Cianfanelli, Margherita Tufarelli, Paolo Pupparo

Abstract:

The dialectical mediation between desires and objects or between mass production and consumption continues to evolve over time. This relationship is influenced both by variable geometries of contexts that are distant from the mere design of product form and by aspects rooted in the very definition of industrial design. In particular, the overcoming of macro-areas of innovation in the technological, social, cultural, formal, and morphological spheres, supported by recent theories in critical and speculative design, seems to be moving further and further away from the design of the formal dimension of advanced products. The articulated fabric of theories and practices that feed the definition of “hyperobjects”, and no longer objects describes a common tension in all areas of design and production of industrial products. The latter are increasingly detached from the design of the form and meaning of the same in mass productions, thus losing the quality of products capable of social transformation. For years we have been living in a transformative moment as regards the design process in the definition of the industrial product. We are faced with a dichotomy in which there is, on the one hand, a reactionary aversion to the new techniques of industrial production and, on the other hand, a sterile adoption of the techniques of mass production that we can now consider traditional. This ambiguity becomes even more evident when we talk about industrial products, and we realize that we are moving further and further away from the concepts of "form" as a synthesis of a design thought aimed at the aesthetic-emotional component as well as the functional one. The design of forms and their contents, as statutes of social acts, allows us to investigate the tension on mass production that crosses seasons, trends, technicalities, and sterile determinisms. The design culture has always determined the formal qualities of objects as a sum of aesthetic characteristics functional and structural relationships that define a product as a coherent unit. The contribution proposes a reflection and a series of practical experiences of research on the form of advanced products. This form is understood as a kaleidoscope of relationships through the search for an identity, the desire for democratization, and between these two, the exploration of the aesthetic factor. The study of form also corresponds to the study of production processes, technological innovations, the definition of standards, distribution, advertising, the vicissitudes of taste and lifestyles. Specifically, we will investigate how the genesis of new forms for new meanings introduces a change in the relative innovative production techniques. It becomes, therefore, fundamental to investigate, through the reflections and the case studies exposed inside the contribution, also the new techniques of production and elaboration of the forms of the products, as new immanent and determining element inside the planning process.

Keywords: industrial design, product advanced design, mass productions, new meanings

Procedia PDF Downloads 117
880 Finite Element Modeling and Nonlinear Analysis for Seismic Assessment of Off-Diagonal Steel Braced RC Frame

Authors: Keyvan Ramin

Abstract:

The geometric nonlinearity of Off-Diagonal Bracing System (ODBS) could be a complementary system to covering and extending the nonlinearity of reinforced concrete material. Finite element modeling is performed for flexural frame, x-braced frame and the ODBS braced frame system at the initial phase. Then the different models are investigated along various analyses. According to the experimental results of flexural and x-braced frame, the verification is done. Analytical assessments are performed in according to three-dimensional finite element modeling. Non-linear static analysis is considered to obtain performance level and seismic behavior, and then the response modification factors calculated from each model’s pushover curve. In the next phase, the evaluation of cracks observed in the finite element models, especially for RC members of all three systems is performed. The finite element assessment is performed on engendered cracks in ODBS braced frame for various time steps. The nonlinear dynamic time history analysis accomplished in different stories models for three records of Elcentro, Naghan, and Tabas earthquake accelerograms. Dynamic analysis is performed after scaling accelerogram on each type of flexural frame, x-braced frame and ODBS braced frame one by one. The base-point on RC frame is considered to investigate proportional displacement under each record. Hysteresis curves are assessed along continuing this study. The equivalent viscous damping for ODBS system is estimated in according to references. Results in each section show the ODBS system has an acceptable seismic behavior and their conclusions have been converged when the ODBS system is utilized in reinforced concrete frame.

Keywords: FEM, seismic behaviour, pushover analysis, geometric nonlinearity, time history analysis, equivalent viscous damping, passive control, crack investigation, hysteresis curve

Procedia PDF Downloads 376