Search results for: quantification accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4191

Search results for: quantification accuracy

81 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection

Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy

Abstract:

Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.

Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks

Procedia PDF Downloads 74
80 The Implantable MEMS Blood Pressure Sensor Model With Wireless Powering And Data Transmission

Authors: Vitaliy Petrov, Natalia Shusharina, Vitaliy Kasymov, Maksim Patrushev, Evgeny Bogdanov

Abstract:

The leading worldwide death reasons are ischemic heart disease and other cardiovascular illnesses. Generally, the common symptom is high blood pressure. Long-time blood pressure control is very important for the prophylaxis, correct diagnosis and timely therapy. Non-invasive methods which are based on Korotkoff sounds are impossible to apply often and for a long time. Implantable devices can combine longtime monitoring with high accuracy of measurements. The main purpose of this work is to create a real-time monitoring system for decreasing the death rate from cardiovascular diseases. These days implantable electronic devices began to play an important role in medicine. Usually implantable devices consist of a transmitter, powering which could be wireless with a special made battery and measurement circuit. Common problems in making implantable devices are short lifetime of the battery, big size and biocompatibility. In these work, blood pressure measure will be the focus because it’s one of the main symptoms of cardiovascular diseases. Our device will consist of three parts: the implantable pressure sensor, external transmitter and automated workstation in a hospital. The Implantable part of pressure sensors could be based on piezoresistive or capacitive technologies. Both sensors have some advantages and some limitations. The Developed circuit is based on a small capacitive sensor which is made of the technology of microelectromechanical systems (MEMS). The Capacitive sensor can provide high sensitivity, low power consumption and minimum hysteresis compared to the piezoresistive sensor. For this device, it was selected the oscillator-based circuit where frequency depends from the capacitance of sensor hence from capacitance one can calculate pressure. The external device (transmitter) used for wireless charging and signal transmission. Some implant devices for these applications are passive, the external device sends radio wave signal on internal LC circuit device. The external device gets reflected the signal from the implant and from a change of frequency is possible to calculate changing of capacitance and then blood pressure. However, this method has some disadvantages, such as the patient position dependence and static using. Developed implantable device doesn’t have these disadvantages and sends blood pressure data to the external part in real-time. The external device continuously sends information about blood pressure to hospital cloud service for analysis by a physician. Doctor’s automated workstation at the hospital also acts as a dashboard, which displays actual medical data of patients (which require attention) and stores it in cloud service. Usually, critical heart conditions occur few hours before heart attack but the device is able to send an alarm signal to the hospital for an early action of medical service. The system was tested with wireless charging and data transmission. These results can be used for ASIC design for MEMS pressure sensor.

Keywords: MEMS sensor, RF power, wireless data, oscillator-based circuit

Procedia PDF Downloads 589
79 Approximate-Based Estimation of Single Event Upset Effect on Statistic Random-Access Memory-Based Field-Programmable Gate Arrays

Authors: Mahsa Mousavi, Hamid Reza Pourshaghaghi, Mohammad Tahghighi, Henk Corporaal

Abstract:

Recently, Statistic Random-Access Memory-based (SRAM-based) Field-Programmable Gate Arrays (FPGAs) are widely used in aeronautics and space systems where high dependability is demanded and considered as a mandatory requirement. Since design’s circuit is stored in configuration memory in SRAM-based FPGAs; they are very sensitive to Single Event Upsets (SEUs). In addition, the adverse effects of SEUs on the electronics used in space are much higher than in the Earth. Thus, developing fault tolerant techniques play crucial roles for the use of SRAM-based FPGAs in space. However, fault tolerance techniques introduce additional penalties in system parameters, e.g., area, power, performance and design time. In this paper, an accurate estimation of configuration memory vulnerability to SEUs is proposed for approximate-tolerant applications. This vulnerability estimation is highly required for compromising between the overhead introduced by fault tolerance techniques and system robustness. In this paper, we study applications in which the exact final output value is not necessarily always a concern meaning that some of the SEU-induced changes in output values are negligible. We therefore define and propose Approximate-based Configuration Memory Vulnerability Factor (ACMVF) estimation to avoid overestimating configuration memory vulnerability to SEUs. In this paper, we assess the vulnerability of configuration memory by injecting SEUs in configuration memory bits and comparing the output values of a given circuit in presence of SEUs with expected correct output. In spite of conventional vulnerability factor calculation methods, which accounts any deviations from the expected value as failures, in our proposed method a threshold margin is considered depending on user-case applications. Given the proposed threshold margin in our model, a failure occurs only when the difference between the erroneous output value and the expected output value is more than this margin. The ACMVF is subsequently calculated by acquiring the ratio of failures with respect to the total number of SEU injections. In our paper, a test-bench for emulating SEUs and calculating ACMVF is implemented on Zynq-7000 FPGA platform. This system makes use of the Single Event Mitigation (SEM) IP core to inject SEUs into configuration memory bits of the target design implemented in Zynq-7000 FPGA. Experimental results for 32-bit adder show that, when 1% to 10% deviation from correct output is considered, the counted failures number is reduced 41% to 59% compared with the failures number counted by conventional vulnerability factor calculation. It means that estimation accuracy of the configuration memory vulnerability to SEUs is improved up to 58% in the case that 10% deviation is acceptable in output results. Note that less than 10% deviation in addition result is reasonably tolerable for many applications in approximate computing domain such as Convolutional Neural Network (CNN).

Keywords: fault tolerance, FPGA, single event upset, approximate computing

Procedia PDF Downloads 198
78 Examining Influence of The Ultrasonic Power and Frequency on Microbubbles Dynamics Using Real-Time Visualization of Synchrotron X-Ray Imaging: Application to Membrane Fouling Control

Authors: Masoume Ehsani, Ning Zhu, Huu Doan, Ali Lohi, Amira Abdelrasoul

Abstract:

Membrane fouling poses severe challenges in membrane-based wastewater treatment applications. Ultrasound (US) has been considered an effective fouling remediation technique in filtration processes. Bubble cavitation in the liquid medium results from the alternating rarefaction and compression cycles during the US irradiation at sufficiently high acoustic pressure. Cavitation microbubbles generated under US irradiation can cause eddy current and turbulent flow within the medium by either oscillating or discharging energy to the system through microbubble explosion. Turbulent flow regime and shear forces created close to the membrane surface cause disturbing the cake layer and dislodging the foulants, which in turn improve the cleaning efficiency and filtration performance. Therefore, the number, size, velocity, and oscillation pattern of the microbubbles created in the liquid medium play a crucial role in foulant detachment and permeate flux recovery. The goal of the current study is to gain in depth understanding of the influence of the US power intensity and frequency on the microbubble dynamics and its characteristics generated under US irradiation. In comparison with other imaging techniques, the synchrotron in-line Phase Contrast Imaging technique at the Canadian Light Source (CLS) allows in-situ observation and real-time visualization of microbubble dynamics. At CLS biomedical imaging and therapy (BMIT) polychromatic beamline, the effective parameters were optimized to enhance the contrast gas/liquid interface for the accuracy of the qualitative and quantitative analysis of bubble cavitation within the system. With the high flux of photons and the high-speed camera, a typical high projection speed was achieved; and each projection of microbubbles in water was captured in 0.5 ms. ImageJ software was used for post-processing the raw images for the detailed quantitative analyses of microbubbles. The imaging has been performed under the US power intensity levels of 50 W, 60 W, and 100 W, in addition to the US frequency levels of 20 kHz, 28 kHz, and 40 kHz. For the duration of 2 seconds of imaging, the effect of the US power and frequency on the average number, size, and fraction of the area occupied by bubbles were analyzed. Microbubbles’ dynamics in terms of their velocity in water was also investigated. For the US power increase of 50 W to 100 W, the average bubble number and the average bubble diameter were increased from 746 to 880 and from 36.7 µm to 48.4 µm, respectively. In terms of the influence of US frequency, a fewer number of bubbles were created at 20 kHz (average of 176 bubbles rather than 808 bubbles at 40 kHz), while the average bubble size was significantly larger than that of 40 kHz (almost seven times). The majority of bubbles were captured close to the membrane surface in the filtration unit. According to the study observations, membrane cleaning efficiency is expected to be improved at higher US power and lower US frequency due to the higher energy release to the system by increasing the number of bubbles or growing their size during oscillation (optimum condition is expected to be at 20 kHz and 100 W).

Keywords: bubble dynamics, cavitational bubbles, membrane fouling, ultrasonic cleaning

Procedia PDF Downloads 149
77 Scenario-Based Learning Using Virtual Optometrist Applications

Authors: J. S. M. Yang, G. E. T. Chua

Abstract:

Diploma in Optometry (OPT) course is a three-year program offered by Ngee Ann Polytechnic (NP) to train students to provide primary eye care. Students are equipped with foundational conceptual knowledge and practical skills in the first three semesters before clinical modules in fourth to six semesters. In the clinical modules, students typically have difficulties in integrating the acquired knowledge and skills from the past semesters to perform general eye examinations on public patients at NP Optometry Centre (NPOC). To help the students overcome the challenge, a web-based game Virtual Optometrist (VO) was developed to help students apply their skills and knowledge through scenario-based learning. It consisted of two interfaces, Optical Practice Counter (OPC) and Optometric Consultation Room (OCR), to provide two simulated settings for authentic learning experiences. In OPC, students would recommend and provide appropriate frame and lens selection based on virtual patient’s case history. In OCR, students would diagnose and manage virtual patients with common ocular conditions. Simulated scenarios provided real-world clinical situations that required contextual application of integrated knowledge from relevant modules. The stages in OPC and OCR are of increasing complexity to align to expected students’ clinical competency as they progress to more senior semesters. This prevented gameplay fatigue as VO was used over the semesters to achieve different learning outcomes. Numerous feedback opportunities were provided to students based on their decisions to allow individualized learning to take place. The game-based learning element in VO was achieved through the scoreboard and leader board to enhance students' motivation to perform. Scores were based on the speed and accuracy of students’ responses to the questions posed in the simulated scenarios, preparing the students to perform accurately and effectively under time pressure in a realistic optometric environment. Learning analytics was generated in VO’s backend office based on students’ responses, offering real-time data on distinctive and observable learners’ behavior to monitor students’ engagement and learning progress. The backend office allowed versatility to add, edit, and delete scenarios for different intended learning outcomes. Likert Scale was used to measure students’ learning experience with VO for OPT Year 2 and 3 students. The survey results highlighted the learning benefits of implementing VO in the different modules, such as enhancing recall and reinforcement of clinical knowledge for contextual application to develop higher-order thinking skills, increasing efficiency in clinical decision-making, facilitating learning through immediate feedback and second attempts, providing exposure to common and significant ocular conditions, and training effective communication skills. The results showed that VO has been useful in reinforcing optometry students’ learning and supporting the development of higher-order thinking, increasing efficiency in clinical decision-making, and allowing students to learn from their mistakes with immediate feedback and second attempts. VO also exposed the students to diverse ocular conditions through simulated real-world clinical scenarios, which may otherwise not be encountered in NPOC, and promoted effective communication skills.

Keywords: authentic learning, game-based learning, scenario-based learning, simulated clinical scenarios

Procedia PDF Downloads 117
76 Design, Fabrication and Analysis of Molded and Direct 3D-Printed Soft Pneumatic Actuators

Authors: N. Naz, A. D. Domenico, M. N. Huda

Abstract:

Soft Robotics is a rapidly growing multidisciplinary field where robots are fabricated using highly deformable materials motivated by bioinspired designs. The high dexterity and adaptability to the external environments during contact make soft robots ideal for applications such as gripping delicate objects, locomotion, and biomedical devices. The actuation system of soft robots mainly includes fluidic, tendon-driven, and smart material actuation. Among them, Soft Pneumatic Actuator, also known as SPA, remains the most popular choice due to its flexibility, safety, easy implementation, and cost-effectiveness. However, at present, most of the fabrication of SPA is still based on traditional molding and casting techniques where the mold is 3d printed into which silicone rubber is cast and consolidated. This conventional method is time-consuming and involves intensive manual labour with the limitation of repeatability and accuracy in design. Recent advancements in direct 3d printing of different soft materials can significantly reduce the repetitive manual task with an ability to fabricate complex geometries and multicomponent designs in a single manufacturing step. The aim of this research work is to design and analyse the Soft Pneumatic Actuator (SPA) utilizing both conventional casting and modern direct 3d printing technologies. The mold of the SPA for traditional casting is 3d printed using fused deposition modeling (FDM) with the polylactic acid (PLA) thermoplastic wire. Hyperelastic soft materials such as Ecoflex-0030/0050 are cast into the mold and consolidated using a lab oven. The bending behaviour is observed experimentally with different pressures of air compressor to ensure uniform bending without any failure. For direct 3D-printing of SPA fused deposition modeling (FDM) with thermoplastic polyurethane (TPU) and stereolithography (SLA) with an elastic resin are used. The actuator is modeled using the finite element method (FEM) to analyse the nonlinear bending behaviour, stress concentration and strain distribution of different hyperelastic materials after pressurization. FEM analysis is carried out using Ansys Workbench software with a Yeon-2nd order hyperelastic material model. FEM includes long-shape deformation, contact between surfaces, and gravity influences. For mesh generation, quadratic tetrahedron, hybrid, and constant pressure mesh are used. SPA is connected to a baseplate that is in connection with the air compressor. A fixed boundary is applied on the baseplate, and static pressure is applied orthogonally to all surfaces of the internal chambers and channels with a closed continuum model. The simulated results from FEM are compared with the experimental results. The experiments are performed in a laboratory set-up where the developed SPA is connected to a compressed air source with a pressure gauge. A comparison study based on performance analysis is done between FDM and SLA printed SPA with the molded counterparts. Furthermore, the molded and 3d printed SPA has been used to develop a three-finger soft pneumatic gripper and has been tested for handling delicate objects.

Keywords: finite element method, fused deposition modeling, hyperelastic, soft pneumatic actuator

Procedia PDF Downloads 90
75 A Vision-Based Early Warning System to Prevent Elephant-Train Collisions

Authors: Shanaka Gunasekara, Maleen Jayasuriya, Nalin Harischandra, Lilantha Samaranayake, Gamini Dissanayake

Abstract:

One serious facet of the worsening Human-Elephant conflict (HEC) in nations such as Sri Lanka involves elephant-train collisions. Endangered Asian elephants are maimed or killed during such accidents, which also often result in orphaned or disabled elephants, contributing to the phenomenon of lone elephants. These lone elephants are found to be more likely to attack villages and showcase aggressive behaviour, which further exacerbates the overall HEC. Furthermore, Railway Services incur significant financial losses and disruptions to services annually due to such accidents. Most elephant-train collisions occur due to a lack of adequate reaction time. This is due to the significant stopping distance requirements of trains, as the full braking force needs to be avoided to minimise the risk of derailment. Thus, poor driver visibility at sharp turns, nighttime operation, and poor weather conditions are often contributing factors to this problem. Initial investigations also indicate that most collisions occur in localised “hotspots” where elephant pathways/corridors intersect with railway tracks that border grazing land and watering holes. Taking these factors into consideration, this work proposes the leveraging of recent developments in Convolutional Neural Network (CNN) technology to detect elephants using an RGB/infrared capable camera around known hotspots along the railway track. The CNN was trained using a curated dataset of elephants collected on field visits to elephant sanctuaries and wildlife parks in Sri Lanka. With this vision-based detection system at its core, a prototype unit of an early warning system was designed and tested. This weatherised and waterproofed unit consists of a Reolink security camera which provides a wide field of view and range, an Nvidia Jetson Xavier computing unit, a rechargeable battery, and a solar panel for self-sufficient functioning. The prototype unit was designed to be a low-cost, low-power and small footprint device that can be mounted on infrastructures such as poles or trees. If an elephant is detected, an early warning message is communicated to the train driver using the GSM network. A mobile app for this purpose was also designed to ensure that the warning is clearly communicated. A centralized control station manages and communicates all information through the train station network to ensure coordination among important stakeholders. Initial results indicate that detection accuracy is sufficient under varying lighting situations, provided comprehensive training datasets that represent a wide range of challenging conditions are available. The overall hardware prototype was shown to be robust and reliable. We envision a network of such units may help contribute to reducing the problem of elephant-train collisions and has the potential to act as an important surveillance mechanism in dealing with the broader issue of human-elephant conflicts.

Keywords: computer vision, deep learning, human-elephant conflict, wildlife early warning technology

Procedia PDF Downloads 226
74 A Hardware-in-the-loop Simulation for the Development of Advanced Control System Design for a Spinal Joint Wear Simulator

Authors: Kaushikk Iyer, Richard M Hall, David Keeling

Abstract:

Hardware-in-the-loop (HIL) simulation is an advanced technique for developing and testing complex real-time control systems. This paper presents the benefits of HIL simulation and how it can be implemented and used effectively to develop, test, and validate advanced control algorithms used in a spinal joint Wear simulator for the Tribological testing of spinal disc prostheses. spinal wear simulator is technologically the most advanced machine currently employed For the in-vitro testing of newly developed spinal Discimplants. However, the existing control techniques, such as a simple position control Does not allow the simulator to test non-sinusoidal waveforms. Thus, there is a need for better and advanced control methods that can be developed and tested Rigorouslybut safely before deploying it into the real simulator. A benchtop HILsetupis was created for experimentation, controller verification, and validation purposes, allowing different control strategies to be tested rapidly in a safe environment. The HIL simulation aspect in this setup attempts to replicate similar spinal motion and loading conditions. The spinal joint wear simulator containsa four-Barlinkpowered by electromechanical actuators. LabVIEW software is used to design a kinematic model of the spinal wear Simulator to Validatehow each link contributes towards the final motion of the implant under test. As a result, the implant articulates with an angular motion specified in the international standards, ISO-18192-1, that define fixed, simplified, and sinusoid motion and load profiles for wear testing of cervical disc implants. Using a PID controller, a velocity-based position control algorithm was developed to interface with the benchtop setup that performs HIL simulation. In addition to PID, a fuzzy logic controller (FLC) was also developed that acts as a supervisory controller. FLC provides intelligence to the PID controller by By automatically tuning the controller for profiles that vary in amplitude, shape, and frequency. This combination of the fuzzy-PID controller is novel to the wear testing application for spinal simulators and demonstrated superior performance against PIDwhen tested for a spectrum of frequency. Kaushikk Iyer is a Ph.D. Student at the University of Leeds and an employee at Key Engineering Solutions, Leeds, United Kingdom, (e-mail: [email protected], phone: +44 740 541 5502). Richard M Hall is with the University of Leeds, the United Kingdom as a professor in the Mechanical Engineering Department (e-mail: [email protected]). David Keeling is the managing director of Key Engineering Solutions, Leeds, United Kingdom (e-mail: [email protected]). Results obtained are successfully validated against the load and motion tolerances specified by the ISO18192-1 standard and fall within limits, that is, ±0.5° at the maxima and minima of the motion and ±2 % of the complete cycle for phasing. The simulation results prove the efficacy of the test setup using HIL simulation to verify and validate the accuracy and robustness of the prospective controller before its deployment into the spinal wear simulator. This method of testing controllers enables a wide range of possibilities to test advanced control algorithms that can potentially test even profiles of patients performing various dailyliving activities.

Keywords: Fuzzy-PID controller, hardware-in-the-loop (HIL), real-time simulation, spinal wear simulator

Procedia PDF Downloads 171
73 On the Bias and Predictability of Asylum Cases

Authors: Panagiota Katsikouli, William Hamilton Byrne, Thomas Gammeltoft-Hansen, Tijs Slaats

Abstract:

An individual who demonstrates a well-founded fear of persecution or faces real risk of being subjected to torture is eligible for asylum. In Danish law, the exact legal thresholds reflect those established by international conventions, notably the 1951 Refugee Convention and the 1950 European Convention for Human Rights. These international treaties, however, remain largely silent when it comes to how states should assess asylum claims. As a result, national authorities are typically left to determine an individual’s legal eligibility on a narrow basis consisting of an oral testimony, which may itself be hampered by several factors, including imprecise language interpretation, insecurity or lacking trust towards the authorities among applicants. The leaky ground, on which authorities must assess their subjective perceptions of asylum applicants' credibility, questions whether, in all cases, adjudicators make the correct decision. Moreover, the subjective element in these assessments raises questions on whether individual asylum cases could be afflicted by implicit biases or stereotyping amongst adjudicators. In fact, recent studies have uncovered significant correlations between decision outcomes and the experience and gender of the assigned judge, as well as correlations between asylum outcomes and entirely external events such as weather and political elections. In this study, we analyze a publicly available dataset containing approximately 8,000 summaries of asylum cases, initially rejected, and re-tried by the Refugee Appeals Board (RAB) in Denmark. First, we look for variations in the recognition rates, with regards to a number of applicants’ features: their country of origin/nationality, their identified gender, their identified religion, their ethnicity, whether torture was mentioned in their case and if so, whether it was supported or not, and the year the applicant entered Denmark. In order to extract those features from the text summaries, as well as the final decision of the RAB, we applied natural language processing and regular expressions, adjusting for the Danish language. We observed interesting variations in recognition rates related to the applicants’ country of origin, ethnicity, year of entry and the support or not of torture claims, whenever those were made in the case. The appearance (or not) of significant variations in the recognition rates, does not necessarily imply (or not) bias in the decision-making progress. None of the considered features, with the exception maybe of the torture claims, should be decisive factors for an asylum seeker’s fate. We therefore investigate whether the decision can be predicted on the basis of these features, and consequently, whether biases are likely to exist in the decisionmaking progress. We employed a number of machine learning classifiers, and found that when using the applicant’s country of origin, religion, ethnicity and year of entry with a random forest classifier, or a decision tree, the prediction accuracy is as high as 82% and 85% respectively. tentially predictive properties with regards to the outcome of an asylum case. Our analysis and findings call for further investigation on the predictability of the outcome, on a larger dataset of 17,000 cases, which is undergoing.

Keywords: asylum adjudications, automated decision-making, machine learning, text mining

Procedia PDF Downloads 95
72 Exploring Empathy Through Patients’ Eyes: A Thematic Narrative Analysis of Patient Narratives in the UK

Authors: Qudsiya Baig

Abstract:

Empathy yields an unparalleled therapeutic value within patient physician interactions. Medical research is inundated with evidence to support that a physician’s ability to empathise with patients leads to a greater willingness to report symptoms, an improvement in diagnostic accuracy and safety, and a better adherence and satisfaction with treatment plans. Furthermore, the Institute of Medicine states that empathy leads to a more patient-centred care, which is one of the six main goals of a 21st century health system. However, there is a paradox between the theoretical significance of empathy and its presence, or lack thereof, in clinical practice. Recent studies have reported that empathy declines amongst students and physicians over time. The three most impactful contributors to this decline are: (1) disagreements over the definitions of empathy making it difficult to implement it into practice (2) poor consideration or regulation of empathy leading to burnout and thus, abandonment altogether, and (3) the lack of diversity in the curriculum and the influence of medical culture, which prioritises science over patient experience, limiting some physicians from using ‘too much’ empathy in the fear of losing clinical objectivity. These issues were investigated by conducting a fully inductive thematic narrative analysis of patient narratives in the UK to evaluate the behaviours and attitudes that patients associate with empathy. The principal enquiries underpinning this study included uncovering the factors that affected experience of empathy within provider-patient interactions and to analyse their effects on patient care. This research contributes uniquely to this discourse by examining the phenomenon of empathy directly from patients’ experiences, which were systematically extracted from a repository of online patient narratives of care titled ‘CareOpinion UK’. Narrative analysis was specifically chosen as the methodology to examine narratives from a phenomenological lens to focus on the particularity and context of each story. By enquiring beyond the superficial who-whatwhere, the study of narratives prescribed meaning to illness by highlighting the everyday reality of patients who face the exigent life circumstances created by suffering, disability, and the threat of life. The following six themes were found to be the most impactful in influencing the experience of empathy: dismissive behaviours, judgmental attitudes, undermining patients’ pain or concerns, holistic care and failures and successes of communication or language. For each theme there were overarching themes relating to either a failure to understand the patient’s perspective or a success in taking a person-centred approach. An in-depth analysis revealed that a lack of empathy was greatly associated with an emotive-cognitive imbalance, which disengaged physicians with their patients’ emotions. This study hereby concludes that competent providers require a combination of knowledge, skills, and more importantly empathic attitudes to help create a context for effective care. The crucial elements of that context involve (a) identifying empathy clues within interactions to engage with patients’ situations, (b) attributing a perspective to the patient through perspective-taking and (c) adapting behaviour and communication according to patient’s individual needs. Empathy underpins that context, as does an appreciation of narrative, and the two are interrelated.

Keywords: empathy, narratives, person-centred, perspective, perspective-taking

Procedia PDF Downloads 137
71 Understanding New Zealand’s 19th Century Timber Churches: Techniques in Extracting and Applying Underlying Procedural Rules

Authors: Samuel McLennan, Tane Moleta, Andre Brown, Marc Aurel Schnabel

Abstract:

The development of Ecclesiastical buildings within New Zealand has produced some unique design characteristics that take influence from both international styles and local building methods. What this research looks at is how procedural modelling can be used to define such common characteristics and understand how they are shared and developed within different examples of a similar architectural style. This will be achieved through the creation of procedural digital reconstructions of the various timber Gothic Churches built during the 19th century in the city of Wellington, New Zealand. ‘Procedural modelling’ is a digital modelling technique that has been growing in popularity, particularly within the game and film industry, as well as other fields such as industrial design and architecture. Such a design method entails the creation of a parametric ‘ruleset’ that can be easily adjusted to produce many variations of geometry, rather than a single geometry as is typically found in traditional CAD software. Key precedents within this area of digital heritage includes work by Haegler, Müller, and Gool, Nicholas Webb and Andre Brown, and most notably Mark Burry. What these precedents all share is how the forms of the reconstructed architecture have been generated using computational rules and an understanding of the architects’ geometric reasoning. This is also true within this research as Gothic architecture makes use of only a select range of forms (such as the pointed arch) that can be accurately replicated using the same standard geometric techniques originally used by the architect. The methodology of this research involves firstly establishing a sample group of similar buildings, documenting the existing samples, researching any lost samples to find evidence such as architectural plans, photos, and written descriptions, and then culminating all the findings into a single 3D procedural asset within the software ‘Houdini’. The end result will be an adjustable digital model that contains all the architectural components of the sample group, such as the various naves, buttresses, and windows. These components can then be selected and arranged to create visualisations of the sample group. Because timber gothic churches in New Zealand share many details between designs, the created collection of architectural components can also be used to approximate similar designs not included in the sample group, such as designs found beyond the Wellington Region. This creates an initial library of architectural components that can be further expanded on to encapsulate as wide of a sample size as desired. Such a methodology greatly improves upon the efficiency and adjustability of digital modelling compared to current practices found in digital heritage reconstruction. It also gives greater accuracy to speculative design, as a lack of evidence for lost structures can be approximated using components from still existing or better-documented examples. This research will also bring attention to the cultural significance these types of buildings have within the local area, addressing the public’s general unawareness of architectural history that is identified in the Wellington based research ‘Moving Images in Digital Heritage’ by Serdar Aydin et al.

Keywords: digital forensics, digital heritage, gothic architecture, Houdini, procedural modelling

Procedia PDF Downloads 131
70 Prompt Photons Production in Compton Scattering of Quark-Gluon and Annihilation of Quark-Antiquark Pair Processes

Authors: Mohsun Rasim Alizada, Azar Inshalla Ahmdov

Abstract:

Prompt photons are perhaps the most versatile tools for studying the dynamics of relativistic collisions of heavy ions. The study of photon radiation is of interest that in most hadron interactions, photons fly out as a background to other studied signals. The study of the birth of prompt photons in nucleon-nucleon collisions was previously carried out in experiments on Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Due to the large energy of colliding nucleons, in addition to prompt photons, many different elementary particles are born. However, the birth of additional elementary particles makes it difficult to determine the accuracy of the effective section of the birth of prompt photons. From this point of view, the experiments planned on the Nuclotron-based Ion Collider Facility (NICA) complex will have a great advantage, since the energy obtained for colliding heavy ions will reduce the number of additionally born elementary particles. Of particular importance is the study of the processes of birth of prompt photons to determine the gluon leaving hadrons since the photon carries information about a rigid subprocess. At present, paper production of prompt photon in Compton scattering of quark-gluon and annihilation of quark–antiquark processes is investigated. The matrix elements Compton scattering of quark-gluon and annihilation of quark-antiquark pair processes has been written. The Square of matrix elements of processes has been calculated in FeynCalc. The phase volume of subprocesses has been determined. Expression to calculate the differential cross-section of subprocesses has been obtained: Given the resulting expressions for the square of the matrix element in the differential section expression, we see that the differential section depends not only on the energy of colliding protons, but also on the mass of quarks, etc. Differential cross-section of subprocesses is estimated. It is shown that the differential cross-section of subprocesses decreases with the increasing energy of colliding protons. Asymmetry coefficient with polarization of colliding protons is determined. The calculation showed that the squares of the matrix element of the Compton scattering process without and taking into account the polarization of colliding protons are identical. The asymmetry coefficient of this subprocess is zero, which is consistent with the literary data. It is known that in any single polarization processes with a photon, squares of matrix elements without taking into account and taking into account the polarization of the original particle must coincide, that is, the terms in the square of the matrix element with the degree of polarization are equal to zero. The coincidence of the squares of the matrix elements indicates that the parity of the system is preserved. The asymmetry coefficient of annihilation of quark–antiquark pair process linearly decreases from positive unit to negative unit with increasing the production of the polarization degrees of colliding protons. Thus, it was obtained that the differential cross-section of the subprocesses decreases with the increasing energy of colliding protons. The value of the asymmetry coefficient is maximal when the polarization of colliding protons is opposite and minimal when they are directed equally. Taking into account the polarization of only the initial quarks and gluons in Compton scattering does not contribute to the differential section of the subprocess.

Keywords: annihilation of a quark-antiquark pair, coefficient of asymmetry, Compton scattering, effective cross-section

Procedia PDF Downloads 149
69 Force Sensor for Robotic Graspers in Minimally Invasive Surgery

Authors: Naghmeh M. Bandari, Javad Dargahi, Muthukumaran Packirisamy

Abstract:

Robot-assisted minimally invasive surgery (RMIS) has been widely performed around the world during the last two decades. RMIS demonstrates significant advantages over conventional surgery, e.g., improving the accuracy and dexterity of a surgeon, providing 3D vision, motion scaling, hand-eye coordination, decreasing tremor, and reducing x-ray exposure for surgeons. Despite benefits, surgeons cannot touch the surgical site and perceive tactile information. This happens due to the remote control of robots. The literature survey identified the lack of force feedback as the riskiest limitation in the existing technology. Without the perception of tool-tissue contact force, the surgeon might apply an excessive force causing tissue laceration or insufficient force causing tissue slippage. The primary use of force sensors has been to measure the tool-tissue interaction force in real-time in-situ. Design of a tactile sensor is subjected to a set of design requirements, e.g., biocompatibility, electrical-passivity, MRI-compatibility, miniaturization, ability to measure static and dynamic force. In this study, a planar optical fiber-based sensor was proposed to mount at the surgical grasper. It was developed based on the light intensity modulation principle. The deflectable part of the sensor was a beam modeled as a cantilever Euler-Bernoulli beam on rigid substrates. A semi-cylindrical indenter was attached to the bottom surface the beam at the mid-span. An optical fiber was secured at both ends on the same rigid substrates. The indenter was in contact with the fiber. External force on the sensor caused deflection in the beam and optical fiber simultaneously. The micro-bending of the optical fiber would consequently result in light power loss. The sensor was simulated and studied using finite element methods. A laser light beam with 800nm wavelength and 5mW power was used as the input to the optical fiber. The output power was measured using a photodetector. The voltage from photodetector was calibrated to the external force for a chirp input (0.1-5Hz). The range, resolution, and hysteresis of the sensor were studied under monotonic and harmonic external forces of 0-2.0N with 0 and 5Hz, respectively. The results confirmed the validity of proposed sensing principle. Also, the sensor demonstrated an acceptable linearity (R2 > 0.9). A minimum external force was observed below which no power loss was detectable. It is postulated that this phenomenon is attributed to the critical angle of the optical fiber to observe total internal reflection. The experimental results were of negligible hysteresis (R2 > 0.9) and in fair agreement with the simulations. In conclusion, the suggested planar sensor is assessed to be a cost-effective solution, feasible, and easy to use the sensor for being miniaturized and integrated at the tip of robotic graspers. Geometrical and optical factors affecting the minimum sensible force and the working range of the sensor should be studied and optimized. This design is intrinsically scalable and meets all the design requirements. Therefore, it has a significant potential of industrialization and mass production.

Keywords: force sensor, minimally invasive surgery, optical sensor, robotic surgery, tactile sensor

Procedia PDF Downloads 230
68 On the Influence of Sleep Habits for Predicting Preterm Births: A Machine Learning Approach

Authors: C. Fernandez-Plaza, I. Abad, E. Diaz, I. Diaz

Abstract:

Births occurring before the 37th week of gestation are considered preterm births. A threat of preterm is defined as the beginning of regular uterine contractions, dilation and cervical effacement between 23 and 36 gestation weeks. To author's best knowledge, the factors that determine the beginning of the birth are not completely defined yet. In particular, the incidence of sleep habits on preterm births is weekly studied. The aim of this study is to develop a model to predict the factors affecting premature delivery on pregnancy, based on the above potential risk factors, including those derived from sleep habits and light exposure at night (introduced as 12 variables obtained by a telephone survey using two questionnaires previously used by other authors). Thus, three groups of variables were included in the study (maternal, fetal and sleep habits). The study was approved by Research Ethics Committee of the Principado of Asturias (Spain). An observational, retrospective and descriptive study was performed with 481 births between January 1, 2015 and May 10, 2016 in the University Central Hospital of Asturias (Spain). A statistical analysis using SPSS was carried out to compare qualitative and quantitative variables between preterm and term delivery. Chi-square test qualitative variable and t-test for quantitative variables were applied. Statistically significant differences (p < 0.05) between preterm vs. term births were found for primiparity, multi-parity, kind of conception, place of residence or premature rupture of membranes and interruption during nights. In addition to the statistical analysis, machine learning methods to look for a prediction model were tested. In particular, tree based models were applied as the trade-off between performance and interpretability is especially suitable for this study. C5.0, recursive partitioning, random forest and tree bag models were analysed using caret R-package. Cross validation with 10-folds and parameter tuning to optimize the methods were applied. In addition, different noise reduction methods were applied to the initial data using NoiseFiltersR package. The best performance was obtained by C5.0 method with Accuracy 0.91, Sensitivity 0.93, Specificity 0.89 and Precision 0.91. Some well known preterm birth factors were identified: Cervix Dilation, maternal BMI, Premature rupture of membranes or nuchal translucency analysis in the first trimester. The model also identifies other new factors related to sleep habits such as light through window, bedtime on working days, usage of electronic devices before sleeping from Mondays to Fridays or change of sleeping habits reflected in the number of hours, in the depth of sleep or in the lighting of the room. IF dilation < = 2.95 AND usage of electronic devices before sleeping from Mondays to Friday = YES and change of sleeping habits = YES, then preterm is one of the predicting rules obtained by C5.0. In this work a model for predicting preterm births is developed. It is based on machine learning together with noise reduction techniques. The method maximizing the performance is the one selected. This model shows the influence of variables related to sleep habits in preterm prediction.

Keywords: machine learning, noise reduction, preterm birth, sleep habit

Procedia PDF Downloads 147
67 Developing Early Intervention Tools: Predicting Academic Dishonesty in University Students Using Psychological Traits and Machine Learning

Authors: Pinzhe Zhao

Abstract:

This study focuses on predicting university students' cheating tendencies using psychological traits and machine learning techniques. Academic dishonesty is a significant issue that compromises the integrity and fairness of educational institutions. While much research has been dedicated to detecting cheating behaviors after they have occurred, there is limited work on predicting such tendencies before they manifest. The aim of this research is to develop a model that can identify students who are at higher risk of engaging in academic misconduct, allowing for earlier interventions to prevent such behavior. Psychological factors are known to influence students' likelihood of cheating. Research shows that traits such as test anxiety, moral reasoning, self-efficacy, and achievement motivation are strongly linked to academic dishonesty. High levels of anxiety may lead students to cheat as a way to cope with pressure. Those with lower self-efficacy are less confident in their academic abilities, which can push them toward dishonest behaviors to secure better outcomes. Students with weaker moral judgment may also justify cheating more easily, believing it to be less wrong under certain conditions. Achievement motivation also plays a role, as students driven primarily by external rewards, such as grades, are more likely to cheat compared to those motivated by intrinsic learning goals. In this study, data on students’ psychological traits is collected through validated assessments, including scales for anxiety, moral reasoning, self-efficacy, and motivation. Additional data on academic performance, attendance, and engagement in class are also gathered to create a more comprehensive profile. Using machine learning algorithms such as Random Forest, Support Vector Machines (SVM), and Long Short-Term Memory (LSTM) networks, the research builds models that can predict students’ cheating tendencies. These models are trained and evaluated using metrics like accuracy, precision, recall, and F1 scores to ensure they provide reliable predictions. The findings demonstrate that combining psychological traits with machine learning provides a powerful method for identifying students at risk of cheating. This approach allows for early detection and intervention, enabling educational institutions to take proactive steps in promoting academic integrity. The predictive model can be used to inform targeted interventions, such as counseling for students with high test anxiety or workshops aimed at strengthening moral reasoning. By addressing the underlying factors that contribute to cheating behavior, educational institutions can reduce the occurrence of academic dishonesty and foster a culture of integrity. In conclusion, this research contributes to the growing body of literature on predictive analytics in education. It offers a approach by integrating psychological assessments with machine learning to predict cheating tendencies. This method has the potential to significantly improve how academic institutions address academic dishonesty, shifting the focus from punishment after the fact to prevention before it occurs. By identifying high-risk students and providing them with the necessary support, educators can help maintain the fairness and integrity of the academic environment.

Keywords: academic dishonesty, cheating prediction, intervention strategies, machine learning, psychological traits, academic integrity

Procedia PDF Downloads 20
66 Flood Early Warning and Management System

Authors: Yogesh Kumar Singh, T. S. Murugesh Prabhu, Upasana Dutta, Girishchandra Yendargaye, Rahul Yadav, Rohini Gopinath Kale, Binay Kumar, Manoj Khare

Abstract:

The Indian subcontinent is severely affected by floods that cause intense irreversible devastation to crops and livelihoods. With increased incidences of floods and their related catastrophes, an Early Warning System for Flood Prediction and an efficient Flood Management System for the river basins of India is a must. Accurately modeled hydrological conditions and a web-based early warning system may significantly reduce economic losses incurred due to floods and enable end users to issue advisories with better lead time. This study describes the design and development of an EWS-FP using advanced computational tools/methods, viz. High-Performance Computing (HPC), Remote Sensing, GIS technologies, and open-source tools for the Mahanadi River Basin of India. The flood prediction is based on a robust 2D hydrodynamic model, which solves shallow water equations using the finite volume method. Considering the complexity of the hydrological modeling and the size of the basins in India, it is always a tug of war between better forecast lead time and optimal resolution at which the simulations are to be run. High-performance computing technology provides a good computational means to overcome this issue for the construction of national-level or basin-level flash flood warning systems having a high resolution at local-level warning analysis with a better lead time. High-performance computers with capacities at the order of teraflops and petaflops prove useful while running simulations on such big areas at optimum resolutions. In this study, a free and open-source, HPC-based 2-D hydrodynamic model, with the capability to simulate rainfall run-off, river routing, and tidal forcing, is used. The model was tested for a part of the Mahanadi River Basin (Mahanadi Delta) with actual and predicted discharge, rainfall, and tide data. The simulation time was reduced from 8 hrs to 3 hrs by increasing CPU nodes from 45 to 135, which shows good scalability and performance enhancement. The simulated flood inundation spread and stage were compared with SAR data and CWC Observed Gauge data, respectively. The system shows good accuracy and better lead time suitable for flood forecasting in near-real-time. To disseminate warning to the end user, a network-enabled solution is developed using open-source software. The system has query-based flood damage assessment modules with outputs in the form of spatial maps and statistical databases. System effectively facilitates the management of post-disaster activities caused due to floods, like displaying spatial maps of the area affected, inundated roads, etc., and maintains a steady flow of information at all levels with different access rights depending upon the criticality of the information. It is designed to facilitate users in managing information related to flooding during critical flood seasons and analyzing the extent of the damage.

Keywords: flood, modeling, HPC, FOSS

Procedia PDF Downloads 89
65 Two Component Source Apportionment Based on Absorption and Size Distribution Measurement

Authors: Tibor Ajtai, Noémi Utry, Máté Pintér, Gábor Szabó, Zoltán Bozóki

Abstract:

Beyond its climate and health related issues ambient light absorbing carbonaceous particulate matter (LAC) has also become a great scientific interest in terms of its regulations recently. It has been experimentally demonstrated in recent studies, that LAC is dominantly composed of traffic and wood burning aerosol particularly under wintertime urban conditions, when the photochemical and biological activities are negligible. Several methods have been introduced to quantitatively apportion aerosol fractions emitted by wood burning and traffic but most of them require costly and time consuming off-line chemical analysis. As opposed to chemical features, the microphysical properties of airborne particles such as optical absorption and size distribution can be easily measured on-line, with high accuracy and sensitivity, especially under highly polluted urban conditions. Recently a new method has been proposed for the apportionment of wood burning and traffic aerosols based on the spectral dependence of their absorption quantified by the Aerosol Angström Exponent (AAE). In this approach the absorption coefficient is deduced from transmission measurement on a filter accumulated aerosol sample and the conversion factor between the measured optical absorption and the corresponding mass concentration (the specific absorption cross section) are determined by on-site chemical analysis. The recently developed multi-wavelength photoacoustic instruments provide novel, in-situ approach towards the reliable and quantitative characterization of carbonaceous particulate matter. Therefore, it also opens up novel possibilities on the source apportionment through the measurement of light absorption. In this study, we demonstrate an in-situ spectral characterization method of the ambient carbon fraction based on light absorption and size distribution measurements using our state-of-the-art multi-wavelength photoacoustic instrument (4λ-PAS) and Single Mobility Particle Sizer (SMPS) The carbonaceous particulate selective source apportionment study was performed for ambient particulate matter in the city center of Szeged, Hungary where the dominance of traffic and wood burning aerosol has been experimentally demonstrated earlier. The proposed model is based on the parallel, in-situ measurement of optical absorption and size distribution. AAEff and AAEwb were deduced from the measured data using the defined correlation between the AOC(1064nm)/AOC(266nm) and N100/N20 ratios. σff(λ) and σwb(λ) were determined with the help of the independently measured temporal mass concentrations in the PM1 mode. Furthermore, the proposed optical source apportionment is based on the assumption that the light absorbing fraction of PM is exclusively related to traffic and wood burning. This assumption is indirectly confirmed here by the fact that the measured size distribution is composed of two unimodal size distributions identified to correspond to traffic and wood burning aerosols. The method offers the possibility of replacing laborious chemical analysis with simple in-situ measurement of aerosol size distribution data. The results by the proposed novel optical absorption based source apportionment method prove its applicability whenever measurements are performed at an urban site where traffic and wood burning are the dominant carbonaceous sources of emission.

Keywords: absorption, size distribution, source apportionment, wood burning, traffic aerosol

Procedia PDF Downloads 227
64 Mixed Mode Fracture Analyses Using Finite Element Method of Edge Cracked Heavy Annulus Pulley

Authors: Bijit Kalita, K. V. N. Surendra

Abstract:

The pulley works under both compressive loading due to contacting belt in tension and central torque due to cause rotation. In a power transmission system, the belt pulley assemblies offer a contact problem in the form of two mating cylindrical parts. In this work, we modeled a pulley as a heavy two-dimensional circular disk. Stress analysis due to contact loading in the pulley mechanism is performed. Finite element analysis (FEA) is conducted for a pulley to investigate the stresses experienced on its inner and outer periphery. In most of the heavy-duty applications, most frequently used mechanisms to transmit power in applications such as automotive engines, industrial machines, etc. is Belt Drive. Usually, very heavy circular disks are used as pulleys. A pulley could be entitled as a drum and may have a groove between two flanges around the circumference. A rope, belt, cable or chain can be the driving element of a pulley system that runs over the pulley inside the groove. A pulley is experienced by normal and shear tractions on its contact region in the process of motion transmission. The region may be belt-pulley contact surface or pulley-shaft contact surface. In 1895, Hertz solved the elastic contact problem for point contact and line contact of an ideal smooth object. Afterward, this hypothesis is generally utilized for computing the actual contact zone. Detailed stress analysis in such contact region of such pulleys is quite necessary to prevent early failure. In this paper, the results of the finite element analyses carried out on the compressed disk of a belt pulley arrangement using fracture mechanics concepts are shown. Based on the literature on contact stress problem induced in the wide field of applications, generated stress distribution on the shaft-pulley and belt-pulley interfaces due to the application of high-tension and torque was evaluated in this study using FEA concepts. Finally, the results obtained from ANSYS (APDL) were compared with the Hertzian contact theory. The study is mainly focused on the fatigue life estimation of a rotating part as a component of an engine assembly using the most famous Paris equation. Digital Image Correlation (DIC) analyses have been performed using the open-source software. From the displacement computed using the images acquired at a minimum and maximum force, displacement field amplitude is computed. From these fields, the crack path is defined and stress intensity factors and crack tip position are extracted. A non-linear least-squares projection is used for the purpose of the estimation of fatigue crack growth. Further study will be extended for the various application of rotating machinery such as rotating flywheel disk, jet engine, compressor disk, roller disk cutter etc., where Stress Intensity Factor (SIF) calculation plays a significant role on the accuracy and reliability of a safe design. Additionally, this study will be progressed to predict crack propagation in the pulley using maximum tangential stress (MTS) criteria for mixed mode fracture.

Keywords: crack-tip deformations, contact stress, stress concentration, stress intensity factor

Procedia PDF Downloads 124
63 Enhancing Seismic Resilience in Urban Environments

Authors: Beatriz González-rodrigo, Diego Hidalgo-leiva, Omar Flores, Claudia Germoso, Maribel Jiménez-martínez, Laura Navas-sánchez, Belén Orta, Nicola Tarque, Orlando Hernández- Rubio, Miguel Marchamalo, Juan Gregorio Rejas, Belén Benito-oterino

Abstract:

Cities facing seismic hazard necessitate detailed risk assessments for effective urban planning and vulnerability identification, ensuring the safety and sustainability of urban infrastructure. Comprehensive studies involving seismic hazard, vulnerability, and exposure evaluations are pivotal for estimating potential losses and guiding proactive measures against seismic events. However, broad-scale traditional risk studies limit consideration of specific local threats and identify vulnerable housing within a structural typology. Achieving precise results at neighbourhood levels demands higher resolution seismic hazard exposure, and vulnerability studies. This research aims to bolster sustainability and safety against seismic disasters in three Central American and Caribbean capitals. It integrates geospatial techniques and artificial intelligence into seismic risk studies, proposing cost-effective methods for exposure data collection and damage prediction. The methodology relies on prior seismic threat studies in pilot zones, utilizing existing exposure and vulnerability data in the region. Emphasizing detailed building attributes enables the consideration of behaviour modifiers affecting seismic response. The approach aims to generate detailed risk scenarios, facilitating prioritization of preventive actions pre-, during, and post-seismic events, enhancing decision-making certainty. Detailed risk scenarios necessitate substantial investment in fieldwork, training, research, and methodology development. Regional cooperation becomes crucial given similar seismic threats, urban planning, and construction systems among involved countries. The outcomes hold significance for emergency planning and national and regional construction regulations. The success of this methodology depends on cooperation, investment, and innovative approaches, offering insights and lessons applicable to regions facing moderate seismic threats with vulnerable constructions. Thus, this framework aims to fortify resilience in seismic-prone areas and serves as a reference for global urban planning and disaster management strategies. In conclusion, this research proposes a comprehensive framework for seismic risk assessment in high-risk urban areas, emphasizing detailed studies at finer resolutions for precise vulnerability evaluations. The approach integrates regional cooperation, geospatial technologies, and adaptive fragility curve adjustments to enhance risk assessment accuracy, guiding effective mitigation strategies and emergency management plans.

Keywords: assessment, behaviour modifiers, emergency management, mitigation strategies, resilience, vulnerability

Procedia PDF Downloads 68
62 Distribution System Modelling: A Holistic Approach for Harmonic Studies

Authors: Stanislav Babaev, Vladimir Cuk, Sjef Cobben, Jan Desmet

Abstract:

The procedures for performing harmonic studies for medium-voltage distribution feeders have become relatively mature topics since the early 1980s. The efforts of various electric power engineers and researchers were mainly focused on handling large harmonic non-linear loads connected scarcely at several buses of medium-voltage feeders. In order to assess the impact of these loads on the voltage quality of the distribution system, specific modeling and simulation strategies were proposed. These methodologies could deliver a reasonable estimation accuracy given the requirements of least computational efforts and reduced complexity. To uphold these requirements, certain analysis assumptions have been made, which became de facto standards for establishing guidelines for harmonic analysis. Among others, typical assumptions include balanced conditions of the study and the negligible impact of impedance frequency characteristics of various power system components. In latter, skin and proximity effects are usually omitted, and resistance and reactance values are modeled based on the theoretical equations. Further, the simplifications of the modelling routine have led to the commonly accepted practice of neglecting phase angle diversity effects. This is mainly associated with developed load models, which only in a handful of cases are representing the complete harmonic behavior of a certain device as well as accounting on the harmonic interaction between grid harmonic voltages and harmonic currents. While these modelling practices were proven to be reasonably effective for medium-voltage levels, similar approaches have been adopted for low-voltage distribution systems. Given modern conditions and massive increase in usage of residential electronic devices, recent and ongoing boom of electric vehicles, and large-scale installing of distributed solar power, the harmonics in current low-voltage grids are characterized by high degree of variability and demonstrate sufficient diversity leading to a certain level of cancellation effects. It is obvious, that new modelling algorithms overcoming previously made assumptions have to be accepted. In this work, a simulation approach aimed to deal with some of the typical assumptions is proposed. A practical low-voltage feeder is modeled in PowerFactory. In order to demonstrate the importance of diversity effect and harmonic interaction, previously developed measurement-based models of photovoltaic inverter and battery charger are used as loads. The Python-based script aiming to supply varying voltage background distortion profile and the associated current harmonic response of loads is used as the core of unbalanced simulation. Furthermore, the impact of uncertainty of feeder frequency-impedance characteristics on total harmonic distortion levels is shown along with scenarios involving linear resistive loads, which further alter the impedance of the system. The comparative analysis demonstrates sufficient differences with cases when all the assumptions are in place, and results indicate that new modelling and simulation procedures need to be adopted for low-voltage distribution systems with high penetration of non-linear loads and renewable generation.

Keywords: electric power system, harmonic distortion, power quality, public low-voltage network, harmonic modelling

Procedia PDF Downloads 159
61 Quantifying Impairments in Whiplash-Associated Disorders and Association with Patient-Reported Outcomes

Authors: Harpa Ragnarsdóttir, Magnús Kjartan Gíslason, Kristín Briem, Guðný Lilja Oddsdóttir

Abstract:

Introduction: Whiplash-Associated Disorder (WAD) is a health problem characterized by motor, neurological and psychosocial symptoms, stressing the need for a multimodal treatment approach. To achieve individualized multimodal approach, prognostic factors need to be identified early using validated patient-reported and objective outcome measures. The aim of this study is to demonstrate the degree of association between patient-reported and clinical outcome measures of WAD patients in the subacute phase. Methods: Individuals (n=41) with subacute (≥1, ≤3 months) WAD (I-II), medium to high-risk symptoms, or neck pain rating ≥ 4/10 on the Visual Analog Scale (VAS) were examined. Outcome measures included measurements for movement control (Butterfly test) and cervical active range of motion (cAROM) using the NeckSmart system, a computer system using an inertial measurement unit (IMU) that connects to a computer. The IMU sensor is placed on the participant’s head, who receives visual feedback about the movement of the head. Patient-reported neck disability, pain intensity, general health, self-perceived handicap, central sensitization, and difficulties due to dizziness were measured using questionnaires. Excel and R statistical software were used for statistical analyses. Results: Forty-one participants, 15 males (37%), 26 females (63%), mean (SD) age 36.8 (±12.7), underwent data collection. Mean amplitude accuracy (AA) (SD) in the Butterfly test for easy, medium, and difficult paths were 2.4mm (0.9), 4.4mm (1.8), and 6.8mm (2.7), respectively. Mean cAROM (SD) for flexion, extension, left-, and right rotation were 46.3° (18.5), 48.8° (17.8), 58.2° (14.3), and 58.9° (15.0), respectively. Mean scores on the Neck Disability Index (NDI), VAS, Dizziness Handicap Inventory (DHI), Central Sensitization Inventory (CSI), and 36-Item Short Form Survey RAND version (RAND) were 43% (17.4), 7 (1.7), 37 (25.4), 51 (17.5), and 39.2 (17.7) respectively. Females showed significantly greater deviation for AA compared to males for easy and medium Butterfly paths (p<0.05). Statistically significant moderate to strong positive correlation was found between the DHI and easy (r=0.6, p=0.05), medium (r=0.5, p=0.05)) and difficult (r=0.5, p<0.05) Butterfly paths, between the total RAND score and all cAROMs (r between 0.4-0.7, p≤0.05) except flexion (r=0.4, p=0.7), and between the NDI score and CSI (r=0.7, p<0.01), VAS (r=0.5, p<0.01), and DHI (r=0.7, p<0.01) scores respectively. Discussion: All patient-reported and objective measures were found to be outside the reference range. Results suggest females have worse movement control in the neck in the subacute WAD phase. However, no statistical difference based on gender was found in patient-reported measures. Suggesting females might have worse movement control than males in general in this phase. The correlation found between DHI and the Butterfly test can be explained because the DHI measures proprioceptive symptoms like dizziness and eye movement disorders that can affect the outcome of movement control tests. A correlation was found between the total RAND score and cAROM, suggesting that a reduced range of motion affects the quality of life. Significance: The NeckSmart system can detect abnormalities in cAROM, fine movement control, and kinesthesia of the neck. Results suggest females have worse movement control than males. Results show a moderate to a high correlation between several patient-reported and objective measurements.

Keywords: whiplash associated disorders, car-collision, neck, trauma, subacute

Procedia PDF Downloads 70
60 Discriminant Shooting-Related Statistics between Winners and Losers 2023 FIBA U19 Basketball World Cup

Authors: Navid Ebrahmi Madiseh, Sina Esfandiarpour-Broujeni, Rahil Razeghi

Abstract:

Introduction: Quantitative analysis of game-related statistical parameters is widely used to evaluate basketball performance at both individual and team levels. Non-free throw shooting plays a crucial role as the primary scoring method, holding significant importance in the game's technical aspect. It has been explored the predictive value of game-related statistics in relation to various contextual and situational variables. Many similarities and differences also have been found between different age groups and levels of competition. For instance, in the World Basketball Championships after the 2010 rule change, 2-point field goals distinguished winners from losers in women's games but not in men's games, and the impact of successful 3-point field goals on women's games was minimal. The study aimed to identify and compare discriminant shooting-related statistics between winning and losing teams in men’s and women’s FIBA-U19-Basketball-World-Cup-2023 tournaments. Method: Data from 112 observations (2 per game) of 16 teams (for each gender) in the FIBA-U19-Basketball-World-Cup-2023 were selected as samples. The data were obtained from the official FIBA website using Python. Specific information was extracted, organized into a DataFrame, and consisted of twelve variables, including shooting percentages, attempts, and scoring ratio for 3-pointers, mid-range shots, paint shots, and free throws. Made% = scoring type successful attempts/scoring type total attempts¬ (1)Free-throw-pts% (free throw score ratio) = (free throw score/total score) ×100 (2)Mid-pts% (mid-range score ratio) = (mid-range score/total score) ×100 (3) Paint-pts% (paint score ratio) = (Paint score/total score) ×100 (4) 3p_pts% (three-point score ratio) = (three-point score/total score) ×100 (5) Independent t-tests were used to examine significant differences in shooting-related statistical parameters between winning and losing teams for both genders. Statistical significance was p < 0.05. All statistical analyses were completed with SPSS, Version 18. Results: The results showed that 3p-made%, mid-pts%, paint-made%, paint-pts%, mid-attempts, and paint-attempts were significantly different between winners and losers in men (t=-3.465, P<0.05; t=3.681, P<0.05; t=-5.884, P<0.05; t=-3.007, P<0.05; t=2.549, p<0.05; t=-3.921, P<0.05). For women, significant differences between winners and losers were found for 3p-made%, 3p-pts%, paint-made%, and paint-attempt (t=-6.429, P<0.05; t=-1.993, P<0.05; t=-1.993, P<0.05; t=-4.115, P<0.05; t=02.451, P<0.05). Discussion: The research aimed to compare shooting-related statistics between winners and losers in men's and women's teams at the FIBA-U19-Basketball-World-Cup-2023. Results indicated that men's winners excelled in 3p-made%, paint-made%, paint-pts%, paint-attempts, and mid-attempt, consistent with previous studies. This study found that losers in men’s teams had higher mid-pts% than winners, which was inconsistent with previous findings. It has been indicated that winners tend to prioritize statistically efficient shots while forcing the opponent to take mid-range shots. In women's games, significant differences in 3p-made%, 3p-pts%, paint-made%, and paint-attempts were observed, indicating that winners relied on riskier outside scoring strategies. Overall, winners exhibited higher accuracy in paint and 3P shooting than losers, but they also relied more on outside offensive strategies. Additionally, winners acquired a higher ratio of their points from 3P shots, which demonstrates their confidence in their skills and willingness to take risks at this competitive level.

Keywords: gender, losers, shoot-statistic, U19, winners

Procedia PDF Downloads 97
59 An Integrated Approach to the Carbonate Reservoir Modeling: Case Study of the Eastern Siberia Field

Authors: Yana Snegireva

Abstract:

Carbonate reservoirs are known for their heterogeneity, resulting from various geological processes such as diagenesis and fracturing. These complexities may cause great challenges in understanding fluid flow behavior and predicting the production performance of naturally fractured reservoirs. The investigation of carbonate reservoirs is crucial, as many petroleum reservoirs are naturally fractured, which can be difficult due to the complexity of their fracture networks. This can lead to geological uncertainties, which are important for global petroleum reserves. The problem outlines the key challenges in carbonate reservoir modeling, including the accurate representation of fractures and their connectivity, as well as capturing the impact of fractures on fluid flow and production. Traditional reservoir modeling techniques often oversimplify fracture networks, leading to inaccurate predictions. Therefore, there is a need for a modern approach that can capture the complexities of carbonate reservoirs and provide reliable predictions for effective reservoir management and production optimization. The modern approach to carbonate reservoir modeling involves the utilization of the hybrid fracture modeling approach, including the discrete fracture network (DFN) method and implicit fracture network, which offer enhanced accuracy and reliability in characterizing complex fracture systems within these reservoirs. This study focuses on the application of the hybrid method in the Nepsko-Botuobinskaya anticline of the Eastern Siberia field, aiming to prove the appropriateness of this method in these geological conditions. The DFN method is adopted to model the fracture network within the carbonate reservoir. This method considers fractures as discrete entities, capturing their geometry, orientation, and connectivity. But the method has significant disadvantages since the number of fractures in the field can be very high. Due to limitations in the amount of main memory, it is very difficult to represent these fractures explicitly. By integrating data from image logs (formation micro imager), core data, and fracture density logs, a discrete fracture network (DFN) model can be constructed to represent fracture characteristics for hydraulically relevant fractures. The results obtained from the DFN modeling approaches provide valuable insights into the East Siberia field's carbonate reservoir behavior. The DFN model accurately captures the fracture system, allowing for a better understanding of fluid flow pathways, connectivity, and potential production zones. The analysis of simulation results enables the identification of zones of increased fracturing and optimization opportunities for reservoir development with the potential application of enhanced oil recovery techniques, which were considered in further simulations on the dual porosity and dual permeability models. This approach considers fractures as separate, interconnected flow paths within the reservoir matrix, allowing for the characterization of dual-porosity media. The case study of the East Siberia field demonstrates the effectiveness of the hybrid model method in accurately representing fracture systems and predicting reservoir behavior. The findings from this study contribute to improved reservoir management and production optimization in carbonate reservoirs with the use of enhanced and improved oil recovery methods.

Keywords: carbonate reservoir, discrete fracture network, fracture modeling, dual porosity, enhanced oil recovery, implicit fracture model, hybrid fracture model

Procedia PDF Downloads 75
58 Diffusion MRI: Clinical Application in Radiotherapy Planning of Intracranial Pathology

Authors: Pomozova Kseniia, Gorlachev Gennadiy, Chernyaev Aleksandr, Golanov Andrey

Abstract:

In clinical practice, and especially in stereotactic radiosurgery planning, the significance of diffusion-weighted imaging (DWI) is growing. This makes the existence of software capable of quickly processing and reliably visualizing diffusion data, as well as equipped with tools for their analysis in terms of different tasks. We are developing the «MRDiffusionImaging» software on the standard C++ language. The subject part has been moved to separate class libraries and can be used on various platforms. The user interface is Windows WPF (Windows Presentation Foundation), which is a technology for managing Windows applications with access to all components of the .NET 5 or .NET Framework platform ecosystem. One of the important features is the use of a declarative markup language, XAML (eXtensible Application Markup Language), with which you can conveniently create, initialize and set properties of objects with hierarchical relationships. Graphics are generated using the DirectX environment. The MRDiffusionImaging software package has been implemented for processing diffusion magnetic resonance imaging (dMRI), which allows loading and viewing images sorted by series. An algorithm for "masking" dMRI series based on T2-weighted images was developed using a deformable surface model to exclude tissues that are not related to the area of interest from the analysis. An algorithm of distortion correction using deformable image registration based on autocorrelation of local structure has been developed. Maximum voxel dimension was 1,03 ± 0,12 mm. In an elementary brain's volume, the diffusion tensor is geometrically interpreted using an ellipsoid, which is an isosurface of the probability density of a molecule's diffusion. For the first time, non-parametric intensity distributions, neighborhood correlations, and inhomogeneities are combined in one segmentation of white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF) algorithm. A tool for calculating the coefficient of average diffusion and fractional anisotropy has been created, on the basis of which it is possible to build quantitative maps for solving various clinical problems. Functionality has been created that allows clustering and segmenting images to individualize the clinical volume of radiation treatment and further assess the response (Median Dice Score = 0.963 ± 0,137). White matter tracts of the brain were visualized using two algorithms: deterministic (fiber assignment by continuous tracking) and probabilistic using the Hough transform. The proposed algorithms test candidate curves in the voxel, assigning to each one a score computed from the diffusion data, and then selects the curves with the highest scores as the potential anatomical connections. White matter fibers were visualized using a Hough transform tractography algorithm. In the context of functional radiosurgery, it is possible to reduce the irradiation volume of the internal capsule receiving 12 Gy from 0,402 cc to 0,254 cc. The «MRDiffusionImaging» will improve the efficiency and accuracy of diagnostics and stereotactic radiotherapy of intracranial pathology. We develop software with integrated, intuitive support for processing, analysis, and inclusion in the process of radiotherapy planning and evaluating its results.

Keywords: diffusion-weighted imaging, medical imaging, stereotactic radiosurgery, tractography

Procedia PDF Downloads 85
57 Subway Ridership Estimation at a Station-Level: Focus on the Impact of Bus Demand, Commercial Business Characteristics and Network Topology

Authors: Jungyeol Hong, Dongjoo Park

Abstract:

The primary purpose of this study is to develop a methodological framework to predict daily subway ridership at a station-level and to examine the association between subway ridership and bus demand incorporating commercial business facility in the vicinity of each subway station. The socio-economic characteristics, land-use, and built environment as factors may have an impact on subway ridership. However, it should be considered not only the endogenous relationship between bus and subway demand but also the characteristics of commercial business within a subway station’s sphere of influence, and integrated transit network topology. Regarding a statistical approach to estimate subway ridership at a station level, therefore it should be considered endogeneity and heteroscedastic issues which might have in the subway ridership prediction model. This study focused on both discovering the impacts of bus demand, commercial business characteristics, and network topology on subway ridership and developing more precise subway ridership estimation accounting for its statistical bias. The spatial scope of the study covers entire Seoul city in South Korea and includes 243 stations with the temporal scope set at twenty-four hours with one-hour interval time panels each. The data for subway and bus ridership was collected Seoul Smart Card data from 2015 and 2016. Three-Stage Least Square(3SLS) approach was applied to develop daily subway ridership model as capturing the endogeneity and heteroscedasticity between bus and subway demand. Independent variables incorporating in the modeling process were commercial business characteristics, social-economic characteristics, safety index, transit facility attributes, and dummies for seasons and time zone. As a result, it was found that bus ridership and subway ridership were endogenous each other and they had a significantly positive sign of coefficients which means one transit mode could increase another transportation mode’s ridership. In other words, two transit modes of subway and bus have a mutual relationship instead of the competitive relationship. The commercial business characteristics are the most critical dimension among the independent variables. The variables of commercial business facility rate in the paper containing six types; medical, educational, recreational, financial, food service, and shopping. From the model result, a higher rate in medical, financial buildings, shopping, and food service facility lead to increment of subway ridership at a station, while recreational and educational facility shows lower subway ridership. The complex network theory was applied for estimating integrated network topology measures that cover the entire Seoul transit network system, and a framework for seeking an impact on subway ridership. The centrality measures were found to be significant and showed a positive sign indicating higher centrality led to more subway ridership at a station level. The results of model accuracy tests by out of samples provided that 3SLS model has less mean square error rather than OLS and showed the methodological approach for the 3SLS model was plausible to estimate more accurate subway ridership. Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT (2017R1C1B2010175).

Keywords: subway ridership, bus ridership, commercial business characteristic, endogeneity, network topology

Procedia PDF Downloads 144
56 Audience Members' Perspective-Taking Predicts Accurate Identification of Musically Expressed Emotion in a Live Improvised Jazz Performance

Authors: Omer Leshem, Michael F. Schober

Abstract:

This paper introduces a new method for assessing how audience members and performers feel and think during live concerts, and how audience members' recognized and felt emotions are related. Two hypotheses were tested in a live concert setting: (1) that audience members’ cognitive perspective taking ability predicts their accuracy in identifying an emotion that a jazz improviser intended to express during a performance, and (2) that audience members' affective empathy predicts their likelihood of feeling the same emotions as the performer. The aim was to stage a concert with audience members who regularly attend live jazz performances, and to measure their cognitive and affective reactions during the performance as non-intrusively as possible. Pianist and Grammy nominee Andy Milne agreed, without knowing details of the method or hypotheses, to perform a full-length solo improvised concert that would include an ‘unusual’ piece. Jazz fans were recruited through typical advertising for New York City jazz performances. The event was held at the New School’s Glass Box Theater, the home of leading NYC jazz venue ‘The Stone.’ Audience members were charged typical NYC jazz club admission prices; advertisements informed them that anyone who chose to participate in the study would be reimbursed their ticket price after the concert. The concert, held in April 2018, had 30 attendees, 23 of whom participated in the study. Twenty-two minutes into the concert, the performer was handed a paper note with the instruction: ‘Perform a 3-5-minute improvised piece with the intention of conveying sadness.’ (Sadness was chosen based on previous music cognition lab studies, where solo listeners were less likely to select sadness as the musically-expressed emotion accurately from a list of basic emotions, and more likely to misinterpret sadness as tenderness). Then, audience members and the performer were invited to respond to a questionnaire from a first envelope under their seat. Participants used their own words to describe the emotion the performer had intended to express, and then to select the intended emotion from a list. They also reported the emotions they had felt while listening using Izard’s differential emotions scale. The concert then continued as usual. At the end, participants answered demographic questions and Davis’ interpersonal reactivity index (IRI), a 28-item scale designed to assess both cognitive and affective empathy. Hypothesis 1 was supported: audience members with greater cognitive empathy were more likely to accurately identify sadness as the expressed emotion. Moreover, audience members who accurately selected ‘sadness’ reported feeling marginally sadder than people who did not select sadness. Hypotheses 2 was not supported; audience members with greater affective empathy were not more likely to feel the same emotions as the performer. If anything, members with lower cognitive perspective-taking ability had marginally greater emotional overlap with the performer, which makes sense given that these participants were less likely to identify the music as sad, which corresponded with the performer’s actual feelings. Results replicate findings from solo lab studies in a concert setting and demonstrate the viability of exploring empathy and collective cognition in improvised live performance.

Keywords: audience, cognition, collective cognition, emotion, empathy, expressed emotion, felt emotion, improvisation, live performance, recognized emotion

Procedia PDF Downloads 132
55 Partial Discharge Characteristics of Free- Moving Particles in HVDC-GIS

Authors: Philipp Wenger, Michael Beltle, Stefan Tenbohlen, Uwe Riechert

Abstract:

The integration of renewable energy introduces new challenges to the transmission grid, as the power generation is located far from load centers. The associated necessary long-range power transmission increases the demand for high voltage direct current (HVDC) transmission lines and DC distribution grids. HVDC gas-insulated switchgears (GIS) are considered being a key technology, due to the combination of the DC technology and the long operation experiences of AC-GIS. To ensure long-term reliability of such systems, insulation defects must be detected in an early stage. Operational experience with AC systems has proven evidence, that most failures, which can be attributed to breakdowns of the insulation system, can be detected and identified via partial discharge (PD) measurements beforehand. In AC systems the identification of defects relies on the phase resolved partial discharge pattern (PRPD). Since there is no phase information within DC systems this method cannot be transferred to DC PD diagnostic. Furthermore, the behaviour of e.g. free-moving particles differs significantly at DC: Under the influence of a constant direct electric field, charge carriers can accumulate on particles’ surfaces. As a result, a particle can lift-off, oscillate between the inner conductor and the enclosure or rapidly bounces at just one electrode, which is known as firefly motion. Depending on the motion and the relative position of the particle to the electrodes, broadband electromagnetic PD pulses are emitted, which can be recorded by ultra-high frequency (UHF) measuring methods. PDs are often accompanied by light emissions at the particle’s tip which enables optical detection. This contribution investigates PD characteristics of free moving metallic particles in a commercially available 300 kV SF6-insulated HVDC-GIS. The influences of various defect parameters on the particle motion and the PD characteristic are evaluated experimentally. Several particle geometries, such as cylinder, lamella, spiral and sphere with different length, diameter and weight are determined. The applied DC voltage is increased stepwise from inception voltage up to UDC = ± 400 kV. Different physical detection methods are used simultaneously in a time-synchronized setup. Firstly, the electromagnetic waves emitted by the particle are recorded by an UHF measuring system. Secondly, a photomultiplier tube (PMT) detects light emission with a wavelength in the range of λ = 185…870 nm. Thirdly, a high-speed camera (HSC) tracks the particle’s motion trajectory with high accuracy. Furthermore, an electrically insulated electrode is attached to the grounded enclosure and connected to a current shunt in order to detect low frequency ion currents: The shunt measuring system’s sensitivity is in the range of 10 nA at a measuring bandwidth of bw = DC…1 MHz. Currents of charge carriers, which are generated at the particle’s tip migrate through the gas gap to the electrode and can be recorded by the current shunt. All recorded PD signals are analyzed in order to identify characteristic properties of different particles. This includes e.g. repetition rates and amplitudes of successive pulses, characteristic frequency ranges and detected signal energy of single PD pulses. Concluding, an advanced understanding of underlying physical phenomena particle motion in direct electric field can be derived.

Keywords: current shunt, free moving particles, high-speed imaging, HVDC-GIS, UHF

Procedia PDF Downloads 160
54 Machine Learning Approach for Automating Electronic Component Error Classification and Detection

Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski

Abstract:

The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.

Keywords: augmented reality, machine learning, object recognition, virtual laboratories

Procedia PDF Downloads 134
53 Medicompills Architecture: A Mathematical Precise Tool to Reduce the Risk of Diagnosis Errors on Precise Medicine

Authors: Adriana Haulica

Abstract:

Powered by Machine Learning, Precise medicine is tailored by now to use genetic and molecular profiling, with the aim of optimizing the therapeutic benefits for cohorts of patients. As the majority of Machine Language algorithms come from heuristics, the outputs have contextual validity. This is not very restrictive in the sense that medicine itself is not an exact science. Meanwhile, the progress made in Molecular Biology, Bioinformatics, Computational Biology, and Precise Medicine, correlated with the huge amount of human biology data and the increase in computational power, opens new healthcare challenges. A more accurate diagnosis is needed along with real-time treatments by processing as much as possible from the available information. The purpose of this paper is to present a deeper vision for the future of Artificial Intelligence in Precise medicine. In fact, actual Machine Learning algorithms use standard mathematical knowledge, mostly Euclidian metrics and standard computation rules. The loss of information arising from the classical methods prevents obtaining 100% evidence on the diagnosis process. To overcome these problems, we introduce MEDICOMPILLS, a new architectural concept tool of information processing in Precise medicine that delivers diagnosis and therapy advice. This tool processes poly-field digital resources: global knowledge related to biomedicine in a direct or indirect manner but also technical databases, Natural Language Processing algorithms, and strong class optimization functions. As the name suggests, the heart of this tool is a compiler. The approach is completely new, tailored for omics and clinical data. Firstly, the intrinsic biological intuition is different from the well-known “a needle in a haystack” approach usually used when Machine Learning algorithms have to process differential genomic or molecular data to find biomarkers. Also, even if the input is seized from various types of data, the working engine inside the MEDICOMPILLS does not search for patterns as an integrative tool. This approach deciphers the biological meaning of input data up to the metabolic and physiologic mechanisms, based on a compiler with grammars issued from bio-algebra-inspired mathematics. It translates input data into bio-semantic units with the help of contextual information iteratively until Bio-Logical operations can be performed on the base of the “common denominator “rule. The rigorousness of MEDICOMPILLS comes from the structure of the contextual information on functions, built to be analogous to mathematical “proofs”. The major impact of this architecture is expressed by the high accuracy of the diagnosis. Detected as a multiple conditions diagnostic, constituted by some main diseases along with unhealthy biological states, this format is highly suitable for therapy proposal and disease prevention. The use of MEDICOMPILLS architecture is highly beneficial for the healthcare industry. The expectation is to generate a strategic trend in Precise medicine, making medicine more like an exact science and reducing the considerable risk of errors in diagnostics and therapies. The tool can be used by pharmaceutical laboratories for the discovery of new cures. It will also contribute to better design of clinical trials and speed them up.

Keywords: bio-semantic units, multiple conditions diagnosis, NLP, omics

Procedia PDF Downloads 70
52 Runoff Estimates of Rapidly Urbanizing Indian Cities: An Integrated Modeling Approach

Authors: Rupesh S. Gundewar, Kanchan C. Khare

Abstract:

Runoff contribution from urban areas is generally from manmade structures and few natural contributors. The manmade structures are buildings; roads and other paved areas whereas natural contributors are groundwater and overland flows etc. Runoff alleviation is done by manmade as well as natural storages. Manmade storages are storage tanks or other storage structures such as soakways or soak pits which are more common in western and European countries. Natural storages are catchment slope, infiltration, catchment length, channel rerouting, drainage density, depression storage etc. A literature survey on the manmade and natural storages/inflow has presented percentage contribution of each individually. Sanders et.al. in their research have reported that a vegetation canopy reduces runoff by 7% to 12%. Nassif et el in their research have reported that catchment slope has an impact of 16% on bare standard soil and 24% on grassed soil on rainfall runoff. Infiltration being a pervious/impervious ratio dependent parameter is catchment specific. But a literature survey has presented a range of 15% to 30% loss of rainfall runoff in various catchment study areas. Catchment length and channel rerouting too play a considerable role in reduction of rainfall runoff. Ground infiltration inflow adds to the runoff where the groundwater table is very shallow and soil saturates even in a lower intensity storm. An approximate percent contribution through this inflow and surface inflow contributes to about 2% of total runoff volume. Considering the various contributing factors in runoff it has been observed during a literature survey that integrated modelling approach needs to be considered. The traditional storm water network models are able to predict to a fair/acceptable degree of accuracy provided no interaction with receiving water (river, sea, canal etc), ground infiltration, treatment works etc. are assumed. When such interactions are significant then it becomes difficult to reproduce the actual flood extent using the traditional discrete modelling approach. As a result the correct flooding situation is very rarely addressed accurately. Since the development of spatially distributed hydrologic model the predictions have become more accurate at the cost of requiring more accurate spatial information.The integrated approach provides a greater understanding of performance of the entire catchment. It enables to identify the source of flow in the system, understand how it is conveyed and also its impact on the receiving body. It also confirms important pain points, hydraulic controls and the source of flooding which could not be easily understood with discrete modelling approach. This also enables the decision makers to identify solutions which can be spread throughout the catchment rather than being concentrated at single point where the problem exists. Thus it can be concluded from the literature survey that the representation of urban details can be a key differentiator to the successful understanding of flooding issue. The intent of this study is to accurately predict the runoff from impermeable areas from urban area in India. A representative area has been selected for which data was available and predictions have been made which are corroborated with the actual measured data.

Keywords: runoff, urbanization, impermeable response, flooding

Procedia PDF Downloads 250