Search results for: processing parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11708

Search results for: processing parameters

7598 Thickness Measurement and Void Detection in Concrete Elements through Ultrasonic Pulse

Authors: Leonel Lipa Cusi, Enrique Nestor Pasquel Carbajal, Laura Marina Navarro Alvarado, José Del Álamo Carazas

Abstract:

This research analyses the accuracy of the ultrasound and the pulse echo ultrasound technic to find voids and to measure thickness of concrete elements. These mentioned air voids are simulated by polystyrene expanded and hollow containers of thin thickness made of plastic or cardboard of different sizes and shapes. These targets are distributed strategically inside concrete at different depths. For this research, a shear wave pulse echo ultrasonic device of 50 KHz is used to scan the concrete elements. Despite the small measurements of the concrete elements and because of voids’ size are near the half of the wavelength, pre and post processing steps like voltage, gain, SAFT, envelope and time compensation were made in order to improve imaging results.

Keywords: ultrasonic, concrete, thickness, pulse echo, void

Procedia PDF Downloads 313
7597 Information Retrieval for Kafficho Language

Authors: Mareye Zeleke Mekonen

Abstract:

The Kafficho language has distinct issues in information retrieval because of its restricted resources and dearth of standardized methods. In this endeavor, with the cooperation and support of linguists and native speakers, we investigate the creation of information retrieval systems specifically designed for the Kafficho language. The Kafficho information retrieval system allows Kafficho speakers to access information easily in an efficient and effective way. Our objective is to conduct an information retrieval experiment using 220 Kafficho text files, including fifteen sample questions. Tokenization, normalization, stop word removal, stemming, and other data pre-processing chores, together with additional tasks like term weighting, were prerequisites for the vector space model to represent each page and a particular query. The three well-known measurement metrics we used for our word were Precision, Recall, and and F-measure, with values of 87%, 28%, and 35%, respectively. This demonstrates how well the Kaffiho information retrieval system performed well while utilizing the vector space paradigm.

Keywords: Kafficho, information retrieval, stemming, vector space

Procedia PDF Downloads 37
7596 Lean Comic GAN (LC-GAN): a Light-Weight GAN Architecture Leveraging Factorized Convolution and Teacher Forcing Distillation Style Loss Aimed to Capture Two Dimensional Animated Filtered Still Shots Using Mobile Phone Camera and Edge Devices

Authors: Kaustav Mukherjee

Abstract:

In this paper we propose a Neural Style Transfer solution whereby we have created a Lightweight Separable Convolution Kernel Based GAN Architecture (SC-GAN) which will very useful for designing filter for Mobile Phone Cameras and also Edge Devices which will convert any image to its 2D ANIMATED COMIC STYLE Movies like HEMAN, SUPERMAN, JUNGLE-BOOK. This will help the 2D animation artist by relieving to create new characters from real life person's images without having to go for endless hours of manual labour drawing each and every pose of a cartoon. It can even be used to create scenes from real life images.This will reduce a huge amount of turn around time to make 2D animated movies and decrease cost in terms of manpower and time. In addition to that being extreme light-weight it can be used as camera filters capable of taking Comic Style Shots using mobile phone camera or edge device cameras like Raspberry Pi 4,NVIDIA Jetson NANO etc. Existing Methods like CartoonGAN with the model size close to 170 MB is too heavy weight for mobile phones and edge devices due to their scarcity in resources. Compared to the current state of the art our proposed method which has a total model size of 31 MB which clearly makes it ideal and ultra-efficient for designing of camera filters on low resource devices like mobile phones, tablets and edge devices running OS or RTOS. .Owing to use of high resolution input and usage of bigger convolution kernel size it produces richer resolution Comic-Style Pictures implementation with 6 times lesser number of parameters and with just 25 extra epoch trained on a dataset of less than 1000 which breaks the myth that all GAN need mammoth amount of data. Our network reduces the density of the Gan architecture by using Depthwise Separable Convolution which does the convolution operation on each of the RGB channels separately then we use a Point-Wise Convolution to bring back the network into required channel number using 1 by 1 kernel.This reduces the number of parameters substantially and makes it extreme light-weight and suitable for mobile phones and edge devices. The architecture mentioned in the present paper make use of Parameterised Batch Normalization Goodfellow etc al. (Deep Learning OPTIMIZATION FOR TRAINING DEEP MODELS page 320) which makes the network to use the advantage of Batch Norm for easier training while maintaining the non-linear feature capture by inducing the learnable parameters

Keywords: comic stylisation from camera image using GAN, creating 2D animated movie style custom stickers from images, depth-wise separable convolutional neural network for light-weight GAN architecture for EDGE devices, GAN architecture for 2D animated cartoonizing neural style, neural style transfer for edge, model distilation, perceptual loss

Procedia PDF Downloads 119
7595 Simulation of Performance of LaBr₃ (Ce) Using GEANT4

Authors: Zarana Dave

Abstract:

Cerium-doped lanthanum bromide, LaBr₃ (Ce), scintillator shows attracting properties for spectroscopy that makes it a suitable solution for security, medical, geophysics and high energy physics applications. Here, the performance parameters of a cylindrical LaBr₃ (Ce) scintillator was investigated. The first aspect is the determination of the efficiency for γ - ray detection, measured with GEANT4 simulation toolkit from 10keV to 10MeV energy range. The second is the detailed study of background radiation of LaBr₃ (Ce). It has relatively high intrinsic radiation background due to naturally occurring ¹³⁸La and ²²⁷Ac radioisotopes.

Keywords: LaBr₃(Ce), GEANT4, efficiency, background radiation

Procedia PDF Downloads 208
7594 Wastewater Treatment from Heavy Metals by Nanofiltration and Ion Exchange

Authors: G. G. Kagramanov, E. N. Farnosova, Linn Maung Maung

Abstract:

The technologies of ion exchange and nanofiltration can be used for treatment of wastewater containing copper and other heavy metal ions to decrease the environmental risks. Nanofiltration characteristics under water treatment of heavy metals have been studied. The influence of main technical process parameters - pressure, temperature, concentration and pH value of the initial solution on flux and rejection of nanofiltration membranes has been considered. And ion exchange capacities of resins in removal of heavy metal ions from wastewater have been determined.

Keywords: exchange capacity, heavy metals, ion exchange, membrane separation, nanofiltration

Procedia PDF Downloads 272
7593 1G2A IMU\GPS Integration Algorithm for Land Vehicle Navigation

Authors: O. Maklouf, Ahmed Abdulla

Abstract:

A general decline in the cost, size, and power requirements of electronics is accelerating the adoption of integrated GPS/INS technologies in consumer applications such Land Vehicle Navigation. Researchers are looking for ways to eliminate additional components from product designs. One possibility is to drop one or more of the relatively expensive gyroscopes from microelectromechanical system (MEMS) versions of inertial measurement units (IMUs). For land vehicular use, the most important gyroscope is the vertical gyro that senses the heading of the vehicle and two horizontal accelerometers for determining the velocity of the vehicle. This paper presents a simplified integration algorithm for strap down (ParIMU)\GPS combination, with data post processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of the low-cost IMU and because of the relatively small area of the trajectory.

Keywords: GPS, ParIMU, INS, Kalman filter

Procedia PDF Downloads 500
7592 Music Note Detection and Dictionary Generation from Music Sheet Using Image Processing Techniques

Authors: Muhammad Ammar, Talha Ali, Abdul Basit, Bakhtawar Rajput, Zobia Sohail

Abstract:

Music note detection is an area of study for the past few years and has its own influence in music file generation from sheet music. We proposed a method to detect music notes on sheet music using basic thresholding and blob detection. Subsequently, we created a notes dictionary using a semi-supervised learning approach. After notes detection, for each test image, the new symbols are added to the dictionary. This makes the notes detection semi-automatic. The experiments are done on images from a dataset and also on the captured images. The developed approach showed almost 100% accuracy on the dataset images, whereas varying results have been seen on captured images.

Keywords: music note, sheet music, optical music recognition, blob detection, thresholding, dictionary generation

Procedia PDF Downloads 162
7591 Rheolaser: Light Scattering Characterization of Viscoelastic Properties of Hair Cosmetics That Are Related to Performance and Stability of the Respective Colloidal Soft Materials

Authors: Heitor Oliveira, Gabriele De-Waal, Juergen Schmenger, Lynsey Godfrey, Tibor Kovacs

Abstract:

Rheolaser MASTER™ makes use of multiple scattering of light, caused by scattering objects in a continuous medium (such as droplets and particles in colloids), to characterize the viscoelasticity of soft materials. It offers an alternative to conventional rheometers to characterize viscoelasticity of products such as hair cosmetics. Up to six simultaneous measurements at controlled temperature can be carried out simultaneously (10-15 min), and the method requires only minor sample preparation work. Conversely to conventional rheometer based methods, no mechanical stress is applied to the material during the measurements. Therefore, the properties of the exact same sample can be monitored over time, like in aging and stability studies. We determined the elastic index (EI) of water/emulsion mixtures (1 ≤ fat alcohols (FA) ≤ 5 wt%) and emulsion/gel-network mixtures (8 ≤ FA ≤ 17 wt%) and compared with the elastic/sorage mudulus (G’) for the respective samples using a TA conventional rheometer with flat plates geometry. As expected, it was found that log(EI) vs log(G’) presents a linear behavior. Moreover, log(EI) increased in a linear fashion with solids level in the entire range of compositions (1 ≤ FA ≤ 17 wt%), while rheometer measurements were limited to samples down to 4 wt% solids level. Alternatively, a concentric cilinder geometry would be required for more diluted samples (FA > 4 wt%) and rheometer results from different sample holder geometries are not comparable. The plot of the rheolaser output parameters solid-liquid balance (SLB) vs EI were suitable to monitor product aging processes. These data could quantitatively describe some observations such as formation of lumps over aging time. Moreover, this method allowed to identify that the different specifications of a key raw material (RM < 0.4 wt%) in the respective gel-network (GN) product has minor impact on product viscoelastic properties and it is not consumer perceivable after a short aging time. Broadening of a RM spec range typically has a positive impact on cost savings. Last but not least, the photon path length (λ*)—proportional to droplet size and inversely proportional to volume fraction of scattering objects, accordingly to the Mie theory—and the EI were suitable to characterize product destabilization processes (e.g., coalescence and creaming) and to predict product stability about eight times faster than our standard methods. Using these parameters we could successfully identify formulation and process parameters that resulted in unstable products. In conclusion, Rheolaser allows quick and reliable characterization of viscoelastic properties of hair cosmetics that are related to their performance and stability. It operates in a broad range of product compositions and has applications spanning from the formulation of our hair cosmetics to fast release criteria in our production sites. Last but not least, this powerful tool has positive impact on R&D development time—faster delivery of new products to the market—and consequently on cost savings.

Keywords: colloids, hair cosmetics, light scattering, performance and stability, soft materials, viscoelastic properties

Procedia PDF Downloads 159
7590 Implementation of Traffic Engineering Using MPLS Technology

Authors: Vishal H. Shukla, Sanjay B. Deshmukh

Abstract:

Traffic engineering, at its center, is the ability of moving traffic approximately so that traffic from a congested link is moved onto the unused capacity on another link. Traffic Engineering ensures the best possible use of the resources. Now to support traffic engineering in the today’s network, Multiprotocol Label Switching (MPLS) is being used which is very helpful for reliable packets delivery in an ongoing internet services. Here a topology is been implemented on GNS3 to focus on the analysis of the communication take place from one site to other through the ISP. The comparison is made between the IP network & MPLS network based on Bandwidth & Jitter which are one of the performance parameters using JPERF simulator.

Keywords: GNS3, JPERF, MPLS, traffic engineering, VMware

Procedia PDF Downloads 465
7589 Role of Geohydrology in Groundwater Management-Case Study of Pachod Village, Maharashtra, India

Authors: Ashok Tejankar, Rohan K. Pathrikar

Abstract:

Maharashtra is covered by heterogeneous flows of Deccan basaltic terrains of upper cretaceous to lower Eocene age. It consist mainly different types of basalt flow, having heterogeneous Geohydrological characters. The study area Aurangabad dist. lies in the central part of Maharashtra. The study area is typically covered by Deccan traps formation mainly basalt type of igneous volcanic rock. The area is located in the survey of India toposheet No. 47M and laying between 19° to 20° north latitudes and 74° to 76° east longitudes. Groundwater is the primary source for fresh water in the study area. There has been a growing demand for fresh water in domestic & agriculture sectors. Due to over exploitation and rainfall failure has been created an irrecoverable stress on groundwater in study area. In an effort to maintain the water table condition in balance, artificial recharge is being implemented. The selection of site for artificial recharge is a very important task in recharge basalt. The present study aims at sitting artificial recharge structure at village Pachod in basaltic terrain of the Godavari-Purna river basin in Aurangabad district of Maharashtra, India. where the average annual rainfall is 650mm. In this investigation, integrated remote sensing and GIS techniques were used and various parameters like lithology, structure, etc. aspect of drainage basins, landforms and other parameters were extracted from visual interpretation of IRS P6 Satellite data and Survey of India (SIO) topographical sheets, aided by field checks by carrying well inventory survey. The depth of weathered material, water table conditions, and rainfall data were been considered. All the thematic information layers were digitized and analyzed in Arc-GIS environment and the composite maps produced show suitable site, depth of bed rock flows for successful artificial recharge in village Pachod to increase groundwater potential of low laying area.

Keywords: hard rock, artificial recharge, remote sensing, GIS

Procedia PDF Downloads 280
7588 Implementation of a PDMS Microdevice for the Improved Purification of Circulating MicroRNAs

Authors: G. C. Santini, C. Potrich, L. Lunelli, L. Vanzetti, S. Marasso, M. Cocuzza, C. Pederzolli

Abstract:

The relevance of circulating miRNAs as non-invasive biomarkers for several pathologies is nowadays undoubtedly clear, as they have been found to have both diagnostic and prognostic value able to add fundamental information to patients’ clinical picture. The availability of these data, however, relies on a time-consuming process spanning from the sample collection and processing to the data analysis. In light of this, strategies which are able to ease this procedure are in high demand and considerable effort have been made in developing Lab-on-a-chip (LOC) devices able to speed up and standardise the bench work. In this context, a very promising polydimethylsiloxane (PDMS)-based microdevice which integrates the processing of the biological sample, i.e. purification of extracellular miRNAs, and reverse transcription was previously developed in our lab. In this study, we aimed at the improvement of the miRNA extraction performances of this micro device by increasing the ability of its surface to absorb extracellular miRNAs from biological samples. For this purpose, we focused on the modulation of two properties of the material: roughness and charge. PDMS surface roughness was modulated by casting with several templates (terminated with silicon oxide coated by a thin anti-adhesion aluminum layer), followed by a panel of curing conditions. Atomic force microscopy (AFM) was employed to estimate changes at the nanometric scale. To introduce modifications in surface charge we functionalized PDMS with different mixes of positively charged 3-aminopropyltrimethoxysilanes (APTMS) and neutral poly(ethylene glycol) silane (PEG). The surface chemical composition was characterized by X-ray photoelectron spectroscopy (XPS) and the number of exposed primary amines was quantified with the reagent sulfosuccinimidyl-4-o-(4,4-dimethoxytrityl) butyrate (s-SDTB). As our final end point, the adsorption rate of all these different conditions was assessed by fluorescence microscopy by incubating a synthetic fluorescently-labeled miRNA. Our preliminary analysis identified casting on thermally grown silicon oxide, followed by a curing step at 85°C for 1 hour, as the most efficient technique to obtain a PDMS surface roughness in the nanometric scaleable to trap miRNA. In addition, functionalisation with 0.1% APTMS and 0.9% PEG was found to be a necessary step to significantly increase the amount of microRNA adsorbed on the surface, therefore, available for further steps as on-chip reverse transcription. These findings show a substantial improvement in the extraction efficiency of our PDMS microdevice, ultimately leading to an important step forward in the development of an innovative, easy-to-use and integrated system for the direct purification of less abundant circulating microRNAs.

Keywords: circulating miRNAs, diagnostics, Lab-on-a-chip, polydimethylsiloxane (PDMS)

Procedia PDF Downloads 301
7587 Dynamic Analysis and Clutch Adaptive Prefill in Dual Clutch Transmission

Authors: Bin Zhou, Tongli Lu, Jianwu Zhang, Hongtao Hao

Abstract:

Dual clutch transmissions (DCT) offer a high comfort performance in terms of the gearshift. Hydraulic multi-disk clutches are the key components of DCT, its engagement determines the shifting comfort. The prefill of the clutches requests an initial engagement which the clutches just contact against each other but not transmit substantial torque from the engine, this initial clutch engagement point is called the touch point. Open-loop control is typically implemented for the clutch prefill, a lot of uncertainties, such as oil temperature and clutch wear, significantly affects the prefill, probably resulting in an inappropriate touch point. Underfill causes the engine flaring in gearshift while overfill arises clutch tying up, both deteriorating the shifting comfort of DCT. Therefore, it is important to enable an adaptive capacity for the clutch prefills regarding the uncertainties. In this paper, a dynamic model of the hydraulic actuator system is presented, including the variable force solenoid and clutch piston, and validated by a test. Subsequently, the open-loop clutch prefill is simulated based on the proposed model. Two control parameters of the prefill, fast fill time and stable fill pressure is analyzed with regard to the impact on the prefill. The former has great effects on the pressure transients, the latter directly influences the touch point. Finally, an adaptive method is proposed for the clutch prefill during gear shifting, in which clutch fill control parameters are adjusted adaptively and continually. The adaptive strategy is changing the stable fill pressure according to the current clutch slip during a gearshift, improving the next prefill process. The stable fill pressure is increased by means of the clutch slip while underfill and decreased with a constant value for overfill. The entire strategy is designed in the Simulink/Stateflow, and implemented in the transmission control unit with optimization. Road vehicle test results have shown the strategy realized its adaptive capability and proven it improves the shifting comfort.

Keywords: clutch prefill, clutch slip, dual clutch transmission, touch point, variable force solenoid

Procedia PDF Downloads 300
7586 Review on Quaternion Gradient Operator with Marginal and Vector Approaches for Colour Edge Detection

Authors: Nadia Ben Youssef, Aicha Bouzid

Abstract:

Gradient estimation is one of the most fundamental tasks in the field of image processing in general, and more particularly for color images since that the research in color image gradient remains limited. The widely used gradient method is Di Zenzo’s gradient operator, which is based on the measure of squared local contrast of color images. The proposed gradient mechanism, presented in this paper, is based on the principle of the Di Zenzo’s approach using quaternion representation. This edge detector is compared to a marginal approach based on multiscale product of wavelet transform and another vector approach based on quaternion convolution and vector gradient approach. The experimental results indicate that the proposed color gradient operator outperforms marginal approach, however, it is less efficient then the second vector approach.

Keywords: gradient, edge detection, color image, quaternion

Procedia PDF Downloads 219
7585 An Approach to Determine Proper Daylighting Design Solution Considering Visual Comfort and Lighting Energy Efficiency in High-Rise Residential Building

Authors: Zehra Aybike Kılıç, Alpin Köknel Yener

Abstract:

Daylight is a powerful driver in terms of improving human health, enhancing productivity and creating sustainable solutions by minimizing energy demand. A proper daylighting system allows not only a pleasant and attractive visual and thermal environment, but also reduces lighting energy consumption and heating/cooling energy load with the optimization of aperture size, glazing type and solar control strategy, which are the major design parameters of daylighting system design. Particularly, in high-rise buildings where large openings that allow maximum daylight and view out are preferred, evaluation of daylight performance by considering the major parameters of the building envelope design becomes crucial in terms of ensuring occupants’ comfort and improving energy efficiency. Moreover, it is increasingly necessary to examine the daylighting design of high-rise residential buildings, considering the share of residential buildings in the construction sector, the duration of occupation and the changing space requirements. This study aims to identify a proper daylighting design solution considering window area, glazing type and solar control strategy for a high-residential building in terms of visual comfort and lighting energy efficiency. The dynamic simulations are carried out/conducted by DIVA for Rhino version 4.1.0.12. The results are evaluated with Daylight Autonomy (DA) to demonstrate daylight availability in the space and Daylight Glare Probability (DGP) to describe the visual comfort conditions related to glare. Furthermore, it is also analyzed that the lighting energy consumption occurred in each scenario to determine the optimum solution reducing lighting energy consumption by optimizing daylight performance. The results revealed that it is only possible that reduction in lighting energy consumption as well as providing visual comfort conditions in buildings with the proper daylighting design decision regarding glazing type, transparency ratio and solar control device.

Keywords: daylighting , glazing type, lighting energy efficiency, residential building, solar control strategy, visual comfort

Procedia PDF Downloads 163
7584 Securing Mobile Ad-Hoc Network Utilizing OPNET Simulator

Authors: Tariq A. El Shheibia, Halima Mohamed Belhamad

Abstract:

This paper is considered securing data based on multi-path protocol (SDMP) in mobile ad hoc network utilizing OPNET simulator modular 14.5, including the AODV routing protocol at the network as based multi-path algorithm for message security in MANETs. The main idea of this work is to present a way that is able to detect the attacker inside the MANETs. The detection for this attacker will be performed by adding some effective parameters to the network.

Keywords: MANET, AODV, malicious node, OPNET

Procedia PDF Downloads 274
7583 Water Injection in order to Enhanced Oil Recovery

Authors: Hooman Fallah, Fatemeh Karampour

Abstract:

Low salinity water (LSW) has been proved to be efficacious because of low cost and ability to change properties of reservoir rock and fluids and their interactions toward desired condition. These include change in capillary pressure, interfacial tension, wettability tendency, permeability and pore sizing. This enhanced oil recovery (EOR) method has been studied so far for evaluating capability of inducing recent mentioned parameters and the mechanisms of its operation and applicabi-lity in different fields. This study investigates the effect of three types of salts (including Ca2+, Mg2+, and SO42-) on wettability and final oil recovery in labratory.

Keywords: low salinity water, smart water, wettability alteration, carbonated reservoir

Procedia PDF Downloads 289
7582 A Performance Study of a Solar Heating System on the Microclimate of an Agricultural Greenhouse

Authors: Nora Arbaoui, Rachid Tadili

Abstract:

This study focuses on a solar system designed to heat an agricultural greenhouse. This solar system is based on the heating of a transfer fluid that circulates inside the greenhouse through a solar copper coil integrated into the roof of the greenhouse. The thermal energy stored during the day will be released during the night to improve the microclimate of the greenhouse. This system was tested in a small agricultural greenhouse in order to ameliorate the different operational parameters. The climatic and agronomic results obtained with this system are significant in comparison with a greenhouse with no heating system.

Keywords: solar system, agricultural greenhouse, heating, storage, drying

Procedia PDF Downloads 70
7581 Variable Frequency Converter Fed Induction Motors

Authors: Abdulatif Abdulsalam Mohamed Shaban

Abstract:

A.C motors, in general, have superior performance characteristics to their d.c. counterparts. However, despite these advantage a.c. motors lack the controllability and simplicity and so d.c. motors retain a competitive edge where precise control is required. As part of an overall project to develop an improved cycloconverter control strategy for induction motors. Simulation and modelling techniques have been developed. This contribution describes a method used to simulate an induction motor drive using the SIMULINK toolbox within MATLAB software. The cycloconverter fed induction motor is principally modelled using the d-q axis equations. Results of the simulation for a given set of induction motor parameters are also presented.

Keywords: simulation, converter, motor, cycloconverter

Procedia PDF Downloads 592
7580 Experimental-Numerical Inverse Approaches in the Characterization and Damage Detection of Soft Viscoelastic Layers from Vibration Test Data

Authors: Alaa Fezai, Anuj Sharma, Wolfgang Mueller-Hirsch, André Zimmermann

Abstract:

Viscoelastic materials have been widely used in the automotive industry over the last few decades with different functionalities. Besides their main application as a simple and efficient surface damping treatment, they may ensure optimal operating conditions for on-board electronics as thermal interface or sealing layers. The dynamic behavior of viscoelastic materials is generally dependent on many environmental factors, the most important being temperature and strain rate or frequency. Prior to the reliability analysis of systems including viscoelastic layers, it is, therefore, crucial to accurately predict the dynamic and lifetime behavior of these materials. This includes the identification of the dynamic material parameters under critical temperature and frequency conditions along with a precise damage localization and identification methodology. The goal of this work is twofold. The first part aims at applying an inverse viscoelastic material-characterization approach for a wide frequency range and under different temperature conditions. For this sake, dynamic measurements are carried on a single lap joint specimen using an electrodynamic shaker and an environmental chamber. The specimen consists of aluminum beams assembled to adapter plates through a viscoelastic adhesive layer. The experimental setup is reproduced in finite element (FE) simulations, and frequency response functions (FRF) are calculated. The parameters of both the generalized Maxwell model and the fractional derivatives model are identified through an optimization algorithm minimizing the difference between the simulated and the measured FRFs. The second goal of the current work is to guarantee an on-line detection of the damage, i.e., delamination in the viscoelastic bonding of the described specimen during frequency monitored end-of-life testing. For this purpose, an inverse technique, which determines the damage location and size based on the modal frequency shift and on the change of the mode shapes, is presented. This includes a preliminary FE model-based study correlating the delamination location and size to the change in the modal parameters and a subsequent experimental validation achieved through dynamic measurements of specimen with different, pre-generated crack scenarios and comparing it to the virgin specimen. The main advantage of the inverse characterization approach presented in the first part resides in the ability of adequately identifying the material damping and stiffness behavior of soft viscoelastic materials over a wide frequency range and under critical temperature conditions. Classic forward characterization techniques such as dynamic mechanical analysis are usually linked to limitations under critical temperature and frequency conditions due to the material behavior of soft viscoelastic materials. Furthermore, the inverse damage detection described in the second part guarantees an accurate prediction of not only the damage size but also its location using a simple test setup and outlines; therefore, the significance of inverse numerical-experimental approaches in predicting the dynamic behavior of soft bonding layers applied in automotive electronics.

Keywords: damage detection, dynamic characterization, inverse approaches, vibration testing, viscoelastic layers

Procedia PDF Downloads 194
7579 Real-Time Radiological Monitoring of the Atmosphere Using an Autonomous Aerosol Sampler

Authors: Miroslav Hyza, Petr Rulik, Vojtech Bednar, Jan Sury

Abstract:

An early and reliable detection of an increased radioactivity level in the atmosphere is one of the key aspects of atmospheric radiological monitoring. Although the standard laboratory procedures provide detection limits as low as few µBq/m³, their major drawback is the delayed result reporting: typically a few days. This issue is the main objective of the HAMRAD project, which gave rise to a prototype of an autonomous monitoring device. It is based on the idea of sequential aerosol sampling using a carrousel sample changer combined with a gamma-ray spectrometer. In our hardware configuration, the air is drawn through a filter positioned on the carrousel so that it could be rotated into the measuring position after a preset sampling interval. Filter analysis is performed via a 50% HPGe detector inside an 8.5cm lead shielding. The spectrometer output signal is then analyzed using DSP electronics and Gamwin software with preset nuclide libraries and other analysis parameters. After the counting, the filter is placed into a storage bin with a capacity of 250 filters so that the device can run autonomously for several months depending on the preset sampling frequency. The device is connected to a central server via GPRS/GSM where the user can view monitoring data including raw spectra and technological data describing the state of the device. All operating parameters can be remotely adjusted through a simple GUI. The flow rate is continuously adjustable up to 10 m³/h. The main challenge in spectrum analysis is the natural background subtraction. As detection limits are heavily influenced by the deposited activity of radon decay products and the measurement time is fixed, there must exist an optimal sample decay time (delayed spectrum acquisition). To solve this problem, we adopted a simple procedure based on sequential spectrum acquisition and optimal partial spectral sum with respect to the detection limits for a particular radionuclide. The prototyped device proved to be able to detect atmospheric contamination at the level of mBq/m³ per an 8h sampling.

Keywords: aerosols, atmosphere, atmospheric radioactivity monitoring, autonomous sampler

Procedia PDF Downloads 134
7578 Empirical Evaluation of Gradient-Based Training Algorithms for Ordinary Differential Equation Networks

Authors: Martin K. Steiger, Lukas Heisler, Hans-Georg Brachtendorf

Abstract:

Deep neural networks and their variants form the backbone of many AI applications. Based on the so-called residual networks, a continuous formulation of such models as ordinary differential equations (ODEs) has proven advantageous since different techniques may be applied that significantly increase the learning speed and enable controlled trade-offs with the resulting error at the same time. For the evaluation of such models, high-performance numerical differential equation solvers are used, which also provide the gradients required for training. However, whether classical gradient-based methods are even applicable or which one yields the best results has not been discussed yet. This paper aims to redeem this situation by providing empirical results for different applications.

Keywords: deep neural networks, gradient-based learning, image processing, ordinary differential equation networks

Procedia PDF Downloads 144
7577 Rapid, Direct, Real-Time Method for Bacteria Detection on Surfaces

Authors: Evgenia Iakovleva, Juha Koivisto, Pasi Karppinen, J. Inkinen, Mikko Alava

Abstract:

Preventing the spread of infectious diseases throughout the worldwide is one of the most important tasks of modern health care. Infectious diseases not only account for one fifth of the deaths in the world, but also cause many pathological complications for the human health. Touch surfaces pose an important vector for the spread of infections by varying microorganisms, including antimicrobial resistant organisms. Further, antimicrobial resistance is reply of bacteria to the overused or inappropriate used of antibiotics everywhere. The biggest challenges in bacterial detection by existing methods are non-direct determination, long time of analysis, the sample preparation, use of chemicals and expensive equipment, and availability of qualified specialists. Therefore, a high-performance, rapid, real-time detection is demanded in rapid practical bacterial detection and to control the epidemiological hazard. Among the known methods for determining bacteria on the surfaces, Hyperspectral methods can be used as direct and rapid methods for microorganism detection on different kind of surfaces based on fluorescence without sampling, sample preparation and chemicals. The aim of this study was to assess the relevance of such systems to remote sensing of surfaces for microorganisms detection to prevent a global spread of infectious diseases. Bacillus subtilis and Escherichia coli with different concentrations (from 0 to 10x8 cell/100µL) were detected with hyperspectral camera using different filters as visible visualization of bacteria and background spots on the steel plate. A method of internal standards was applied for monitoring the correctness of the analysis results. Distances from sample to hyperspectral camera and light source are 25 cm and 40 cm, respectively. Each sample is optically imaged from the surface by hyperspectral imaging system, utilizing a JAI CM-140GE-UV camera. Light source is BeamZ FLATPAR DMX Tri-light, 3W tri-colour LEDs (red, blue and green). Light colors are changed through DMX USB Pro interface. The developed system was calibrated following a standard procedure of setting exposure and focused for light with λ=525 nm. The filter is ThorLabs KuriousTM hyperspectral filter controller with wavelengths from 420 to 720 nm. All data collection, pro-processing and multivariate analysis was performed using LabVIEW and Python software. The studied human eye visible and invisible bacterial stains clustered apart from a reference steel material by clustering analysis using different light sources and filter wavelengths. The calculation of random and systematic errors of the analysis results proved the applicability of the method in real conditions. Validation experiments have been carried out with photometry and ATP swab-test. The lower detection limit of developed method is several orders of magnitude lower than for both validation methods. All parameters of the experiments were the same, except for the light. Hyperspectral imaging method allows to separate not only bacteria and surfaces, but also different types of bacteria, such as Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. Developed method allows skipping the sample preparation and the use of chemicals, unlike all other microbiological methods. The time of analysis with novel hyperspectral system is a few seconds, which is innovative in the field of microbiological tests.

Keywords: Escherichia coli, Bacillus subtilis, hyperspectral imaging, microorganisms detection

Procedia PDF Downloads 207
7576 Simulation and Characterization of Organic Light Emitting Diodes and Organic Photovoltaics Using Physics Based Tool

Authors: T. A. Shahul Hameed, P. Predeep, Anju Iqbal, M. R. Baiju

Abstract:

Research and development in organic photovoltaic cells and Organic Light Emitting Diodes have gained wider acceptance due to the advent of many advanced techniques to enhance the efficiency and operational hours. Here we report our work on design, simulation and characterizationracterize the bulk heterojunction organic photo cell and polymer light emitting diodes in different layer configurations using ATLAS, a licensed device simulation tool. Bulk heterojuction and multilayer devices were simulated for comparing their performance parameters.

Keywords: HOMO, LUMO, PLED, OPV

Procedia PDF Downloads 569
7575 Including Local Economic and Anthropometric Parameters in the Design of an Stand up Wheelchair

Authors: Urrutia Fernando, López Jessica, Sánchez Carlos, San Antonio Thalía

Abstract:

Ecuador, as a signatory country of the convention of the rights of persons with disabilities (CRPD) has, in the recent years, strengthened the structures and legal framework required to protect this minority comprised of 13.2% of its total population. However, the reality is that this group has disproportionately low earnings and low educational attainment in comparison with the general population. The main struggles, to promote job placement of wheelchairs users, are environmental discrimination caused by accessibility in structures and transportation, this mainly due to the cost, for private and public entities, of performing the reasonable accommodation they require. It is widely known that product development and production is needed to support effective implementation of the CRPD and that walking and standing are the major life activities, in this context the objective of this investigation is to promote job placement of wheelchair user in the province of Tungurahua by means of the design, production and marketing of a customized stand up wheelchair. Exploratory interviews and measurements were performed in a representative sample of working age wheelchairs users that develop their disability after achieving their physical maturity and that are capable of performing professional activities with their upper limbs, this in order to detect the user’s preference and determine the local economic and anthropometric parameters to be included in the wheelchair design. The findings reveal factors that uniquely impact quality of life and development for people with a mobility disability within the context of the province, first that transportation is a big issue since public buses does not have accessibility for wheelchair users and the absence of curb cuts and the presence of trash bins over the sidewalks among other hinders an economic independent mobility, second that the proposal based in the idea of modifying the wheelchairs to make it able to overcome certain obstacles helps people in wheelchair to improve their independent living and by reducing the costs of modification for the employer could improve their chances of finding work.

Keywords: anthropometrics, job placement, stand up wheelchair, user centered design

Procedia PDF Downloads 542
7574 Plagiarism Detection for Flowchart and Figures in Texts

Authors: Ahmadu Maidorawa, Idrissa Djibo, Muhammad Tella

Abstract:

This paper presents a method for detecting flow chart and figure plagiarism based on shape of image processing and multimedia retrieval. The method managed to retrieve flowcharts with ranked similarity according to different matching sets. Plagiarism detection is well known phenomenon in the academic arena. Copying other people is considered as serious offense that needs to be checked. There are many plagiarism detection systems such as turn-it-in that has been developed to provide these checks. Most, if not all, discard the figures and charts before checking for plagiarism. Discarding the figures and charts result in look holes that people can take advantage. That means people can plagiarize figures and charts easily without the current plagiarism systems detecting it. There are very few papers which talks about flowcharts plagiarism detection. Therefore, there is a need to develop a system that will detect plagiarism in figures and charts.

Keywords: flowchart, multimedia retrieval, figures similarity, image comparison, figure retrieval

Procedia PDF Downloads 450
7573 Emotional State and Cognitive Workload during a Flight Simulation: Heart Rate Study

Authors: Damien Mouratille, Antonio R. Hidalgo-Muñoz, Nadine Matton, Yves Rouillard, Mickael Causse, Radouane El Yagoubi

Abstract:

Background: The monitoring of the physiological activity related to mental workload (MW) on pilots will be useful to improve aviation safety by anticipating human performance degradation. The electrocardiogram (ECG) can reveal MW fluctuations due to either cognitive workload or/and emotional state since this measure exhibits autonomic nervous system modulations. Arguably, heart rate (HR) is one of its most intuitive and reliable parameters. It would be particularly interesting to analyze the interaction between cognitive requirements and emotion in ecologic sets such as a flight simulator. This study aims to explore by means of HR the relation between cognitive demands and emotional activation. Presumably, the effects of cognition and emotion overloads are not necessarily cumulative. Methodology: Eight healthy volunteers in possession of the Private Pilot License were recruited (male; 20.8±3.2 years). ECG signal was recorded along the whole experiment by placing two electrodes on the clavicle and left pectoral of the participants. The HR was computed within 4 minutes segments. NASA-TLX and Big Five inventories were used to assess subjective workload and to consider the influence of individual personality differences. The experiment consisted in completing two dual-tasks of approximately 30 minutes of duration into a flight simulator AL50. Each dual-task required the simultaneous accomplishment of both a pre-established flight plan and an additional task based on target stimulus discrimination inserted between Air Traffic Control instructions. This secondary task allowed us to vary the cognitive workload from low (LC) to high (HC) levels, by combining auditory and visual numerical stimuli to respond to meeting specific criteria. Regarding emotional condition, the two dual-tasks were designed to assure analogous difficulty in terms of solicited cognitive demands. The former was realized by the pilot alone, i.e. Low Arousal (LA) condition. In contrast, the latter generates a high arousal (HA), since the pilot was supervised by two evaluators, filmed and involved into a mock competition with the rest of the participants. Results: Performance for the secondary task showed significant faster reaction times (RT) for HA compared to LA condition (p=.003). Moreover, faster RT was found for LC compared to HC (p < .001) condition. No interaction was found. Concerning HR measure, despite the lack of main effects an interaction between emotion and cognition is evidenced (p=.028). Post hoc analysis showed smaller HR for HA compared to LA condition only for LC (p=.049). Conclusion. The control of an aircraft is a very complex task including strong cognitive demands and depends on the emotional state of pilots. According to the behavioral data, the experimental set has permitted to generate satisfactorily different emotional and cognitive levels. As suggested by the interaction found in HR measure, these two factors do not seem to have a cumulative impact on the sympathetic nervous system. Apparently, low cognitive workload makes pilots more sensitive to emotional variations. These results hint the independency between data processing and emotional regulation. Further physiological data are necessary to confirm and disentangle this relation. This procedure may be useful for monitoring objectively pilot’s mental workload.

Keywords: cognitive demands, emotion, flight simulator, heart rate, mental workload

Procedia PDF Downloads 263
7572 Development of a Psychometric Testing Instrument Using Algorithms and Combinatorics to Yield Coupled Parameters and Multiple Geometric Arrays in Large Information Grids

Authors: Laith F. Gulli, Nicole M. Mallory

Abstract:

The undertaking to develop a psychometric instrument is monumental. Understanding the relationship between variables and events is important in structural and exploratory design of psychometric instruments. Considering this, we describe a method used to group, pair and combine multiple Philosophical Assumption statements that assisted in development of a 13 item psychometric screening instrument. We abbreviated our Philosophical Assumptions (PA)s and added parameters, which were then condensed and mathematically modeled in a specific process. This model produced clusters of combinatorics which was utilized in design and development for 1) information retrieval and categorization 2) item development and 3) estimation of interactions among variables and likelihood of events. The psychometric screening instrument measured Knowledge, Assessment (education) and Beliefs (KAB) of New Addictions Research (NAR), which we called KABNAR. We obtained an overall internal consistency for the seven Likert belief items as measured by Cronbach’s α of .81 in the final study of 40 Clinicians, calculated by SPSS 14.0.1 for Windows. We constructed the instrument to begin with demographic items (degree/addictions certifications) for identification of target populations that practiced within Outpatient Substance Abuse Counseling (OSAC) settings. We then devised education items, beliefs items (seven items) and a modifiable “barrier from learning” item that consisted of six “choose any” choices. We also conceptualized a close relationship between identifying various degrees and certifications held by Outpatient Substance Abuse Therapists (OSAT) (the demographics domain) and all aspects of their education related to EB-NAR (past and present education and desired future training). We placed a descriptive (PA)1tx in both demographic and education domains to trace relationships of therapist education within these two domains. The two perceptions domains B1/b1 and B2/b2 represented different but interrelated perceptions from the therapist perspective. The belief items measured therapist perceptions concerning EB-NAR and therapist perceptions using EB-NAR during the beginning of outpatient addictions counseling. The (PA)s were written in simple words and descriptively accurate and concise. We then devised a list of parameters and appropriately matched them to each PA and devised descriptive parametric (PA)s in a domain categorized information grid. Descriptive parametric (PA)s were reduced to simple mathematical symbols. This made it easy to utilize parametric (PA)s into algorithms, combinatorics and clusters to develop larger information grids. By using matching combinatorics we took paired demographic and education domains with a subscript of 1 and matched them to the column with each B domain with subscript 1. Our algorithmic matching formed larger information grids with organized clusters in columns and rows. We repeated the process using different demographic, education and belief domains and devised multiple information grids with different parametric clusters and geometric arrays. We found benefit combining clusters by different geometric arrays, which enabled us to trace parametric variables and concepts. We were able to understand potential differences between dependent and independent variables and trace relationships of maximum likelihoods.

Keywords: psychometric, parametric, domains, grids, therapists

Procedia PDF Downloads 262
7571 The On-Board Critical Message Transmission Design for Navigation Satellite Delay/Disruption Tolerant Network

Authors: Ji-yang Yu, Dan Huang, Guo-ping Feng, Xin Li, Lu-yuan Wang

Abstract:

The navigation satellite network, especially the Beidou MEO Constellation, can relay data effectively with wide coverage and is applied in navigation, detection, and position widely. But the constellation has not been completed, and the amount of satellites on-board is not enough to cover the earth, which makes the data-relay disrupted or delayed in the transition process. The data-relay function needs to tolerant the delay or disruption in some extension, which make the Beidou MEO Constellation a delay/disruption-tolerant network (DTN). The traditional DTN designs mainly employ the relay table as the basic of data path schedule computing. But in practical application, especially in critical condition, such as the war-time or the infliction heavy losses on the constellation, parts of the nodes may become invalid, then the traditional DTN design could be useless. Furthermore, when transmitting the critical message in the navigation system, the maximum priority strategy is used, but the nodes still inquiry the relay table to design the path, which makes the delay more than minutes. Under this circumstances, it needs a function which could compute the optimum data path on-board in real-time according to the constellation states. The on-board critical message transmission design for navigation satellite delay/disruption-tolerant network (DTN) is proposed, according to the characteristics of navigation satellite network. With the real-time computation of parameters in the network link, the least-delay transition path is deduced to retransmit the critical message in urgent conditions. First, the DTN model for constellation is established based on the time-varying matrix (TVM) instead of the time-varying graph (TVG); then, the least transition delay data path is deduced with the parameters of the current node; at last, the critical message transits to the next best node. For the on-board real-time computing, the time delay and misjudges of constellation states in ground stations are eliminated, and the residual information channel for each node can be used flexibly. Compare with the minute’s delay of traditional DTN; the proposed transmits the critical message in seconds, which improves the re-transition efficiency. The hardware is implemented in FPGA based on the proposed model, and the tests prove the validity.

Keywords: critical message, DTN, navigation satellite, on-board, real-time

Procedia PDF Downloads 331
7570 Synthesis and Characterisations of Cordierite Bonded Porous SiC Ceramics by Sol Infiltration Technique

Authors: Sanchita Baitalik, Nijhuma Kayal, Omprakash Chakrabarti

Abstract:

Recently SiC ceramics have been a focus of interest in the field of porous materials due to their unique combination of properties and hence they are considered as an ideal candidate for catalyst supports, thermal insulators, high-temperature structural materials, hot gas particulate separation systems etc. in different industrial processes. Several processing methods are followed for fabrication of porous SiC at low temperatures but all these methods are associated with several disadvantages. Therefore processing of porous SiC ceramics at low temperatures is still challenging. Concerning that of incorporation of secondary bond phase additives by an infiltration technique should result in a homogenous distribution of bond phase in the final ceramics. Present work is aimed to synthesis cordierite (2MgO.2Al2O3.5SiO2) bonded porous SiC ceramics following incorporation of sol-gel bond phase precursor into powder compacts of SiC and heat treating the infiltrated body at 1400 °C. In this paper the primary aim was to study the effect of infiltration of a precursor sol of cordierite into a porous SiC powder compact prepared with pore former of different particle sizes on the porosity, pore size, microstructure and the mechanical properties of the porous SiC ceramics. Cordierite sol was prepared by mixing a solution of magnesium nitrate hexahydrate and aluminium nitrate nonahydrate in 2:4 molar ratio in ethanol another solution containing tetra-ethyl orthosilicate and ethanol in 1:3 molar ratio followed by stirring for several hours. Powders of SiC (α-SiC; d50 =22.5 μm) and 10 wt. % polymer microbead of two sizes 8 and 50µm as the pore former were mixed in a suitable liquid medium, dried and pressed in the form of bars (50×20×16 mm3) at 23 MPa pressure. The well-dried bars were heat treated at 1100° C for 4 h with a hold at 750 °C for 2 h to remove the pore former. Bars were evacuated for 2 hr upto 0.3 mm Hg pressure into a vacuum chamber and infiltrated with cordierite precursor sol. The infiltrated samples were dried and the infiltration process was repeated until the weight gain became constant. Finally the infiltrated samples were sintered at 1400 °C to prepare cordierite bonded porous SiC ceramics. Porous ceramics prepared with 8 and 50 µm sized microbead exhibited lower oxidation degrees of respectively 7.8 and 4.8 % than the sample (23 %) prepared with no microbead. Depending on the size of pore former, the porosity of the final ceramic varied in the range of 36 to 40 vol. % with a variation of flexural strength from 33.7 to 24.6 MPa. XRD analysis showed major crystalline phases of the ceramics as SiC, SiO2 and cordierite. Two forms of cordierite, α-(hexagonal) and µ-(cubic), were detected by the XRD analysis. The SiC particles were observed to be bonded both by cristobalite with fish scale morphology and cordierite with rod shape morphology and thereby formed a porous network. The material and mechanical properties of cordierite bonded porous SiC ceramics are good in agreement to carry out further studies like thermal shock, corrosion resistance etc.

Keywords: cordierite, infiltration technique, porous ceramics, sol-gel

Procedia PDF Downloads 264
7569 The Accuracy of an In-House Developed Computer-Assisted Surgery Protocol for Mandibular Micro-Vascular Reconstruction

Authors: Christophe Spaas, Lies Pottel, Joke De Ceulaer, Johan Abeloos, Philippe Lamoral, Tom De Backer, Calix De Clercq

Abstract:

We aimed to evaluate the accuracy of an in-house developed low-cost computer-assisted surgery (CAS) protocol for osseous free flap mandibular reconstruction. All patients who underwent primary or secondary mandibular reconstruction with a free (solely or composite) osseous flap, either a fibula free flap or iliac crest free flap, between January 2014 and December 2017 were evaluated. The low-cost protocol consisted out of a virtual surgical planning, a prebend custom reconstruction plate and an individualized free flap positioning guide. The accuracy of the protocol was evaluated through comparison of the postoperative outcome with the 3D virtual planning, based on measurement of the following parameters: intercondylar distance, mandibular angle (axial and sagittal), inner angular distance, anterior-posterior distance, length of the fibular/iliac crest segments and osteotomy angles. A statistical analysis of the obtained values was done. Virtual 3D surgical planning and cutting guide design were performed with Proplan CMF® software (Materialise, Leuven, Belgium) and IPS Gate (KLS Martin, Tuttlingen, Germany). Segmentation of the DICOM data as well as outcome analysis were done with BrainLab iPlan® Software (Brainlab AG, Feldkirchen, Germany). A cost analysis of the protocol was done. Twenty-two patients (11 fibula /11 iliac crest) were included and analyzed. Based on voxel-based registration on the cranial base, 3D virtual planning landmark parameters did not significantly differ from those measured on the actual treatment outcome (p-values >0.05). A cost evaluation of the in-house developed CAS protocol revealed a 1750 euro cost reduction in comparison with a standard CAS protocol with a patient-specific reconstruction plate. Our results indicate that an accurate transfer of the planning with our in-house developed low-cost CAS protocol is feasible at a significant lower cost.

Keywords: CAD/CAM, computer-assisted surgery, low-cost, mandibular reconstruction

Procedia PDF Downloads 125