Search results for: fundamental models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8366

Search results for: fundamental models

4256 A Performance Model for Designing Network in Reverse Logistic

Authors: S. Dhib, S. A. Addouche, T. Loukil, A. Elmhamedi

Abstract:

In this paper, a reverse supply chain network is investigated for a decision making. This decision is surrounded by complex flows of returned products, due to the increasing quantity, the type of returned products and the variety of recovery option products (reuse, recycling, and refurbishment). The most important problem in the reverse logistic network (RLN) is to orient returned products to the suitable type of recovery option. However, returned products orientations from collect sources to the recovery disposition have not well considered in performance model. In this study, we propose a performance model for designing a network configuration on reverse logistics. Conceptual and analytical models are developed with taking into account operational, economic and environmental factors on designing network.

Keywords: reverse logistics, network design, performance model, open loop configuration

Procedia PDF Downloads 435
4255 Policy Analysis and Program Evaluation: Need to Designate a Navigable Spatial Identity for Slums Dwellers in India to Maximize Accessibility and Policy Impact

Authors: Resham Badri

Abstract:

Cities today are unable to justify equitable distribution of theirsocio- economic and infrastructural benefits to the marginalized urban poor, and the emergence of a pressing pandemic like COVID-19 has amplified its impact. Lack of identity, vulnerability, and inaccessibility contribute to exclusion. Owing to systemic gaps in institutional processes, urban development policiesfail to represent and cater to the urban poor. This paper aims to be a roadmap for the Indian Government to understand the significance of the designation of a navigable spatial identity to slum dwellers in the form of a digital address, which can form the fundamental basis of identification to enable accessibility to not only basic servicesbut also other utilities. Capitalizing on such a granular and technology backed approach shall allow to target and reach out to the urban poor strategically andaid effective urban governance. This paper adopts a three-pronged approach;(i) Policy analysis- understanding gaps in existing urban policies of India, such as the Pradhan Mantri Awas Yojana, Swachh Bharat Mission, and Adhaar Card policy, (ii) Program Evaluation- analyzing a case study, where slum dwellers in Kolhapur city in India have been provided with navigable addresses using Google Plus Codes and have gained access to basic services, vaccinations, and other emergency deliveries in COVID-19 times, (iii) Policy recommendation. This designation of a navigable spatial identity has tremendous potential to form the foundation on which policies can further base their data collection and service delivery processes to not only provide basic services but also other infrastructural and social welfare initiatives. Hence, a massive window of opportunity lies in addressing the unaddressed to elevate their living standards and respond to their basic needs.

Keywords: policy analysis, urban poor, navigable spatial identity, accessibility

Procedia PDF Downloads 81
4254 Critical and Strategic Issues in Compensation, Staffing and Personnel Management in Nigeria

Authors: Shonuga Olajumoke Adedoyinsola

Abstract:

Staffing and Compensation are at the core of any employment exchange, and they serve as the defining characteristics of any employment relationship. Most organizations understand the benefits that a longer term approach to staff planning can bring and the answer to this problem lies not in trying to implement the traditional approach more effectively, but in implementing a completely different kind of process for strategic staffing. The study focuses on critical points of compensation, staffing and personnel management. The fundamentals of these programs include the elements of vision, potential, communication and motivation. The aim of the paper is to identify the most important attributes of compensation and incentives, staffing and personnel management. Research method is the analysis and synthesis of scientific literature, logical, comparative and graphic representation. On the basis of analysis, the author presents the models of these systems for positive employee attitudes and behaviors.

Keywords: compensation, employees, incentives, staffing, personnel management

Procedia PDF Downloads 299
4253 A Deep Learning Approach to Subsection Identification in Electronic Health Records

Authors: Nitin Shravan, Sudarsun Santhiappan, B. Sivaselvan

Abstract:

Subsection identification, in the context of Electronic Health Records (EHRs), is identifying the important sections for down-stream tasks like auto-coding. In this work, we classify the text present in EHRs according to their information, using machine learning and deep learning techniques. We initially describe briefly about the problem and formulate it as a text classification problem. Then, we discuss upon the methods from the literature. We try two approaches - traditional feature extraction based machine learning methods and deep learning methods. Through experiments on a private dataset, we establish that the deep learning methods perform better than the feature extraction based Machine Learning Models.

Keywords: deep learning, machine learning, semantic clinical classification, subsection identification, text classification

Procedia PDF Downloads 218
4252 A Strategy to Oil Production Placement Zones Based on Maximum Closeness

Authors: Waldir Roque, Gustavo Oliveira, Moises Santos, Tatiana Simoes

Abstract:

Increasing the oil recovery factor of an oil reservoir has been a concern of the oil industry. Usually, the production placement zones are defined after some analysis of geological and petrophysical parameters, being the rock porosity, permeability and oil saturation of fundamental importance. In this context, the determination of hydraulic flow units (HFUs) renders an important step in the process of reservoir characterization since it may provide specific regions in the reservoir with similar petrophysical and fluid flow properties and, in particular, techniques supporting the placement of production zones that favour the tracing of directional wells. A HFU is defined as a representative volume of a total reservoir rock in which petrophysical and fluid flow properties are internally consistent and predictably distinct of other reservoir rocks. Technically, a HFU is characterized as a rock region that exhibit flow zone indicator (FZI) points lying on a straight line of the unit slope. The goal of this paper is to provide a trustful indication for oil production placement zones for the best-fit HFUs. The FZI cloud of points can be obtained from the reservoir quality index (RQI), a function of effective porosity and permeability. Considering log and core data the HFUs are identified and using the discrete rock type (DRT) classification, a set of connected cell clusters can be found and by means a graph centrality metric, the maximum closeness (MaxC) cell is obtained for each cluster. Considering the MaxC cells as production zones, an extensive analysis, based on several oil recovery factor and oil cumulative production simulations were done for the SPE Model 2 and the UNISIM-I-D synthetic fields, where the later was build up from public data available from the actual Namorado Field, Campos Basin, in Brazil. The results have shown that the MaxC is actually technically feasible and very reliable as high performance production placement zones.

Keywords: hydraulic flow unit, maximum closeness centrality, oil production simulation, production placement zone

Procedia PDF Downloads 330
4251 Preparation of Papers - Developing a Leukemia Diagnostic System Based on Hybrid Deep Learning Architectures in Actual Clinical Environments

Authors: Skyler Kim

Abstract:

An early diagnosis of leukemia has always been a challenge to doctors and hematologists. On a worldwide basis, it was reported that there were approximately 350,000 new cases in 2012, and diagnosing leukemia was time-consuming and inefficient because of an endemic shortage of flow cytometry equipment in current clinical practice. As the number of medical diagnosis tools increased and a large volume of high-quality data was produced, there was an urgent need for more advanced data analysis methods. One of these methods was the AI approach. This approach has become a major trend in recent years, and several research groups have been working on developing these diagnostic models. However, designing and implementing a leukemia diagnostic system in real clinical environments based on a deep learning approach with larger sets remains complex. Leukemia is a major hematological malignancy that results in mortality and morbidity throughout different ages. We decided to select acute lymphocytic leukemia to develop our diagnostic system since acute lymphocytic leukemia is the most common type of leukemia, accounting for 74% of all children diagnosed with leukemia. The results from this development work can be applied to all other types of leukemia. To develop our model, the Kaggle dataset was used, which consists of 15135 total images, 8491 of these are images of abnormal cells, and 5398 images are normal. In this paper, we design and implement a leukemia diagnostic system in a real clinical environment based on deep learning approaches with larger sets. The proposed diagnostic system has the function of detecting and classifying leukemia. Different from other AI approaches, we explore hybrid architectures to improve the current performance. First, we developed two independent convolutional neural network models: VGG19 and ResNet50. Then, using both VGG19 and ResNet50, we developed a hybrid deep learning architecture employing transfer learning techniques to extract features from each input image. In our approach, fusing the features from specific abstraction layers can be deemed as auxiliary features and lead to further improvement of the classification accuracy. In this approach, features extracted from the lower levels are combined into higher dimension feature maps to help improve the discriminative capability of intermediate features and also overcome the problem of network gradient vanishing or exploding. By comparing VGG19 and ResNet50 and the proposed hybrid model, we concluded that the hybrid model had a significant advantage in accuracy. The detailed results of each model’s performance and their pros and cons will be presented in the conference.

Keywords: acute lymphoblastic leukemia, hybrid model, leukemia diagnostic system, machine learning

Procedia PDF Downloads 187
4250 Comparison of Prognostic Models in Different Scenarios of Shoreline Position on Ponta Negra Beach in Northeastern Brazil

Authors: Débora V. Busman, Venerando E. Amaro, Mattheus da C. Prudêncio

Abstract:

Prognostic studies of the shoreline are of utmost importance for Ponta Negra Beach, located in Natal, Northeastern Brazil, where the infrastructure recently built along the shoreline is severely affected by flooding and erosion. This study compares shoreline predictions using three linear regression methods (LMS, LRR and WLR) and tries to discern the best method for different shoreline position scenarios. The methods have shown erosion on the beach in each of the scenarios tested, even in less intense dynamic conditions. The WLA_A with confidence interval of 95% was the well-adjusted model and calculated a retreat of -1.25 m/yr to -2.0 m/yr in hot spot areas. The change of the shoreline on Ponta Negra Beach can be measured as a negative exponential curve. Analysis of these methods has shown a correlation with the morphodynamic stage of the beach.

Keywords: coastal erosion, prognostic model, DSAS, environmental safety

Procedia PDF Downloads 336
4249 Heat-Induced Uncertainty of Industrial Computed Tomography Measuring a Stainless Steel Cylinder

Authors: Verena M. Moock, Darien E. Arce Chávez, Mariana M. Espejel González, Leopoldo Ruíz-Huerta, Crescencio García-Segundo

Abstract:

Uncertainty analysis in industrial computed tomography is commonly related to metrological trace tools, which offer precision measurements of external part features. Unfortunately, there is no such reference tool for internal measurements to profit from the unique imaging potential of X-rays. Uncertainty approximations for computed tomography are still based on general aspects of the industrial machine and do not adapt to acquisition parameters or part characteristics. The present study investigates the impact of the acquisition time on the dimensional uncertainty measuring a stainless steel cylinder with a circular tomography scan. The authors develop the figure difference method for X-ray radiography to evaluate the volumetric differences introduced within the projected absorption maps of the metal workpiece. The dimensional uncertainty is dominantly influenced by photon energy dissipated as heat causing the thermal expansion of the metal, as monitored by an infrared camera within the industrial tomograph. With the proposed methodology, we are able to show evolving temperature differences throughout the tomography acquisition. This is an early study showing that the number of projections in computer tomography induces dimensional error due to energy absorption. The error magnitude would depend on the thermal properties of the sample and the acquisition parameters by placing apparent non-uniform unwanted volumetric expansion. We introduce infrared imaging for the experimental display of metrological uncertainty in a particular metal part of symmetric geometry. We assess that the current results are of fundamental value to reach the balance between the number of projections and uncertainty tolerance when performing analysis with X-ray dimensional exploration in precision measurements with industrial tomography.

Keywords: computed tomography, digital metrology, infrared imaging, thermal expansion

Procedia PDF Downloads 122
4248 Study on Health Status and Health Promotion Models for Prevention of Cardiovascular Disease in Asylum Seekers at Asylum Seekers Center, Kupang-Indonesia

Authors: Era Dorihi Kale, Sabina Gero, Uly Agustine

Abstract:

Asylum seekers are people who come to other countries to get asylum. In line with that, they also carry the culture and health behavior of their country, which is very different from the new country they currently live in. This situation raises problems, also in the health sector. The approach taken must also be a culturally sensitive approach, where the culture and habits of the refugee's home area are also valued so that the health services provided can be right on target. Some risk factors that already exist in this group are lack of activity, consumption of fast food, smoking, and stress levels that are quite high. Overall this condition will increase the risk of an increased incidence of cardiovascular disease. This research is a descriptive and experimental study. The purpose of this study is to identify health status and develop a culturally sensitive health promotion model, especially related to the risk of cardiovascular disease for asylum seekers in detention homes in the city of Kupang. This research was carried out in 3 stages, stage 1 was conducting a survey of health problems and the risk of asylum seeker cardiovascular disease, Stage 2 developed a health promotion model, and stage 3 conducted a testing model of health promotion carried out. There were 81 respondents involved in this study. The variables measured were: health status, risk of cardiovascular disease and, health promotion models. Method of data collection: Instruments (questionnaires) were distributed to respondents answered for anamnese health status; then, cardiovascular risk measurements were taken. After that, the preparation of information needs and the compilation of booklets on the prevention of cardiovascular disease is carried out. The compiled booklet was then translated into Farsi. After that, the booklet was tested. Respondent characteristics: average lived in Indonesia for 4.38 years, the majority were male (90.1%), and most were aged 15-34 years (90.1%). There are several diseases that are often suffered by asylum seekers, namely: gastritis, headaches, diarrhea, acute respiratory infections, skin allergies, sore throat, cough, and depression. The level of risk for asylum seekers experiencing cardiovascular problems is 4 high risk people, 6 moderate risk people, and 71 low risk people. This condition needs special attention because the number of people at risk is quite high when compared to the age group of refugees. This is very related to the level of stress experienced by the refugees. The health promotion model that can be used is the transactional stress and coping model, using Persian (oral) and English for written information. It is recommended for health practitioners who care for refugees to always pay attention to aspects of culture (especially language) as well as the psychological condition of asylum seekers to make it easier to conduct health care and promotion. As well for further research, it is recommended to conduct research, especially relating to the effect of psychological stress on the risk of cardiovascular disease in asylum seekers.

Keywords: asylum seekers, health status, cardiovascular disease, health promotion

Procedia PDF Downloads 103
4247 The Dressing Field Method of Gauge Symmetries Reduction: Presentation and Examples

Authors: Jeremy Attard, Jordan François, Serge Lazzarini, Thierry Masson

Abstract:

Gauge theories are the natural background for describing geometrically fundamental interactions using principal and associated fiber bundles as dynamical entities. The central notion of these theories is their local gauge symmetry implemented by the local action of a Lie group H. There exist several methods used to reduce the symmetry of a gauge theory, like gauge fixing, bundle reduction theorem or spontaneous symmetry breaking mechanism (SSBM). This paper is a presentation of another method of gauge symmetry reduction, distinct from those three. Given a symmetry group H acting on a fiber bundle and its naturally associated fields (Ehresmann (or Cartan) connection, curvature, matter fields, etc.) there sometimes exists a way to erase (in whole or in part) the H-action by just reconfiguring these fields, i.e. by making a mere change of field variables in order to get new (‘composite‘) fields on which H (in whole or in part) does not act anymore. Two examples: the re-interpretation of the BEHGHK (Higgs) mechanism, on the one hand, and the top-down construction of Tractor and Penrose's Twistor spaces and connections in the framework of conformal Cartan geometry, one the other, will be discussed. They have, of course, nothing to do with each other but the dressing field method can be applied on both to get a new insight. In the first example, it turns out, indeed, that generation of masses in the Standard Model can be separated from the symmetry breaking, the latter being a mere change of field variables, i.e. a dressing. This offers an interpretation in opposition with the one usually found in textbooks. In the second case, the dressing field method applied to the conformal Cartan geometry offer a way of understanding the deep geometric nature of the so-called Tractors and Twistors. The dressing field method, distinct from a gauge transformation (even if it can have apparently the same form), is a systematic way of finding and erasing artificial symmetries of a theory, by a mere change of field variables which redistributes the degrees of freedom of the theories.

Keywords: BEHGHK (Higgs) mechanism, conformal gravity, gauge theory, spontaneous symmetry breaking, symmetry reduction, twistors and tractors

Procedia PDF Downloads 238
4246 Analysis of Spatial and Temporal Data Using Remote Sensing Technology

Authors: Kapil Pandey, Vishnu Goyal

Abstract:

Spatial and temporal data analysis is very well known in the field of satellite image processing. When spatial data are correlated with time, series analysis it gives the significant results in change detection studies. In this paper the GIS and Remote sensing techniques has been used to find the change detection using time series satellite imagery of Uttarakhand state during the years of 1990-2010. Natural vegetation, urban area, forest cover etc. were chosen as main landuse classes to study. Landuse/ landcover classes within several years were prepared using satellite images. Maximum likelihood supervised classification technique was adopted in this work and finally landuse change index has been generated and graphical models were used to present the changes.

Keywords: GIS, landuse/landcover, spatial and temporal data, remote sensing

Procedia PDF Downloads 433
4245 Frequency Modulation in Vibro-Acoustic Modulation Method

Authors: D. Liu, D. M. Donskoy

Abstract:

The vibroacoustic modulation method is based on the modulation effect of high-frequency ultrasonic wave (carrier) by low-frequency vibration in the presence of various defects, primarily contact-type such as cracks, delamination, etc. The presence and severity of the defect are measured by the ratio of the spectral sidebands and the carrier in the spectrum of the modulated signal. This approach, however, does not differentiate between amplitude and frequency modulations, AM and FM, respectfully. It was experimentally shown that both modulations could be present in the spectrum, yet each modulation may be associated with different physical mechanisms. AM mechanisms are quite well understood and widely covered in the literature. This paper is a first attempt to explain the generation mechanisms of FM and its correlation with the flaw properties. Here we proposed two possible mechanisms leading to FM modulation based on nonlinear local defect resonance and dynamic acousto-elastic models.

Keywords: non-destructive testing, nonlinear acoustics, structural health monitoring, acousto-elasticity, local defect resonance

Procedia PDF Downloads 153
4244 Sludge Densification: Emerging and Efficient Way to Look at Biological Nutrient Removal Treatment

Authors: Raj Chavan

Abstract:

Currently, there are over 14,500 Water Resource Recovery Facilities (WRRFs) in the United States, with ~35% of them having some type of nutrient limits in place. These WRRFs account for about 1% of overall power demand and 2% of total greenhouse gas emissions (GHG) in the United States and contribute for 10 to 15% of the overall nutrient load to surface rivers in the United States. The evolution of densification technologies toward more compact and energy-efficient nutrient removal processes has been impacted by a number of factors. Existing facilities that require capacity expansion or biomass densification for higher treatability within the same footprint are being subjected to more stringent requirements relating to nutrient removal prior to surface water discharge. Densification of activated sludge has received recent widespread interest as a means for achieving process intensification and nutrient removal at WRRFs. At the core of the technology are the aerobic sludge granules where the biological processes occur. There is considerable interest in the prospect of producing granular sludge in continuous (or traditional) activated sludge processes (CAS) or densification of biomass by moving activated sludge flocs to a denser aggregate of biomass as a highly effective technique of intensification. This presentation will provide a fundamental understanding of densification by presenting insights and practical issues. The topics that will be discussed include methods used to generate and retain densified granules; the mechanisms that allow biological flocs to densify; the role that physical selectors play in the densification of biological flocs; some viable ways for managing biological flocs that have become densified; effects of physical selection design parameters on the retention of densified biological flocs and finally some operational solutions for customizing the flocs and granules required to meet performance and capacity targets. In addition, it will present some case studies where biological and physical parameters were used to generate aerobic granular sludge in the continuous flow system.

Keywords: densification, aerobic granular sludge, nutrient removal, intensification

Procedia PDF Downloads 186
4243 Criteria for Good Governance in Georgian Defense Sector:Standards and Principles

Authors: Vephkhvia Grigalashvili

Abstract:

This paper provides an overview of criteria for good governance in Georgian defense sector and scientific outcomes of comparative research. A respect for good governance and its realization into Georgian national defense sector represents a fundamental institutional necessity as well as country`s politico-legal obligation within the framework of the existing collaboration mechanisms with NATO (especially Building Integrity (BI) Programme) and the Association Agreement between the EU and Georgia. Furthermore good governance is considered as a democracy measuring criterion in country`s Euro-Atlantic integration process. Accordingly, integration and further development of the contemporary approaches of good governance into Georgian defense management model represents a burning issue of the country. The assessment of an existing model of the country, identification of defects and determination of course of institutional reforms in a mutual comparison format of good governance mechanisms of NATO or/and the EU member Eastern European or Baltic countries positively assessed by the international organizations is considered as a precondition for its effective realization. Scientific aims of this study are: (a) to conduct comparative analysis of Georgian national principles and generalized standards of NATO or/and the EU member Eastern European and Baltic countries in following segments of good governance: open governance; anticorruption policy; conflict of interests; integrity; internal and external control bodies; (b) to formulate theoretical and practical recommendations on reforms to be implemented in the country`s national defence sector. As research reveals, although, institutional / legal pillars of good governance in Georgian defense sector generally are in compliance with international principles, the quality of implementation of good government norms still remains as an area that needs further development by raising awareness of public servants and community.

Keywords: anti-corruption policy within Georgian defense governance, conflict of interests within Georgian defense governance, good governance in Georgian defense sector, principles of integrity in Georgian defense management

Procedia PDF Downloads 162
4242 An Algorithm of Regulation of Glucose-Insulin Concentration in the Blood

Authors: B. Selma, S. Chouraqui

Abstract:

The pancreas is an elongated organ that extends across the abdomen, below the stomach. In addition, it secretes certain enzymes that aid in food digestion. The pancreas also manufactures hormones responsible for regulating blood glucose levels. In the present paper, we propose a mathematical model to study the homeostasis of glucose and insulin in healthy human, and a simulation of this model, which depicts the physiological events after a meal, will be represented in ordinary humans. The aim of this paper is to design an algorithm which regulates the level of glucose in the blood. The algorithm applied the concept of expert system for performing an algorithm control in the form of an "active" used to prescribe the rate of insulin infusion. By decomposing the system into subsystems, we have developed parametric models of each subsystem by using a forcing function strategy. The results showed a performance of the control system.

Keywords: modeling, algorithm, regulation, glucose-insulin, blood, control system

Procedia PDF Downloads 177
4241 Using ANN in Emergency Reconstruction Projects Post Disaster

Authors: Rasha Waheeb, Bjorn Andersen, Rafa Shakir

Abstract:

Purpose The purpose of this study is to avoid delays that occur in emergency reconstruction projects especially in post disaster circumstances whether if they were natural or manmade due to their particular national and humanitarian importance. We presented a theoretical and practical concepts for projects management in the field of construction industry that deal with a range of global and local trails. This study aimed to identify the factors of effective delay in construction projects in Iraq that affect the time and the specific quality cost, and find the best solutions to address delays and solve the problem by setting parameters to restore balance in this study. 30 projects were selected in different areas of construction were selected as a sample for this study. Design/methodology/approach This study discusses the reconstruction strategies and delay in time and cost caused by different delay factors in some selected projects in Iraq (Baghdad as a case study).A case study approach was adopted, with thirty construction projects selected from the Baghdad region, of different types and sizes. Project participants from the case projects provided data about the projects through a data collection instrument distributed through a survey. Mixed approach and methods were applied in this study. Mathematical data analysis was used to construct models to predict delay in time and cost of projects before they started. The artificial neural networks analysis was selected as a mathematical approach. These models were mainly to help decision makers in construction project to find solutions to these delays before they cause any inefficiency in the project being implemented and to strike the obstacles thoroughly to develop this industry in Iraq. This approach was practiced using the data collected through survey and questionnaire data collection as information form. Findings The most important delay factors identified leading to schedule overruns were contractor failure, redesigning of designs/plans and change orders, security issues, selection of low-price bids, weather factors, and owner failures. Some of these are quite in line with findings from similar studies in other countries/regions, but some are unique to the Iraqi project sample, such as security issues and low-price bid selection. Originality/value we selected ANN’s analysis first because ANN’s was rarely used in project management , and never been used in Iraq to finding solutions for problems in construction industry. Also, this methodology can be used in complicated problems when there is no interpretation or solution for a problem. In some cases statistical analysis was conducted and in some cases the problem is not following a linear equation or there was a weak correlation, thus we suggested using the ANN’s because it is used for nonlinear problems to find the relationship between input and output data and that was really supportive.

Keywords: construction projects, delay factors, emergency reconstruction, innovation ANN, post disasters, project management

Procedia PDF Downloads 165
4240 A Case Study on Smart Energy City of the UK: Based on Business Model Innovation

Authors: Minzheong Song

Abstract:

The purpose of this paper is to see a case of smart energy evolution of the UK along with government projects and smart city project like 'Smart London Plan (SLP)' in 2013 with the logic of business model innovation (BMI). For this, it discusses the theoretical logic and formulates a research framework of evolving smart energy from silo to integrated system. The starting point is the silo system with no connection and in second stage, the private investment in smart meters, smart grids implementation, energy and water nexus, adaptive smart grid systems, and building marketplaces with platform leadership. As results, the UK’s smart energy sector has evolved from smart meter device installation through smart grid to new business models such as water-energy nexus and microgrid service within the smart energy city system.

Keywords: smart city, smart energy, business model, business model innovation (BMI)

Procedia PDF Downloads 162
4239 Systematic Exploration and Modulation of Nano-Bio Interactions

Authors: Bing Yan

Abstract:

Nanomaterials are widely used in various industrial sectors, biomedicine, and more than 1300 consumer products. Although there is still no standard safety regulation, their potential toxicity is a major concern worldwide. We discovered that nanoparticles target and enter human cells1, perturb cellular signaling pathways2, affect various cell functions3, and cause malfunctions in animals4,5. Because the majority of atoms in nanoparticles are on the surface, chemistry modification on their surface may change their biological properties significantly. We modified nanoparticle surface using nano-combinatorial chemistry library approach6. Novel nanoparticles were discovered to exhibit significantly reduced toxicity6,7, enhance cancer targeting ability8, or re-program cellular signaling machineries7. Using computational chemistry, quantitative nanostructure-activity relationship (QNAR) is established and predictive models have been built to predict biocompatible nanoparticles.

Keywords: nanoparticle, nanotoxicity, nano-bio, nano-combinatorial chemistry, nanoparticle library

Procedia PDF Downloads 409
4238 Annual August Meetings as a Stimulator for Female Empowerment: Case Study Udi Local Government Area of Enugu State, Nigeria

Authors: Nneka Evelyn Udeh

Abstract:

Women’s economic participation and empowerment are fundamental to strengthening women’s rights and enabling women to have control over their lives and exert influence in the society. The economic empowerment of women is a prerequisite for sustainable development, pro-poor growth and the achievement of all the millennium development Goals (MDGs). For women to be in development they need to be empowered morally, socially, economically, and financially and this is why women in Udi Local Government Area of Nigeria meet every August, the eighth month of the year to discuss matters relating to the pursuit of women empowerment, community welfare, and national development. This exploratory study depicts how annual august meetings serve as a stimulator for female empowerment with a case study Udi Local Government area of Enugu state, Nigeria. The paper finds that ‘August Meeting’ is a regular annual occurrence in Udi Local Government Area, Enugu State, Nigeria particularly for married women and is designed to better the lot of women, the child, family, the church, and the Community. Through this forum, with its seminars and workshops, women have the opportunity to learn everything about womanhood and how to chart new courses of action and sources of empowerment. The gathering gives women the opportunity to be integrated into their community development projects, and having women as stakeholders and not mere observers helps guarantee a speedy and steady community and overall national development progress. Funds are raised for community development projects through annual dues, levies, donations, fines, sales, income from money-yielding ventures, endowment and investiture. Annual August meeting also known as ‘Mothers Summit’ is indeed a powerful stimulator for female empowerment. Support and invigoration of this women initiative is essential for sustainable emancipation of female gender, not just in Udi Local Government Area of Nigeria but globally.

Keywords: women empowerment, annual august meeting, Udi Lga, mothers' summit, stimulator, emancipation, sustainability, community welfare, national development, millennium development goal

Procedia PDF Downloads 359
4237 Constructing the Density of States from the Parallel Wang Landau Algorithm Overlapping Data

Authors: Arman S. Kussainov, Altynbek K. Beisekov

Abstract:

This work focuses on building an efficient universal procedure to construct a single density of states from the multiple pieces of data provided by the parallel implementation of the Wang Landau Monte Carlo based algorithm. The Ising and Pott models were used as the examples of the two-dimensional spin lattices to construct their densities of states. Sampled energy space was distributed between the individual walkers with certain overlaps. This was made to include the latest development of the algorithm as the density of states replica exchange technique. Several factors of immediate importance for the seamless stitching process have being considered. These include but not limited to the speed and universality of the initial parallel algorithm implementation as well as the data post-processing to produce the expected smooth density of states.

Keywords: density of states, Monte Carlo, parallel algorithm, Wang Landau algorithm

Procedia PDF Downloads 412
4236 Synthesis and Anti-Cancer Evaluation of Uranyle Complexes

Authors: Abdol-Hassan Doulah

Abstract:

In this research, some of the inorganic complexes of uranyl with N- donor ligands were synthesized. Complexes were characteriezed by FT-IR and UV spectra, ¹HNMR, ¹³CNMR and some physical properties. The uranyl unit (UO2) is composed of a center of uranium atom with the charge (+6) and two oxygen atom by forming two U=O double bonds. The structure is linear (O=U=O, 180) and usually stable. So other ligands often coordinate to the U atom in the plane perpendicularly to the O=U=O axis. The antitumor activity of some of ligand and their complexes against a panel of human tumor cell lines (HT29: Haman colon adenocarcinoma cell line T47D: human breast adenocarcinoma cell line) were determined by MTT(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay. These data suggest that some of these compounds provide good models for the further design of potent antitumor compounds.

Keywords: inorganic, uranyl complex-donor ligands, Schiff bases, anticancer activity

Procedia PDF Downloads 454
4235 Leadership and Entrepreneurship in Higher Education: Fostering Innovation and Sustainability

Authors: Naziema Begum Jappie

Abstract:

Leadership and entrepreneurship in higher education have become critical components in navigating the evolving landscape of academia in the 21st century. This abstract explores the multifaceted relationship between leadership and entrepreneurship within the realm of higher education, emphasizing their roles in fostering innovation and sustainability. Higher education institutions, often characterized as slow-moving and resistant to change, are facing unprecedented challenges. Globalization, rapid technological advancements, changing student demographics, and financial constraints necessitate a reimagining of traditional models. Leadership in higher education must embrace entrepreneurial thinking to effectively address these challenges. Entrepreneurship in higher education involves cultivating a culture of innovation, risk-taking, and adaptability. Visionary leaders who promote entrepreneurship within their institutions empower faculty and staff to think creatively, seek new opportunities, and engage with external partners. These entrepreneurial efforts lead to the development of novel programs, research initiatives, and sustainable revenue streams. Innovation in curriculum and pedagogy is a central aspect of leadership and entrepreneurship in higher education. Forward-thinking leaders encourage faculty to experiment with teaching methods and technology, fostering a dynamic learning environment that prepares students for an ever-changing job market. Entrepreneurial leadership also facilitates the creation of interdisciplinary programs that address emerging fields and societal challenges. Collaboration is key to entrepreneurship in higher education. Leaders must establish partnerships with industry, government, and non-profit organizations to enhance research opportunities, secure funding, and provide real-world experiences for students. Entrepreneurial leaders leverage their institutions' resources to build networks that extend beyond campus boundaries, strengthening their positions in the global knowledge economy. Financial sustainability is a pressing concern for higher education institutions. Entrepreneurial leadership involves diversifying revenue streams through innovative fundraising campaigns, partnerships, and alternative educational models. Leaders who embrace entrepreneurship are better equipped to navigate budget constraints and ensure the long-term viability of their institutions. In conclusion, leadership and entrepreneurship are intertwined elements essential to the continued relevance and success of higher education institutions. Visionary leaders who champion entrepreneurship foster innovation, enhance the student experience, and secure the financial future of their institutions. As academia continues to evolve, leadership and entrepreneurship will remain indispensable tools in shaping the future of higher education. This abstract underscores the importance of these concepts and their potential to drive positive change within the higher education landscape.

Keywords: entrepreneurship, higher education, innovation, leadership

Procedia PDF Downloads 68
4234 Dynamic Amplification Factors of Some City Bridges

Authors: I. Paeglite, A. Paeglitis

Abstract:

The paper presents a study of dynamic effects obtained from the dynamic load testing of the city highway bridges in Latvia carried out from 2005 to 2012. 9 pre-stressed concrete bridges and 4 composite bridges were considered. 11 of 13 bridges were designed according to the Eurocodes but two according to the previous structural codes used in Latvia (SNIP 2.05.03-84). The dynamic properties of the bridges were obtained by heavy vehicles passing the bridge roadway with different driving speeds and with or without even pavement. The obtained values of the Dynamic amplification factor (DAF) and bridge natural frequency were analyzed and compared to the values of built-in traffic load models provided in Eurocode 1. The actual DAF values for even bridge deck in the most cases are smaller than the value adopted in Eurocode 1. Vehicle speed for uneven pavements significantly influence Dynamic amplification factor values.

Keywords: bridge, dynamic effects, load testing, dynamic amplification factor

Procedia PDF Downloads 383
4233 Digital Transformation in Education: Artificial Intelligence Awareness of Preschool Teachers

Authors: Cansu Bozer, Saadet İrem Turgut

Abstract:

Artificial intelligence (AI) has become one of the most important technologies of the digital age and is transforming many sectors, including education. The advantages offered by AI, such as automation, personalised learning, and data analytics, create new opportunities for both teachers and students in education systems. Preschool education plays a fundamental role in the cognitive, social, and emotional development of children. In this period, the foundations of children's creative thinking, problem-solving, and critical thinking skills are laid. Educational technologies, especially artificial intelligence-based applications, are thought to contribute to the development of these skills. For example, artificial intelligence-supported digital learning tools can support learning processes by offering activities that can be customised according to the individual needs of each child. However, the successful use of artificial intelligence-based applications in preschool education can be realised under the guidance of teachers who have the right knowledge about this technology. Therefore, it is of great importance to measure preschool teachers' awareness levels of artificial intelligence and to understand which variables affect this awareness. The aim of this study is to measure preschool teachers' awareness levels of artificial intelligence and to determine which factors are related to this awareness. In line with this purpose, teachers' level of knowledge about artificial intelligence, their thoughts about the role of artificial intelligence in education, and their attitudes towards artificial intelligence will be evaluated. The study will be conducted with 100 teachers working in Turkey using a descriptive survey model. In this context, ‘Artificial Intelligence Awareness Level Scale for Teachers’ developed by Ferikoğlu and Akgün (2022) will be used. The collected data will be analysed using SPSS (Statistical Package for the Social Sciences) software. Descriptive statistics (frequency, percentage, mean, standard deviation) and relationship analyses (correlation and regression analyses) will be used in data analysis. As a result of the study, the level of artificial intelligence awareness of preschool teachers will be determined, and the factors affecting this awareness will be identified. The findings obtained will contribute to the determination of studies that can be done to increase artificial intelligence awareness in preschool education.

Keywords: education, child development, artificial intelligence, preschool teachers

Procedia PDF Downloads 20
4232 A Preliminary Study for Design of Automatic Block Reallocation Algorithm with Genetic Algorithm Method in the Land Consolidation Projects

Authors: Tayfun Çay, Yasar İnceyol, Abdurrahman Özbeyaz

Abstract:

Land reallocation is one of the most important steps in land consolidation projects. Many different models were proposed for land reallocation in the literature such as Fuzzy Logic, block priority based land reallocation and Spatial Decision Support Systems. A model including four parts is considered for automatic block reallocation with genetic algorithm method in land consolidation projects. These stages are preparing data tables for a project land, determining conditions and constraints of land reallocation, designing command steps and logical flow chart of reallocation algorithm and finally writing program codes of Genetic Algorithm respectively. In this study, we designed the first three steps of the considered model comprising four steps.

Keywords: land consolidation, landholding, land reallocation, optimization, genetic algorithm

Procedia PDF Downloads 431
4231 Substructure Method for Thermal-Stress Analysis of Liquid-Propellant Rocket Engine Combustion Chamber

Authors: Olga V. Korotkaya

Abstract:

This article is devoted to an important problem of calculation of deflected mode of the combustion chamber and the nozzle end of a new liquid-propellant rocket cruise engine. A special attention is given to the methodology of calculation. Three operating modes are considered. The analysis has been conducted in ANSYS software. The methods of conducted research are mathematical modelling, substructure method, cyclic symmetry, and finite element method. The calculation has been carried out to order of S. P. Korolev Rocket and Space Corporation «Energia». The main results are practical. Proposed methodology and created models would be able to use for a wide range of strength problems.

Keywords: combustion chamber, cyclic symmetry, finite element method, liquid-propellant rocket engine, nozzle end, substructure

Procedia PDF Downloads 506
4230 Examining the Discursive Hegemony of British Energy Transition Narratives

Authors: Antonia Syn

Abstract:

Politicians’ outlooks on the nature of energy futures and an ‘Energy Transition’ have evolved considerably alongside a steady movement towards renewable energies, buttressed by lower technology costs, rising environmental concerns, and favourable national policy decisions. This paper seeks to examine the degree to which an energy transition has become an incontrovertible ‘status quo’ in parliament, and whether politicians share similar understandings of energy futures or narrate different stories under the same label. Parliamentarians construct different understandings of the same reality, in the form of co-existing and competing discourses, shaping and restricting how policy problems and solutions are understood and tackled. Approaching energy policymaking from a parliamentary discourse perspective draws directly from actors’ concrete statements, offering an alternative to policy literature debates revolving around inductive policy theories. This paper uses computer-assisted discourse analysis to describe fundamental discursive changes in British parliamentary debates around energy futures. By applying correspondence cluster analyses to Hansard transcripts from 1986 to 2010, we empirically measure the policy positions of Labour and Conservative politicians’ parliamentary speeches during legislatively salient moments preceding significant energy transition-related policy decisions. Results show the concept of a technology-based, market-driven transition towards fossil-free and nuclear-free renewables integration converged across Labour and the Conservatives within three decades. Specific storylines underwent significant change, particularly in relation to international outlooks, environmental framings, treatments of risk, and increases in rhetoric. This study contributes to a better understanding of the role politics plays in the energy transition, highlighting how politicians’ values and beliefs inevitably determine and delimit creative policymaking.

Keywords: quantitative discourse analysis, energy transition, renewable energy, British parliament, public policy

Procedia PDF Downloads 154
4229 Coupling Strategy for Multi-Scale Simulations in Micro-Channels

Authors: Dahia Chibouti, Benoit Trouette, Eric Chenier

Abstract:

With the development of micro-electro-mechanical systems (MEMS), understanding fluid flow and heat transfer at the micrometer scale is crucial. In the case where the flow characteristic length scale is narrowed to around ten times the mean free path of gas molecules, the classical fluid mechanics and energy equations are still valid in the bulk flow, but particular attention must be paid to the gas/solid interface boundary conditions. Indeed, in the vicinity of the wall, on a thickness of about the mean free path of the molecules, called the Knudsen layer, the gas molecules are no longer in local thermodynamic equilibrium. Therefore, macroscopic models based on the continuity of velocity, temperature and heat flux jump conditions must be applied at the fluid/solid interface to take this non-equilibrium into account. Although these macroscopic models are widely used, the assumptions on which they depend are not necessarily verified in realistic cases. In order to get rid of these assumptions, simulations at the molecular scale are carried out to study how molecule interaction with walls can change the fluid flow and heat transfers at the vicinity of the walls. The developed approach is based on a kind of heterogeneous multi-scale method: micro-domains overlap the continuous domain, and coupling is carried out through exchanges of information between both the molecular and the continuum approaches. In practice, molecular dynamics describes the fluid flow and heat transfers in micro-domains while the Navier-Stokes and energy equations are used at larger scales. In this framework, two kinds of micro-simulation are performed: i) in bulk, to obtain the thermo-physical properties (viscosity, conductivity, ...) as well as the equation of state of the fluid, ii) close to the walls to identify the relationships between the slip velocity and the shear stress or between the temperature jump and the normal temperature gradient. The coupling strategy relies on an implicit formulation of the quantities extracted from micro-domains. Indeed, using the results of the molecular simulations, a Bayesian regression is performed in order to build continuous laws giving both the behavior of the physical properties, the equation of state and the slip relationships, as well as their uncertainties. These latter allow to set up a learning strategy to optimize the number of micro simulations. In the present contribution, the first results regarding this coupling associated with the learning strategy are illustrated through parametric studies of convergence criteria, choice of basis functions and noise of input data. Anisothermic flows of a Lennard Jones fluid in micro-channels are finally presented.

Keywords: multi-scale, microfluidics, micro-channel, hybrid approach, coupling

Procedia PDF Downloads 167
4228 U-Net Based Multi-Output Network for Lung Disease Segmentation and Classification Using Chest X-Ray Dataset

Authors: Jaiden X. Schraut

Abstract:

Medical Imaging Segmentation of Chest X-rays is used for the purpose of identification and differentiation of lung cancer, pneumonia, COVID-19, and similar respiratory diseases. Widespread application of computer-supported perception methods into the diagnostic pipeline has been demonstrated to increase prognostic accuracy and aid doctors in efficiently treating patients. Modern models attempt the task of segmentation and classification separately and improve diagnostic efficiency; however, to further enhance this process, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional CNN module for auxiliary classification output. The proposed model achieves a final Jaccard Index of .9634 for image segmentation and a final accuracy of .9600 for classification on the COVID-19 radiography database.

Keywords: chest X-ray, deep learning, image segmentation, image classification

Procedia PDF Downloads 144
4227 Dissolution Leaching Kinetics of Ulexite in Disodium Hydrogen Phosphate Solutions

Authors: Betül Özgenç, Soner Kuşlu, Sabri Çolak, Turan Çalban

Abstract:

The aim of this study was investigate the leaching kinetics of ulexite in disodium hydrogen phosphate solutions in a mechanical agitation system. Reaction temperature, concentration of disodium hydrogen phosphate solutions, stirring speed, solid/liquid ratio and ulexite particle size were selected as parameters. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solid-fluid systems. It was observed that increase in the reaction temperature and decrease in the solid/liquid ratio causes an increase the dissolution rate of ulexite. The activation energy was found to be 63.4 kJ/mol. The leaching of ulexite was controlled by chemical reaction.

Keywords: ulexite, disodium hydrogen phosphate, leaching kinetics

Procedia PDF Downloads 410