Search results for: survival data
22054 Process Optimization for Albanian Crude Oil Characterization
Authors: Xhaklina Cani, Ilirjan Malollari, Ismet Beqiraj, Lorina Lici
Abstract:
Oil characterization is an essential step in the design, simulation, and optimization of refining facilities. To achieve optimal crude selection and processing decisions, a refiner must have exact information refer to crude oil quality. This includes crude oil TBP-curve as the main data for correct operation of refinery crude oil atmospheric distillation plants. Crude oil is typically characterized based on a distillation assay. This procedure is reasonably well-defined and is based on the representation of the mixture of actual components that boil within a boiling point interval by hypothetical components that boil at the average boiling temperature of the interval. The crude oil assay typically includes TBP distillation according to ASTM D-2892, which can characterize this part of oil that boils up to 400 C atmospheric equivalent boiling point. To model the yield curves obtained by physical distillation is necessary to compare the differences between the modelling and the experimental data. Most commercial use a different number of components and pseudo-components to represent crude oil. Laboratory tests include distillations, vapor pressures, flash points, pour points, cetane numbers, octane numbers, densities, and viscosities. The aim of the study is the drawing of true boiling curves for different crude oil resources in Albania and to compare the differences between the modeling and the experimental data for optimal characterization of crude oil.Keywords: TBP distillation curves, crude oil, optimization, simulation
Procedia PDF Downloads 31022053 Design of a Photovoltaic Power Generation System Based on Artificial Intelligence and Internet of Things
Authors: Wei Hu, Wenguang Chen, Chong Dong
Abstract:
In order to improve the efficiency and safety of photovoltaic power generation devices, this photovoltaic power generation system combines Artificial Intelligence (AI) and the Internet of Things (IoT) to control the chasing photovoltaic power generation device to track the sun to improve power generation efficiency and then convert energy management. The system uses artificial intelligence as the control terminal, the power generation device executive end uses the Linux system, and Exynos4412 is the CPU. The power generating device collects the sun image information through Sony CCD. After several power generating devices feedback the data to the CPU for processing, several CPUs send the data to the artificial intelligence control terminal through the Internet. The control terminal integrates the executive terminal information, time information, and environmental information to decide whether to generate electricity normally and then whether to convert the converted electrical energy into the grid or store it in the battery pack. When the power generation environment is abnormal, the control terminal authorizes the protection strategy, the power generation device executive terminal stops power generation and enters a self-protection posture, and at the same time, the control terminal synchronizes the data with the cloud. At the same time, the system is more intelligent, more adaptive, and longer life.Keywords: photo-voltaic power generation, the pursuit of light, artificial intelligence, internet of things, photovoltaic array, power management
Procedia PDF Downloads 12822052 A Cross-Sectional Study on Management of Common Mental Disorders Among Patients Living with HIV/AIDS Attending Antiretroviral Treatment (ART) Clinic in Hoima Regional Referral Hospital Uganda
Authors: Agodo Mugenyi Herbert
Abstract:
Background: A high prevalence of both HIV infection and mental disorders exists in Sub-Saharan Africa, however there is little integration of care for mental health disorders among HIV-infected individuals. The study aimed at determining the management of common mental disorders among HIV/AIDS clients attending Antiretroviral clinic in Hoima regional referral hospital. Significancy of the study: The information generated by this study would help mental health advocates, ministry of health, Civil society organizations in HIV programming to advocate for enhanced mental health care for PLWHA. The result will be used in policy development and lobbying for integration of mental health care in HIV/AIDS care. Methods: This study applied a cross sectional design. It involved data collection from clients with HIV/AIDS attending ART clinic in Hoima regional referral hospital at one specific point in time. It aimed at providing data on the entire population under study. Data was collected from Hoima Regional Referral Hospital at the ART clinic. Data analysis was performed using SPSS version 24. Results: 66 HIV/AIDS clients and 10 health workers in the ART clinic who participated fully completed the study. The overall prevalence of at least one form of mental disorder was 83%. Majority of the health care practitioner do not use pharmacological, psychological, and social interventions to manage such disorders. Conclusion: These results are suggestive of a significant proportion of the HIV-infected patients experiencing psychological difficulty for which they do not receive treatment Recommendations: Current care practices applied to patients with HIV/AIDS should be integrated more generally to include treatment services to identify and manage common mental disorders.Keywords: common mental disorders, mental health, mental illness, and severe mental illness
Procedia PDF Downloads 7822051 Nonlinear Evolution on Graphs
Authors: Benniche Omar
Abstract:
We are concerned with abstract fully nonlinear differential equations having the form y’(t)=Ay(t)+f(t,y(t)) where A is an m—dissipative operator (possibly multi—valued) defined on a subset D(A) of a Banach space X with values in X and f is a given function defined on I×X with values in X. We consider a graph K in I×X. We recall that K is said to be viable with respect to the above abstract differential equation if for each initial data in K there exists at least one trajectory starting from that initial data and remaining in K at least for a short time. The viability problem has been studied by many authors by using various techniques and frames. If K is closed, it is shown that a tangency condition, which is mainly linked to the dynamic, is crucial for viability. In the case when X is infinite dimensional, compactness and convexity assumptions are needed. In this paper, we are concerned with the notion of near viability for a given graph K with respect to y’(t)=Ay(t)+f(t,y(t)). Roughly speaking, the graph K is said to be near viable with respect to y’(t)=Ay(t)+f(t,y(t)), if for each initial data in K there exists at least one trajectory remaining arbitrary close to K at least for short time. It is interesting to note that the near viability is equivalent to an appropriate tangency condition under mild assumptions on the dynamic. Adding natural convexity and compactness assumptions on the dynamic, we may recover the (exact) viability. Here we investigate near viability for a graph K in I×X with respect to y’(t)=Ay(t)+f(t,y(t)) where A and f are as above. We emphasis that the t—dependence on the perturbation f leads us to introduce a new tangency concept. In the base of a tangency conditions expressed in terms of that tangency concept, we formulate criteria for K to be near viable with respect to y’(t)=Ay(t)+f(t,y(t)). As application, an abstract null—controllability theorem is given.Keywords: abstract differential equation, graph, tangency condition, viability
Procedia PDF Downloads 14622050 Implementation Status of Industrial Training for Production Engineering Technology Diploma Inuniversity Kuala Lumpur Malaysia Spanish Institute (Unikl Msi)
Authors: M. Sazali Said, Rahim Jamian, Shahrizan Yusoff, Shahruzaman Sulaiman, Jum'Azulhisham Abdul Shukor
Abstract:
This case study focuses on the role of Universiti Kuala Lumpur Malaysian Spanish Institute (UniKL MSI) to produce technologist in order to reduce the shortage of skilled workers especially in the automotive industry. The purpose of the study therefore seeks to examine the effectiveness of Technical Education and Vocational Training (TEVT) curriculum of UniKL MSI to produce graduates that could immediately be productively employed by the automotive industry. The approach used in this study is through performance evaluation of students attending the Industrial Training Attachment (INTRA). The sample of study comprises of 37 students, 16 university supervisors and 26 industrial supervisors. The research methodology involves the use of quantitative and qualitative methods of data collections through the triangulation approach. The quantitative data was gathered from the students, university supervisors and industrial supervisors through the use of questionnaire. Meanwhile, the qualitative data was obtained from the students and university supervisors through the use of interview and observation. Both types of data have been processed and analyzed in order to summarize the results in terms of frequency and percentage by using a computerized spread sheet. The result shows that industrial supervisors were satisfied with the students’ performance. Meanwhile, university supervisors rated moderate effectiveness of the UniKL MSI curriculum in producing graduates with appropriate skills and in meeting the industrial needs. During the period of study, several weaknesses in the curriculum have been identified for further continuous improvements. Recommendations and suggestions for curriculum improvement also include the enhancement of technical skills and competences of students towards fulfilling the needs and demand of the automotive industries.Keywords: technical education and vocational training (TEVT), industrial training attachment (INTRA), curriculum improvement, automotive industry
Procedia PDF Downloads 37122049 A Longitudinal Survey Study of Izmir Commuter Rail System (IZBAN)
Authors: Samet Sen, Yalcin Alver
Abstract:
Before Izmir Commuter Rail System (IZBAN), most of the respondents along the railway were making their trips by city buses, minibuses or private cars. After IZBAN was put into service, some people changed their previous trip behaviors and they started travelling by IZBAN. Therefore a big travel demand in IZBAN occurred. In this study, the characteristics of passengers and their trip behaviors are found out based on the longitudinal data conducted via two wave trip surveys. Just after one year from IZBAN's opening, the first wave of the surveys was carried out among 539 passengers at six stations during morning peak hours between 07.00 am-09.30 am. The second wave was carried out among 669 passengers at the same six stations two years after the first wave during the same morning peak hours. As a result of this study, the respondents' socio-economic specifications, the distribution of trips by region, the impact of IZBAN on transport modes, the changes in travel time and travel cost and satisfaction data were obtained. These data enabled to compare two waves and explain the changes in socio-economic factors and trip behaviors. In both waves, 10 % of the respondents stopped driving their own cars and they started to take IZBAN. This is an important development in solving traffic problems. More public transportation means less traffic congestion.Keywords: commuter rail system, comparative study, longitudinal survey, public transportation
Procedia PDF Downloads 44022048 Happiness of Thai People: An Analysis by Socioeconomic Factors
Authors: Kalayanee Senasu
Abstract:
This research investigates Thai people’s happiness based on socioeconomic factors, i.e. region, municipality, gender, age, and occupation. The research data were collected from survey data using interviewed questionnaires. The primary data were from stratified multi-stage sampling in each region, province, district, and enumeration area; and simple random sampling in each enumeration area. These data were collected in 13 provinces: Bangkok and three provinces in each of all four regions. The data were collected over two consecutive years. There were 3,217 usable responses from the 2017 sampling, and 3,280 usable responses from the 2018 sampling. The Senasu’s Thai Happiness Index (THaI) was used to calculate the happiness level of Thai people in 2017 and 2018. This Thai Happiness Index comprises five dimensions: subjective well-being, quality of life, philosophy of living, governance, and standard of living. The result reveals that the 2017 happiness value is 0.506, while Thai people are happier in 2018 (THaI = 0.556). For 2017 happiness, people in the Central region have the highest happiness (THaI = 0.532), which is followed closely by people in the Bangkok Metropolitan Area (THaI = 0.530). People in the North have the lowest happiness (THaI = 0.476) which is close to the level for people in the Northeast (THaI = 0.479). Comparing age groups, it is found that people in the age range 25-29 years old are the happiest (THaI = 0.529), followed by people in the age range 55-59 and 35-39 years old (THaI = 0.526 and 0.523, respectively). Additionally, people who live in municipal areas are happier than those who live in non-municipal areas (THaI = 0.533 vs. 0.475). Males are happier than females (THaI = 0.530 vs. 0.482), and retired people, entrepreneurs, and government employees are all in the high happiness groups (THaI =0.614, 0.608, and 0.593, respectively). For 2018 happiness, people in the Northern region have the highest happiness (THaI = 0.590), which is followed closely by people in the South and Bangkok Metropolitan Area (THaI = 0.578 and 0.577, respectively). People in the Central have the lowest happiness (THaI = 0.530), which is close to the level for people in the Northeast (THaI = 0.533). Comparing age groups, it is found that people in the age range 35-39 years old are the happiest (THaI = 0.572), followed by people in the age range 40-44 and 60-64 years old (THaI = 0.569 and 0.568, respectively). Similar to 2017 happiness, people who live in municipal areas are happier than those who live in non-municipal areas (THaI = 0.567 vs. 0. 552). However, males and females are happy at about the same levels (THaI = 0.561 vs. 0.560), and government employees, retired people, and state enterprise employees are all in the high happiness groups (THaI =0.667, 0.639, and 0.661, respectively).Keywords: happiness, quality of life, Thai happiness index, socio-economic factors
Procedia PDF Downloads 11922047 Mathematical Study for Traffic Flow and Traffic Density in Kigali Roads
Authors: Kayijuka Idrissa
Abstract:
This work investigates a mathematical study for traffic flow and traffic density in Kigali city roads and the data collected from the national police of Rwanda in 2012. While working on this topic, some mathematical models were used in order to analyze and compare traffic variables. This work has been carried out on Kigali roads specifically at roundabouts from Kigali Business Center (KBC) to Prince House as our study sites. In this project, we used some mathematical tools to analyze the data collected and to understand the relationship between traffic variables. We applied the Poisson distribution method to analyze and to know the number of accidents occurred in this section of the road which is from KBC to Prince House. The results show that the accidents that occurred in 2012 were at very high rates due to the fact that this section has a very narrow single lane on each side which leads to high congestion of vehicles, and consequently, accidents occur very frequently. Using the data of speeds and densities collected from this section of road, we found that the increment of the density results in a decrement of the speed of the vehicle. At the point where the density is equal to the jam density the speed becomes zero. The approach is promising in capturing sudden changes on flow patterns and is open to be utilized in a series of intelligent management strategies and especially in noncurrent congestion effect detection and control.Keywords: statistical methods, traffic flow, Poisson distribution, car moving technics
Procedia PDF Downloads 28422046 Women Entrepreneurs in Health Care: An Exploratory Study
Authors: Priya Nambisan, Lien B. Nguyen
Abstract:
Women participate extensively in the healthcare field, professionally (as physicians, nurses, dietitians, etc.) as well as informally (as caregivers at home). This provides them with a better understanding of the health needs of people. Women are also in the forefront of using social media and other mobile health related apps. Further, many health mobile apps are specifically designed for women users. All of these indicate the potential for women to be successful entrepreneurs in healthcare, especially, in the area of mobile health app development. However, extant research in entrepreneurship has paid limited attention to women entrepreneurship in healthcare. The objective of this study is to determine the key factors that shape the intentions and actions of women entrepreneurs with regard to their entrepreneurial pursuits in the healthcare field. Specifically, the study advances several hypotheses that relate key variables such as personal skills and capabilities, experience, support from institutions and family, and perceptions regarding entrepreneurship to individual intentions and actions regarding entrepreneurship (specifically, in the area of mobile apps). The study research model will be validated using survey data collected from potential women entrepreneurs in the healthcare field – students in the area of health informatics and engineering. The questionnaire-based survey relates to woman respondents’ intention to become entrepreneurs in healthcare and the key factors (independent variables) that may facilitate or inhibit their entrepreneurial intentions and pursuits. The survey data collection is currently ongoing. We also plan to conduct semi-structured interviews with around 10-15 women entrepreneurs who are currently developing mobile apps to understand the key issues and challenges that they face in this area. This is an exploratory study and as such our goal is to combine the findings from the regression analysis of the survey data and that from the content analysis of the interview data to inform on future research on women entrepreneurship in healthcare. The study findings will hold important policy implications, specifically for the development of new programs and initiatives to promote women entrepreneurship, particularly in healthcare and technology areas.Keywords: women entrepreneurship, healthcare, mobile apps, health apps
Procedia PDF Downloads 45522045 Shark Detection and Classification with Deep Learning
Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti
Abstract:
Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.Keywords: classification, data mining, Instagram, remote monitoring, sharks
Procedia PDF Downloads 12522044 GPS Refinement in Cities Using Statistical Approach
Authors: Ashwani Kumar
Abstract:
GPS plays an important role in everyday life for safe and convenient transportation. While pedestrians use hand held devices to know their position in a city, vehicles in intelligent transport systems use relatively sophisticated GPS receivers for estimating their current position. However, in urban areas where the GPS satellites are occluded by tall buildings, trees and reflections of GPS signals from nearby vehicles, GPS position estimation becomes poor. In this work, an exhaustive GPS data is collected at a single point in urban area under different times of day and under dynamic environmental conditions. The data is analyzed and statistical refinement methods are used to obtain optimal position estimate among all the measured positions. The results obtained are compared with publically available datasets and obtained position estimation refinement results are promising.Keywords: global positioning system, statistical approach, intelligent transport systems, least squares estimation
Procedia PDF Downloads 29022043 Impact of Urbanization on the Performance of Higher Education Institutions
Authors: Chandan Jha, Amit Sachan, Arnab Adhikari, Sayantan Kundu
Abstract:
The purpose of this study is to evaluate the performance of Higher Education Institutions (HEIs) of India and examine the impact of urbanization on the performance of HEIs. In this study, the Data Envelopment Analysis (DEA) has been used, and the authors have collected the required data related to performance measures from the National Institutional Ranking Framework web portal. In this study, the authors have evaluated the performance of HEIs by using two different DEA models. In the first model, geographic locations of the institutes have been categorized into two categories, i.e., Urban Vs. Non-Urban. However, in the second model, these geographic locations have been classified into three categories, i.e., Urban, Semi-Urban, Non-Urban. The findings of this study provide several insights related to the degree of urbanization and the performance of HEIs.Keywords: DEA, higher education, performance evaluation, urbanization
Procedia PDF Downloads 21922042 Experiments to Study the Vapor Bubble Dynamics in Nucleate Pool Boiling
Authors: Parul Goel, Jyeshtharaj B. Joshi, Arun K. Nayak
Abstract:
Nucleate boiling is characterized by the nucleation, growth and departure of the tiny individual vapor bubbles that originate in the cavities or imperfections present in the heating surface. It finds a wide range of applications, e.g. in heat exchangers or steam generators, core cooling in power reactors or rockets, cooling of electronic circuits, owing to its highly efficient transfer of large amount of heat flux over small temperature differences. Hence, it is important to be able to predict the rate of heat transfer and the safety limit heat flux (critical heat flux, heat flux higher than this can lead to damage of the heating surface) applicable for any given system. A large number of experimental and analytical works exist in the literature, and are based on the idea that the knowledge of the bubble dynamics on the microscopic scale can lead to the understanding of the full picture of the boiling heat transfer. However, the existing data in the literature are scattered over various sets of conditions and often in disagreement with each other. The correlations obtained from such data are also limited to the range of conditions they were established for and no single correlation is applicable over a wide range of parameters. More recently, a number of researchers have been trying to remove empiricism in the heat transfer models to arrive at more phenomenological models using extensive numerical simulations; these models require state-of-the-art experimental data for a wide range of conditions, first for input and later, for their validation. With this idea in mind, experiments with sub-cooled and saturated demineralized water have been carried out under atmospheric pressure to study the bubble dynamics- growth rate, departure size and frequencies for nucleate pool boiling. A number of heating elements have been used to study the dependence of vapor bubble dynamics on the heater surface finish and heater geometry along with the experimental conditions like the degree of sub-cooling, super heat and the heat flux. An attempt has been made to compare the data obtained with the existing data and the correlations in the literature to generate an exhaustive database for the pool boiling conditions.Keywords: experiment, boiling, bubbles, bubble dynamics, pool boiling
Procedia PDF Downloads 30422041 The Digitalization of Occupational Health and Safety Training: A Fourth Industrial Revolution Perspective
Authors: Deonie Botha
Abstract:
Digital transformation and the digitization of occupational health and safety training have grown exponentially due to a variety of contributing factors. The literature suggests that digitalization has numerous benefits but also has associated challenges. The aim of the paper is to develop an understanding of both the perceived benefits and challenges of digitalization in an occupational health and safety context in an effort to design and develop e-learning interventions that will optimize the benefits of digitalization and address the associated challenges. The paper proposes, deliberate and tests the design principles of an e-learning intervention to ensure alignment with the requirements of a digitally transformed environment. The results of the research are based on a literature review regarding the requirements and effect of the Fourth Industrial Revolution on learning and e-learning in particular. The findings of the literature review are enhanced with empirical research in the form of a case study conducted in an organization that designs and develops e-learning content in the occupational health and safety industry. The primary findings of the research indicated that: (i) The requirements of learners and organizations in respect of e-learning are different than previously (i.e., a pre-Fourth Industrial Revolution related work setting). (ii) The design principles of an e-learning intervention need to be aligned with the entire value chain of the organization. (iii) Digital twins support and enhance the design and development of e-learning. (iv)Learning should incorporate a multitude of sensory experiences and should not only be based on visual stimulation. (v) Data that are generated as a result of e-learning interventions should be incorporated into big data streams to be analyzed and to become actionable. It is therefore concluded that there is general consensus on the requirements that e-learning interventions need to adhere to in a digitally transformed occupational health and safety work environment. The challenge remains for organizations to incorporate data generated as a result of e-learning interventions into the digital ecosystem of the organization.Keywords: digitalization, training, fourth industrial revolution, big data
Procedia PDF Downloads 16222040 Non-Parametric, Unconditional Quantile Estimation of Efficiency in Microfinance Institutions
Authors: Komlan Sedzro
Abstract:
We apply the non-parametric, unconditional, hyperbolic order-α quantile estimator to appraise the relative efficiency of Microfinance Institutions in Africa in terms of outreach. Our purpose is to verify if these institutions, which must constantly try to strike a compromise between their social role and financial sustainability are operationally efficient. Using data on African MFIs extracted from the Microfinance Information eXchange (MIX) database and covering the 2004 to 2006 periods, we find that more efficient MFIs are also the most profitable. This result is in line with the view that social performance is not in contradiction with the pursuit of excellent financial performance. Our results also show that large MFIs in terms of asset and those charging the highest fees are not necessarily the most efficient.Keywords: data envelopment analysis, microfinance institutions, quantile estimation of efficiency, social and financial performance
Procedia PDF Downloads 31322039 Curvature Based-Methods for Automatic Coarse and Fine Registration in Dimensional Metrology
Authors: Rindra Rantoson, Hichem Nouira, Nabil Anwer, Charyar Mehdi-Souzani
Abstract:
Multiple measurements by means of various data acquisition systems are generally required to measure the shape of freeform workpieces for accuracy, reliability and holisticity. The obtained data are aligned and fused into a common coordinate system within a registration technique involving coarse and fine registrations. Standardized iterative methods have been established for fine registration such as Iterative Closest Points (ICP) and its variants. For coarse registration, no conventional method has been adopted yet despite a significant number of techniques which have been developed in the literature to supply an automatic rough matching between data sets. Two main issues are addressed in this paper: the coarse registration and the fine registration. For coarse registration, two novel automated methods based on the exploitation of discrete curvatures are presented: an enhanced Hough Transformation (HT) and an improved Ransac Transformation. The use of curvature features in both methods aims to reduce computational cost. For fine registration, a new variant of ICP method is proposed in order to reduce registration error using curvature parameters. A specific distance considering the curvature similarity has been combined with Euclidean distance to define the distance criterion used for correspondences searching. Additionally, the objective function has been improved by combining the point-to-point (P-P) minimization and the point-to-plane (P-Pl) minimization with automatic weights. These ones are determined from the preliminary calculated curvature features at each point of the workpiece surface. The algorithms are applied on simulated and real data performed by a computer tomography (CT) system. The obtained results reveal the benefit of the proposed novel curvature-based registration methods.Keywords: discrete curvature, RANSAC transformation, hough transformation, coarse registration, ICP variant, point-to-point and point-to-plane minimization combination, computer tomography
Procedia PDF Downloads 42922038 Whole Exome Sequencing Data Analysis of Rare Diseases: Non-Coding Variants and Copy Number Variations
Authors: S. Fahiminiya, J. Nadaf, F. Rauch, L. Jerome-Majewska, J. Majewski
Abstract:
Background: Sequencing of protein coding regions of human genome (Whole Exome Sequencing; WES), has demonstrated a great success in the identification of causal mutations for several rare genetic disorders in human. Generally, most of WES studies have focused on rare variants in coding exons and splicing-sites where missense substitutions lead to the alternation of protein product. Although focusing on this category of variants has revealed the mystery behind many inherited genetic diseases in recent years, a subset of them remained still inconclusive. Here, we present the result of our WES studies where analyzing only rare variants in coding regions was not conclusive but further investigation revealed the involvement of non-coding variants and copy number variations (CNV) in etiology of the diseases. Methods: Whole exome sequencing was performed using our standard protocols at Genome Quebec Innovation Center, Montreal, Canada. All bioinformatics analyses were done using in-house WES pipeline. Results: To date, we successfully identified several disease causing mutations within gene coding regions (e.g. SCARF2: Van den Ende-Gupta syndrome and SNAP29: 22q11.2 deletion syndrome) by using WES. In addition, we showed that variants in non-coding regions and CNV have also important value and should not be ignored and/or filtered out along the way of bioinformatics analysis on WES data. For instance, in patients with osteogenesis imperfecta type V and in patients with glucocorticoid deficiency, we identified variants in 5'UTR, resulting in the production of longer or truncating non-functional proteins. Furthermore, CNVs were identified as the main cause of the diseases in patients with metaphyseal dysplasia with maxillary hypoplasia and brachydactyly and in patients with osteogenesis imperfecta type VII. Conclusions: Our study highlights the importance of considering non-coding variants and CNVs during interpretation of WES data, as they can be the only cause of disease under investigation.Keywords: whole exome sequencing data, non-coding variants, copy number variations, rare diseases
Procedia PDF Downloads 42422037 Motor Gear Fault Diagnosis by Measurement of Current, Noise and Vibration on AC Machine
Authors: Sun-Ki Hong, Ki-Seok Kim, Yong-Ho Jo
Abstract:
Lots of motors have been being used in industry. Therefore many researchers have studied about the failure diagnosis of motors. In this paper, the effect of measuring environment for diagnosis of gear fault connected to a motor shaft is studied. The fault diagnosis is executed through the comparison of normal gear and abnormal gear. The measured FFT data are compared with the normal data and analyzed for q-axis current, noise and vibration. For bad and good environment, the diagnosis results are compared. From these, it is shown that the bad measuring environment may not be able to detect exactly the motor gear fault. Therefore it is emphasized that the measuring environment should be carefully prepared.Keywords: motor fault, diagnosis, FFT, vibration, noise, q-axis current, measuring environment
Procedia PDF Downloads 56122036 Implementation of Smart Card Automatic Fare Collection Technology in Small Transit Agencies for Standards Development
Authors: Walter E. Allen, Robert D. Murray
Abstract:
Many large transit agencies have adopted RFID technology and electronic automatic fare collection (AFC) or smart card systems, but small and rural agencies remain tied to obsolete manual, cash-based fare collection. Small countries or transit agencies can benefit from the implementation of smart card AFC technology with the promise of increased passenger convenience, added passenger satisfaction and improved agency efficiency. For transit agencies, it reduces revenue loss, improves passenger flow and bus stop data. For countries, further implementation into security, distribution of social services or currency transactions can provide greater benefits. However, small countries or transit agencies cannot afford expensive proprietary smart card solutions typically offered by the major system suppliers. Deployment of Contactless Fare Media System (CFMS) Standard eliminates the proprietary solution, ultimately lowering the cost of implementation. Acumen Building Enterprise, Inc. chose the Yuma County Intergovernmental Public Transportation Authority (YCIPTA) existing proprietary YCAT smart card system to implement CFMS. The revised system enables the purchase of fare product online with prepaid debit or credit cards using the Payment Gateway Processor. Open and interoperable smart card standards for transit have been developed. During the 90-day Pilot Operation conducted, the transit agency gathered the data from the bus AcuFare 200 Card Reader, loads (copies) the data to a USB Thumb Drive and uploads the data to the Acumen Host Processing Center for consolidation of the data into the transit agency master data file. The transition from the existing proprietary smart card data format to the new CFMS smart card data format was transparent to the transit agency cardholders. It was proven that open standards and interoperability design can work and reduce both implementation and operational costs for small transit agencies or countries looking to expand smart card technology. Acumen was able to avoid the implementation of the Payment Card Industry (PCI) Data Security Standards (DSS) which is expensive to develop and costly to operate on a continuing basis. Due to the substantial additional complexities of implementation and the variety of options presented to the transit agency cardholder, Acumen chose to implement only the Directed Autoload. To improve the implementation efficiency and the results for a similar undertaking, it should be considered that some passengers lack credit cards and are averse to technology. There are more than 1,300 small and rural agencies in the United States. This grows by 10 fold when considering small countries or rural locations throughout Latin American and the world. Acumen is evaluating additional countries, sites or transit agency that can benefit from the smart card systems. Frequently, payment card systems require extensive security procedures for implementation. The Project demonstrated the ability to purchase fare value, rides and passes with credit cards on the internet at a reasonable cost without highly complex security requirements.Keywords: automatic fare collection, near field communication, small transit agencies, smart cards
Procedia PDF Downloads 28722035 A Quantitative Structure-Adsorption Study on Novel and Emerging Adsorbent Materials
Authors: Marc Sader, Michiel Stock, Bernard De Baets
Abstract:
Considering a large amount of adsorption data of adsorbate gases on adsorbent materials in literature, it is interesting to predict such adsorption data without experimentation. A quantitative structure-activity relationship (QSAR) is developed to correlate molecular characteristics of gases and existing knowledge of materials with their respective adsorption properties. The application of Random Forest, a machine learning method, on a set of adsorption isotherms at a wide range of partial pressures and concentrations is studied. The predicted adsorption isotherms are fitted to several adsorption equations to estimate the adsorption properties. To impute the adsorption properties of desired gases on desired materials, leave-one-out cross-validation is employed. Extensive experimental results for a range of settings are reported.Keywords: adsorption, predictive modeling, QSAR, random forest
Procedia PDF Downloads 23322034 A Comparative Study on the Dimensional Error of 3D CAD Model and SLS RP Model for Reconstruction of Cranial Defect
Authors: L. Siva Rama Krishna, Sriram Venkatesh, M. Sastish Kumar, M. Uma Maheswara Chary
Abstract:
Rapid Prototyping (RP) is a technology that produces models and prototype parts from 3D CAD model data, CT/MRI scan data, and model data created from 3D object digitizing systems. There are several RP process like Stereolithography (SLA), Solid Ground Curing (SGC), Selective Laser Sintering (SLS), Fused Deposition Modelling (FDM), 3D Printing (3DP) among them SLS and FDM RP processes are used to fabricate pattern of custom cranial implant. RP technology is useful in engineering and biomedical application. This is helpful in engineering for product design, tooling and manufacture etc. RP biomedical applications are design and development of medical devices, instruments, prosthetics and implantation; it is also helpful in planning complex surgical operation. The traditional approach limits the full appreciation of various bony structure movements and therefore the custom implants produced are difficult to measure the anatomy of parts and analyse the changes in facial appearances accurately. Cranioplasty surgery is a surgical correction of a defect in cranial bone by implanting a metal or plastic replacement to restore the missing part. This paper aims to do a comparative study on the dimensional error of CAD and SLS RP Models for reconstruction of cranial defect by comparing the virtual CAD with the physical RP model of a cranial defect.Keywords: rapid prototyping, selective laser sintering, cranial defect, dimensional error
Procedia PDF Downloads 32822033 Size, Shape, and Compositional Effects on the Order-Disorder Phase Transitions in Au-Cu and Pt-M (M = Fe, Co, and Ni) Nanocluster Alloys
Authors: Forrest Kaatz, Adhemar Bultheel
Abstract:
Au-Cu and Pt-M (M = Fe, Co, and Ni) nanocluster alloys are currently being investigated worldwide by many researchers for their interesting catalytic and nanophase properties. The low-temperature behavior of the phase diagrams is not well understood for alloys with nanometer sizes and shapes. These systems have similar bulk phase diagrams with the L12 (Au3Cu, Pt3M, AuCu3, and PtM3) structurally ordered intermetallics and the L10 structure for the AuCu and PtM intermetallics. We consider three models for low temperature ordering in the phase diagrams of Au–Cu and Pt–M nanocluster alloys. These models are valid for sizes ~ 5 nm and approach bulk values for sizes ~ 20 nm. We study the phase transition in nanoclusters with cubic, octahedral, and cuboctahedral shapes, covering the compositions of interest. These models are based on studying the melting temperatures in nanoclusters using the regular solution, mixing model for alloys. Experimentally, it is extremely challenging to determine thermodynamic data on nano–sized alloys. Reasonable agreement is found between these models and recent experimental data on nanometer clusters in the Au–Cu and Pt–M nanophase systems. From our data, experiments on nanocubes about 5 nm in size, of stoichiometric AuCu and PtM composition, could help differentiate between the models. Some available evidence indicates that ordered intermetallic nanoclusters have better catalytic properties than disordered ones. We conclude with a discussion of physical mechanisms whereby ordering could improve the catalytic properties of nanocluster alloys.Keywords: catalytic reactions, gold nanoalloys, phase transitions, platinum nanoalloys
Procedia PDF Downloads 18222032 National Identity in Connecting the Community through Mural Art for Petronas Dagangan Berhad
Authors: Nadiah Mohamad, Wan Samiati Andriana Wan Mohd Daud, M. Suhaimi Tohid, Mohd Fazli Othman, Mohamad Rizal Salleh
Abstract:
This is a collaborative project of the mural art between The Department of Fine Art from Universiti Teknologi MARA (UiTM) and Petronas Dagangan Berhad (PDB), the most leading retailer and marketer of downstream oil and gas products in Malaysia. Five different states in the Peninsular of Malaysia that has been identified in showcasing the National Identity of Malaysia at each Petronas gas station, this also includes the Air Keroh in Melaka, Pasir Pekan in Kelantan, Pontian in Johor, Simpang Pulai in Perak, and also Wakaf Bharu in Terengganu. This project is to analyze the element of national identity that has been demonstrated at the Petronas's Mural. The ultimate aim of the mural is to let the community and local people to be aware about what Malaysians are consists and proud of and how everyone is able to connect with the idea through visual art. The method that is being explained in this research is by using visual data through research and also self-experience in collecting the visual data in identifying what images is considered as the national identity and idea development and visual analysis is being transferred based upon the visual data collection. In this stage, elements and principles of design will be the key in highlighting what is necessary for a work of art. In conclusion, visual image of the National Identity of Malaysia is able to connect to the audience from local and also to the people from outside the country to learn and understand the beauty and diversity of Malaysia as a unique country with art through the wall of five Petronas gas station.Keywords: community, fine art, mural art, national identity
Procedia PDF Downloads 21222031 Machine Learning Methods for Network Intrusion Detection
Authors: Mouhammad Alkasassbeh, Mohammad Almseidin
Abstract:
Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanisms that is used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity, and availability of the services. The speed of the IDS is a very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The J48, MLP, and Bayes Network classifiers have been chosen for this study. It has been proven that the J48 classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type DOS, R2L, U2R, and PROBE. Procedia PDF Downloads 24022030 Colored Image Classification Using Quantum Convolutional Neural Networks Approach
Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins
Abstract:
Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning
Procedia PDF Downloads 13422029 Using Swarm Intelligence to Forecast Outcomes of English Premier League Matches
Authors: Hans Schumann, Colin Domnauer, Louis Rosenberg
Abstract:
In this study, machine learning techniques were deployed on real-time human swarm data to forecast the likelihood of outcomes for English Premier League matches in the 2020/21 season. These techniques included ensemble models in combination with neural networks and were tested against an industry standard of Vegas Oddsmakers. Predictions made from the collective intelligence of human swarm participants managed to achieve a positive return on investment over a full season on matches, empirically proving the usefulness of a new artificial intelligence valuing human instinct and intelligence.Keywords: artificial intelligence, data science, English Premier League, human swarming, machine learning, sports betting, swarm intelligence
Procedia PDF Downloads 21722028 Community Perception and Knowledge on Oral Cancer Screening Methods in Kuwait
Authors: Lavanya Dharmendran, Shenuka Singh, Sona Baburathanam
Abstract:
The aim of the study is to understand the level of awareness in a community of a specific region of Kuwait regarding oral cancer and its screening methods so as to enhance the uptake of oral cancer screening methods. This is a cross-sectional study comprising 100 adult participants residing in the governate of Farwaniya, Kuwait. Participants of above 18 years of both genders will be selected using convenience sampling. Data collection includes the administration of a self-administered questionnaire. The questionnaire comprises three sections, each section assessing the knowledge, attitudes and practices of the participants’ opinions about oral cancer and screening methods. Data will be analyzed using Humphris Oral Cancer Knowledge Scale. Inferential statistics will be done using Chi-Square or Fisher’s exact test for categorical data. A level of p<.05 will be established as being significant. All ethical considerations, such as respect for personal confidentiality and informed consent, will be applied in this study. This study revealed that although respondents were aware of the term oral cancer, more than half of the study participants were unaware of the symptoms associated with this condition. Smoking and alcohol were identified as risk factors for oral cancer, but the majority of participants did not identify the Human Papilloma Virus (HPV) as an added risk factor. This suggests a greater need for dental practitioners to include educational strategies in routine dental visits to ensure greater awareness of oral cancer.Keywords: oral cancer, oral screening, oral public health, oral health
Procedia PDF Downloads 7622027 Poverty Dynamics in Thailand: Evidence from Household Panel Data
Authors: Nattabhorn Leamcharaskul
Abstract:
This study aims to examine determining factors of the dynamics of poverty in Thailand by using panel data of 3,567 households in 2007-2017. Four techniques of estimation are employed to analyze the situation of poverty across households and time periods: the multinomial logit model, the sequential logit model, the quantile regression model, and the difference in difference model. Households are categorized based on their experiences into 5 groups, namely chronically poor, falling into poverty, re-entering into poverty, exiting from poverty and never poor households. Estimation results emphasize the effects of demographic and socioeconomic factors as well as unexpected events on the economic status of a household. It is found that remittances have positive impact on household’s economic status in that they are likely to lower the probability of falling into poverty or trapping in poverty while they tend to increase the probability of exiting from poverty. In addition, not only receiving a secondary source of household income can raise the probability of being a never poor household, but it also significantly increases household income per capita of the chronically poor and falling into poverty households. Public work programs are recommended as an important tool to relieve household financial burden and uncertainty and thus consequently increase a chance for households to escape from poverty.Keywords: difference in difference, dynamic, multinomial logit model, panel data, poverty, quantile regression, remittance, sequential logit model, Thailand, transfer
Procedia PDF Downloads 11922026 Factors Affecting Employee’s Effectiveness at Job in Banking Sectors of Pakistan
Authors: Sajid Aman
Abstract:
Jobs in the banking sector in Pakistan are perceived as very tough, due to which employee turnover is very high. However, the managerial role is very important in influencing employees’ attitudes toward their turnout. This paper explores the manager’s role in influencing employees’ effectiveness on the job. The paper adopted a pragmatic approach by combining both qualitative and quantitative data. The study employed an exploratory sequential strategy under a mixed-method research design. Qualitative data was analyzed using thematic analysis. Five major themes, such as the manager’s attitude towards employees, his leadership style, listening to employee’s personal problems, provision of personal loans without interest and future career prospects, emerged as key factors increasing employee’s effectiveness in the banking sector. The quantitative data revealed that a manager’s attitude, leadership style, availability to listen to employees’ personal problems, and future career prospects and listening to employee’s personal problems are strongly associated with employees’ effectiveness at the job. However, personal loan without interest was noted as having no significant association with employee’s effectiveness at the job. The study concludes manager’s role is more important in the effectiveness of the employees at their job in the banking sector. It is suggested that managers should have a positive attitude towards employees and give time to listening to employee’s problems, even personal ones.Keywords: banking sector, employee’s effectiveness, manager’s role, leadership style
Procedia PDF Downloads 3722025 Study and GIS Development of Geothermal Potential in South Algeria (Adrar Region)
Authors: A. Benatiallah, D. Benatiallah, F. Abaidi, B. Nasri, A. Harrouz, S. Mansouri
Abstract:
The region of Adrar is located in the south-western Algeria and covers a total area of 443.782 km², occupied by a population of 432,193 inhabitants. The main activity of population is agriculture, mainly based on the date palm cultivation occupies a total area of 23,532 ha. Adrar region climate is a continental desert characterized by a high variation in temperature between months (July, August) it exceeds 48°C and coldest months (December, January) with 16°C. Rainfall is very limited in frequency and volume with an aridity index of 4.6 to 5 which corresponds to a type of arid climate. Geologically Adrar region is located on the edge North West and is characterized by a Precambrian basement cover stolen sedimentary deposit of Phanerozoic age transgressive. The depression is filled by Touat site Paleozoic deposits (Cambrian to Namurian) of a vast sedimentary basin extending secondary age of the Saharan Atlas to the north hamada Tinhirt Tademaït and the plateau of south and Touat Gourara west to Gulf of Gabes in the Northeast. In this work we have study geothermal potential of Adrar region from the borehole data eatable in various sites across the area of 400,000 square kilometres; from these data we developed a GIS (Adrar_GIS) that plots data on the various points and boreholes in the region specifying information on available geothermal potential has variable depths.Keywords: sig, geothermal, potenteil, temperature
Procedia PDF Downloads 469