Search results for: earth observation data cube
22778 Thermal Decomposition Behaviors of Hexafluoroethane (C2F6) Using Zeolite/Calcium Oxide Mixtures
Authors: Kazunori Takai, Weng Kaiwei, Sadao Araki, Hideki Yamamoto
Abstract:
HFC and PFC gases have been commonly and widely used as refrigerant of air conditioner and as etching agent of semiconductor manufacturing process, because of their higher heat of vaporization and chemical stability. On the other hand, HFCs and PFCs gases have the high global warming effect on the earth. Therefore, we have to be decomposed these gases emitted from chemical apparatus like as refrigerator. Until now, disposal of these gases were carried out by using combustion method like as Rotary kiln treatment mainly. However, this treatment needs extremely high temperature over 1000 °C. In the recent year, in order to reduce the energy consumption, a hydrolytic decomposition method using catalyst and plasma decomposition treatment have been attracted much attention as a new disposal treatment. However, the decomposition of fluorine-containing gases under the wet condition is not able to avoid the generation of hydrofluoric acid. Hydrofluoric acid is corrosive gas and it deteriorates catalysts in the decomposition process. Moreover, an additional process for the neutralization of hydrofluoric acid is also indispensable. In this study, the decomposition of C2F6 using zeolite and zeolite/CaO mixture as reactant was evaluated in the dry condition at 923 K. The effect of the chemical structure of zeolite on the decomposition reaction was confirmed by using H-Y, H-Beta, H-MOR and H-ZSM-5. The formation of CaF2 in zeolite/CaO mixtures after the decomposition reaction was confirmed by XRD measurements. The decomposition of C2F6 using zeolite as reactant showed the closely similar behaviors regardless the type of zeolite (MOR, Y, ZSM-5, Beta type). There was no difference of XRD patterns of each zeolite before and after reaction. On the other hand, the difference in the C2F6 decomposition for each zeolite/CaO mixtures was observed. These results suggested that the rate-determining process for the C2F6 decomposition on zeolite alone is the removal of fluorine from reactive site. In other words, the C2F6 decomposition for the zeolite/CaO improved compared with that for the zeolite alone by the removal of the fluorite from reactive site. HMOR/CaO showed 100% of the decomposition for 3.5 h and significantly improved from zeolite alone. On the other hand, Y type zeolite showed no improvement, that is, the almost same value of Y type zeolite alone. The descending order of C2F6 decomposition was MOR, ZSM-5, beta and Y type zeolite. This order is similar to the acid strength characterized by NH3-TPD. Hence, it is considered that the C-F bond cleavage is closely related to the acid strength.Keywords: hexafluoroethane, zeolite, calcium oxide, decomposition
Procedia PDF Downloads 48222777 Gadjah Mada University Yogyakarta Indonesia as a Potential Destination for Education Tourism
Authors: Henry Prihanto Nugroho
Abstract:
This paper suggests education tourism as an option into developing more sustainable mass tourism. Identifying the potential of education tourism and developing a sustainable packages will have an impact on social economic development in the area. Indonesia especially Yogyakarta can increase their tourism earnings by tapping into this growing market phenomenon. Educational tourism, a growing part in the world tourism market, has attracted great attention because of its direct impact on the community and as an alternative strategy for poverty alleviation. Tourism is considered as one of the main industries and sectors highly contributing to economic development in Indonesia especially in Yogyakarta, this region can be an ideal case for studying the issue of educational tourism in Universitas Gadjah Mada. This paper tries to introduce the educational tourism as an important alternative source of the economy accelerator in the context of Yogyakarta Indonesia. This paper also aims to discuss the education tourism potential at the University of Gadjah Mada, Yogyakarta Indonesia then to create and established an Education Tourism package at Gadjah Mada University. Education Tourism is a means to empower academics, local community, local businesses, and to improve the economic welfare. Methods: Focus group discussions, direct observation, survey and best practice method. Conclusion: There is a positive relationship between attitude, environmental impact, economic impact, and socio-cultural impacts and practice in the field when the potential is seized. The findings incorporate insights into the socio-cultural and economic potential of education tourism and practices related to community development at the University of Gadjah Mada, Yogyakarta Indonesia by creating an Education Tourism Packages that will suit the needs of the tourist. Educational tourism can create sustainable development for local communities, academic society, universities, and stakeholders.Keywords: education tourism, Gadjah Mada, sustainable, tourism
Procedia PDF Downloads 39622776 Diffable’s Aspiration Dreams in Spatial Planning
Authors: Tety Widyaningrum, Sapnah Rahmawati, Abdulmuluk Attim
Abstract:
Space was a container that includes land space, sea space and air space, including space in the earth as a whole region, where humans and other living creatures, operate and maintain its survival. Whereas spatial planning was a form of the structure of space and spatial pattern. At this time, the arrangement of space became a matter of considerable concern because through spatial planning was what will determine how the future city hall, how the welfare of the population that is in it, and how space can be a comfortable space to live. This spatial arrangement became a subject that must be considered not only by the Government as policy makers but also of concern to the entire community in it. As a place to stay, this space should be able to ensure the safety and comfort of the whole community, even people with disabilities, though. For development and spatial planning in Indonesia. It was still very low which was still concerned about the disabled. The spatial arrangement made generalizations. This caused the right for disabled people was less fulfilled. In accordance with the Declaration on the Rights of Persons with Disabilities who explains that people with disabilities had the right to be able to facilitate their efforts to become self-sufficient or not depends on the other party. It was also strengthened by According to the Law of the Republic of Indonesia No. 4 of 1997 on Persons with Disabilities; disabilities were part of the Indonesian people who had the status, rights, obligations and the same role with other Indonesian community in all aspects of life and livelihood. As observed, during the disabled were still used as objects that hadn’t been involved in the formulation of development planning of space in Indonesia, so the infrastructure space was still very far from the concept of friendly to the disabled. As an example of a sidewalk in Indonesia were still in bad condition, potholes, and uneven and don’t meet the eligibility standards. In addition, there were sidewalks that abused become a trade causing run down and chaotic atmosphere. In addition, pedestrians are also disturbed because the sidewalks were often still used as a parking lot or flowers to decorate the layout of the city, so the legroom was becoming increasingly limited. The development of infrastructure for pedestrians was also still concerned with aspects of aesthetic than functional. Therefore, the participation of disabled people must be involved in spatial planning exist. It aims to achieve spatial and environmentally friendly to the disabled. These dream space activities carried out by giving questionnaires and the dream images to the disabled about how the layout of the space they want what they want and what development was also in line with the principle of their convenience. This then will be taken into consideration for government in planning layout that was friendly to the whole community.Keywords: diffable, aspiration, spatial, planning
Procedia PDF Downloads 29522775 Allocating Channels and Flow Estimation at Flood Prone Area in Desert, Example from AlKharj City, Saudi Arabia
Authors: Farhan Aljuaidi
Abstract:
The rapid expansion of Alkarj city, Saudi Arabia, towards the outlet of Wadi AlAin is critical for the planners and decision makers. Nowadays, two major projects such as Salman bin Abdulaziz University compound and new industrial area are developed in this flood prone area where no channels are clear and identified. The main contribution of this study is to divert the flow away from these vital projects by reconstructing new channels. To do so, Lidar data were used to generate contour lines for the actual elevation of the highways and local roads. These data were analyzed and compared to the contour lines derived from the topographical maps 1:50.000. The magnitude of the expected flow was estimated using Snyder's Model based on the morphometric data acquired by DEM of the catchment area. The results indicate that maximum discharge peak reaches 2694,3 m3/sec, the mean is 303,7 m3/sec and the minimum is 74,3 m3/sec. The runoff was estimated at 252,2. 610 m3/s, the mean is 41,5. 610 m3/s and the minimum is 12,4. 610 m3/s.Keywords: Desert flood, Saudi Arabia, Snyder's Model, flow estimation
Procedia PDF Downloads 30922774 Molecular Detection of Tuberculosis in Dogs in the Three North-Eastern States Assam, Mizoram and Nagaland of India
Authors: A. G. Barua, Uttam Rajkhowa, Pranjal Moni Nath, Nur Abdul Kadir
Abstract:
Mycobacterium tuberculosis (MTB) is one of the most closely-related intracellular bacterial pathogens, grouped as the M. tuberculosis complex (MTC). MTB, the primary agent of human tuberculosis (TB), can develop clinical TB in animals as 75 percent of canine mycobacterial infection is caused by close contact with an infected human being. In the present study, molecular detection of TB in dogs in three North-eastern states of India, Assam Mizoram, and Nagaland was carried out. So far, there has been a lack of systematic study in these regions, hampered by slow diagnostic methods and poor infrastructure. In an attempt to rectify this situation, molecular epidemiology was carried out for nine months to detect canine TB in a sample of 340 dogs. Isolation of DNA was done with swabs (throat/nasal), nodules of lungs and fluids from 100 suspected dogs and the molecular study were carried out with the help of conventional and real-time PCR. Post-mortem study was also carried out. Our results showed that the prevalence of clinical TB in dogs from a high-risk setting was 1 percent. However, the prevalence of immunological sensitization to M. tuberculosis antigen in dogs living in contact with sputum smeared positive TB cases was almost 50 percent. The latter setting had the maximum impact in terms of TB transmission. During the study period, a survey with a standard questionnaire was carried out in the TB hospitals to study reverse zoonosis. It was observed that an infected human being was one of the major risk factors for dogs to contract the infection. This observation was drawn by examining the probable airborne transmission from humans to their pets or strays. The present study helped to discover the nuances of TB transmission more clearly and systematically as compared to other sporadic tests to detect MTB in canine.Keywords: Assam and Nagaland, canine TB, India, molecular detection, tuberculosis
Procedia PDF Downloads 14522773 Public Bus Transport Passenger Safety Evaluations in Ghana: A Phenomenological Constructivist Exploration
Authors: Enoch F. Sam, Kris Brijs, Stijn Daniels, Tom Brijs, Geert Wets
Abstract:
Notwithstanding the growing body of literature that recognises the importance of personal safety to public transport (PT) users, it remains unclear what PT users consider regarding their safety. In this study, we explore the criteria PT users in Ghana use to assess bus safety. This knowledge will afford a better understanding of PT users’ risk perceptions and assessments which may contribute to theoretical models of PT risk perceptions. We utilised phenomenological research methodology, with data drawn from 61 purposively sampled participants. Data collection (through focus group discussions and in-depth interviews) and analyses were done concurrently to the point of saturation. Our inductive data coding and analyses through the constant comparison and content analytic techniques resulted in 4 code categories (conceptual dimensions), 27 codes (safety items/criteria), and 100 quotations (data segments). Of the number of safety criteria participants use to assess bus safety, vehicle condition, driver’s marital status, and transport operator’s safety records were the most considered. With each criterion, participants rightly demonstrated its respective relevance to bus safety. These findings imply that investment in and maintenance of safer vehicles, and responsible and safety-conscious drivers, and prioritization of passengers’ safety are key-targets for public bus/minibus operators in Ghana.Keywords: safety evaluations, public bus/minibus, passengers, phenomenology, Ghana
Procedia PDF Downloads 33722772 Data-Driven Analysis of Velocity Gradient Dynamics Using Neural Network
Authors: Nishant Parashar, Sawan S. Sinha, Balaji Srinivasan
Abstract:
We perform an investigation of the unclosed terms in the evolution equation of the velocity gradient tensor (VGT) in compressible decaying turbulent flow. Velocity gradients in a compressible turbulent flow field influence several important nonlinear turbulent processes like cascading and intermittency. In an attempt to understand the dynamics of the velocity gradients various researchers have tried to model the unclosed terms in the evolution equation of the VGT. The existing models proposed for these unclosed terms have limited applicability. This is mainly attributable to the complex structure of the higher order gradient terms appearing in the evolution equation of VGT. We investigate these higher order gradients using the data from direct numerical simulation (DNS) of compressible decaying isotropic turbulent flow. The gas kinetic method aided with weighted essentially non-oscillatory scheme (WENO) based flow- reconstruction is employed to generate DNS data. By applying neural-network to the DNS data, we map the structure of the unclosed higher order gradient terms in the evolution of the equation of the VGT with VGT itself. We validate our findings by performing alignment based study of the unclosed higher order gradient terms obtained using the neural network with the strain rate eigenvectors.Keywords: compressible turbulence, neural network, velocity gradient tensor, direct numerical simulation
Procedia PDF Downloads 16822771 Comparison of Authentication Methods in Internet of Things Technology
Authors: Hafizah Che Hasan, Fateen Nazwa Yusof, Maslina Daud
Abstract:
Internet of Things (IoT) is a powerful industry system, which end-devices are interconnected and automated, allowing the devices to analyze data and execute actions based on the analysis. The IoT technology leverages the technology of Radio-Frequency Identification (RFID) and Wireless Sensor Network (WSN), including mobile and sensor. These technologies contribute to the evolution of IoT. However, due to more devices are connected each other in the Internet, and data from various sources exchanged between things, confidentiality of the data becomes a major concern. This paper focuses on one of the major challenges in IoT; authentication, in order to preserve data integrity and confidentiality are in place. A few solutions are reviewed based on papers from the last few years. One of the proposed solutions is securing the communication between IoT devices and cloud servers with Elliptic Curve Cryptograhpy (ECC) based mutual authentication protocol. This solution focuses on Hyper Text Transfer Protocol (HTTP) cookies as security parameter. Next proposed solution is using keyed-hash scheme protocol to enable IoT devices to authenticate each other without the presence of a central control server. Another proposed solution uses Physical Unclonable Function (PUF) based mutual authentication protocol. It emphasizes on tamper resistant and resource-efficient technology, which equals a 3-way handshake security protocol.Keywords: Internet of Things (IoT), authentication, PUF ECC, keyed-hash scheme protocol
Procedia PDF Downloads 26422770 An Interdisciplinary Maturity Model for Accompanying Sustainable Digital Transformation Processes in a Smart Residential Quarter
Authors: Wesley Preßler, Lucie Schmidt
Abstract:
Digital transformation is playing an increasingly important role in the development of smart residential quarters. In order to accompany and steer this process and ultimately make the success of the transformation efforts measurable, it is helpful to use an appropriate maturity model. However, conventional maturity models for digital transformation focus primarily on the evaluation of processes and neglect the information and power imbalances between the stakeholders, which affects the validity of the results. The Multi-Generation Smart Community (mGeSCo) research project is developing an interdisciplinary maturity model that integrates the dimensions of digital literacy, interpretive patterns, and technology acceptance to address this gap. As part of the mGeSCo project, the technological development of selected dimensions in the Smart Quarter Jena-Lobeda (Germany) is being investigated. A specific maturity model, based on Cohen's Smart Cities Wheel, evaluates the central dimensions Working, Living, Housing and Caring. To improve the reliability and relevance of the maturity assessment, the factors Digital Literacy, Interpretive Patterns and Technology Acceptance are integrated into the developed model. The digital literacy dimension examines stakeholders' skills in using digital technologies, which influence their perception and assessment of technological maturity. Digital literacy is measured by means of surveys, interviews, and participant observation, using the European Commission's Digital Literacy Framework (DigComp) as a basis. Interpretations of digital technologies provide information about how individuals perceive technologies and ascribe meaning to them. However, these are not mere assessments, prejudices, or stereotyped perceptions but collective patterns, rules, attributions of meaning and the cultural repertoire that leads to these opinions and attitudes. Understanding these interpretations helps in assessing the overarching readiness of stakeholders to digitally transform a/their neighborhood. This involves examining people's attitudes, beliefs, and values about technology adoption, as well as their perceptions of the benefits and risks associated with digital tools. These insights provide important data for a holistic view and inform the steps needed to prepare individuals in the neighborhood for a digital transformation. Technology acceptance is another crucial factor for successful digital transformation to examine the willingness of individuals to adopt and use new technologies. Surveys or questionnaires based on Davis' Technology Acceptance Model can be used to complement interpretive patterns to measure neighborhood acceptance of digital technologies. Integrating the dimensions of digital literacy, interpretive patterns and technology acceptance enables the development of a roadmap with clear prerequisites for initiating a digital transformation process in the neighborhood. During the process, maturity is measured at different points in time and compared with changes in the aforementioned dimensions to ensure sustainable transformation. Participation, co-creation, and co-production are essential concepts for a successful and inclusive digital transformation in the neighborhood context. This interdisciplinary maturity model helps to improve the assessment and monitoring of sustainable digital transformation processes in smart residential quarters. It enables a more comprehensive recording of the factors that influence the success of such processes and supports the development of targeted measures to promote digital transformation in the neighborhood context.Keywords: digital transformation, interdisciplinary, maturity model, neighborhood
Procedia PDF Downloads 7722769 Determination of the Phosphate Activated Glutaminase Localization in the Astrocyte Mitochondria Using Kinetic Approach
Authors: N. V. Kazmiruk, Y. R. Nartsissov
Abstract:
Phosphate activated glutaminase (GA, E.C. 3.5.1.2) plays a key role in glutamine/glutamate homeostasis in mammalian brain, catalyzing the hydrolytic deamidation of glutamine to glutamate and ammonium ions. GA is mainly localized in mitochondria, where it has the catalytically active form on the inner mitochondrial membrane (IMM) and the other soluble form, which is supposed to be dormant. At present time, the exact localization of the membrane glutaminase active site remains a controversial and an unresolved issue. The first hypothesis called c-side localization suggests that the catalytic site of GA faces the inter-membrane space and products of the deamidation reaction have immediate access to cytosolic metabolism. According to the alternative m-side localization hypothesis, GA orients to the matrix, making glutamate and ammonium available for the tricarboxylic acid cycle metabolism in mitochondria directly. In our study, we used a multi-compartment kinetic approach to simulate metabolism of glutamate and glutamine in the astrocytic cytosol and mitochondria. We used physiologically important ratio between the concentrations of glutamine inside the matrix of mitochondria [Glnₘᵢₜ] and glutamine in the cytosol [Glncyt] as a marker for precise functioning of the system. Since this ratio directly depends on the mitochondrial glutamine carrier (MGC) flow parameters, key observation was to investigate the dependence of the [Glnmit]/[Glncyt] ratio on the maximal velocity of MGC at different initial concentrations of mitochondrial glutamate. Another important task was to observe the similar dependence at different inhibition constants of the soluble GA. The simulation results confirmed the experimental c-side localization hypothesis, in which the glutaminase active site faces the outer surface of the IMM. Moreover, in the case of such localization of the enzyme, a 3-fold decrease in ammonium production was predicted.Keywords: glutamate metabolism, glutaminase, kinetic approach, mitochondrial membrane, multi-compartment modeling
Procedia PDF Downloads 12022768 Data Analysis Tool for Predicting Water Scarcity in Industry
Authors: Tassadit Issaadi Hamitouche, Nicolas Gillard, Jean Petit, Valerie Lavaste, Celine Mayousse
Abstract:
Water is a fundamental resource for the industry. It is taken from the environment either from municipal distribution networks or from various natural water sources such as the sea, ocean, rivers, aquifers, etc. Once used, water is discharged into the environment, reprocessed at the plant or treatment plants. These withdrawals and discharges have a direct impact on natural water resources. These impacts can apply to the quantity of water available, the quality of the water used, or to impacts that are more complex to measure and less direct, such as the health of the population downstream from the watercourse, for example. Based on the analysis of data (meteorological, river characteristics, physicochemical substances), we wish to predict water stress episodes and anticipate prefectoral decrees, which can impact the performance of plants and propose improvement solutions, help industrialists in their choice of location for a new plant, visualize possible interactions between companies to optimize exchanges and encourage the pooling of water treatment solutions, and set up circular economies around the issue of water. The development of a system for the collection, processing, and use of data related to water resources requires the functional constraints specific to the latter to be made explicit. Thus the system will have to be able to store a large amount of data from sensors (which is the main type of data in plants and their environment). In addition, manufacturers need to have 'near-real-time' processing of information in order to be able to make the best decisions (to be rapidly notified of an event that would have a significant impact on water resources). Finally, the visualization of data must be adapted to its temporal and geographical dimensions. In this study, we set up an infrastructure centered on the TICK application stack (for Telegraf, InfluxDB, Chronograf, and Kapacitor), which is a set of loosely coupled but tightly integrated open source projects designed to manage huge amounts of time-stamped information. The software architecture is coupled with the cross-industry standard process for data mining (CRISP-DM) data mining methodology. The robust architecture and the methodology used have demonstrated their effectiveness on the study case of learning the level of a river with a 7-day horizon. The management of water and the activities within the plants -which depend on this resource- should be considerably improved thanks, on the one hand, to the learning that allows the anticipation of periods of water stress, and on the other hand, to the information system that is able to warn decision-makers with alerts created from the formalization of prefectoral decrees.Keywords: data mining, industry, machine Learning, shortage, water resources
Procedia PDF Downloads 12122767 EcoLife and Greed Index Measurement: An Alternative Tool to Promote Sustainable Communities and Eco-Justice
Authors: Louk Aourelien Andrianos, Edward Dommen, Athena Peralta
Abstract:
Greed, as epitomized by overconsumption of natural resources, is at the root of ecological destruction and unsustainability of modern societies. Presently economies rely on unrestricted structural greed which fuels unlimited economic growth, overconsumption, and individualistic competitive behavior. Structural greed undermines the life support system on earth and threatens ecological integrity, social justice and peace. The World Council of Churches (WCC) has developed a program on ecological and economic justice (EEJ) with the aim to promote an economy of life where the economy is embedded in society and society in ecology. This paper aims at analyzing and assessing the economy of life (EcoLife) by offering an empirical tool to measure and monitor the root causes and effects of unsustainability resulting from human greed on global, national, institutional and individual levels. This holistic approach is based on the integrity of ecology and economy in a society founded on justice. The paper will discuss critical questions such as ‘what is an economy of life’ and ‘how to measure and control it from the effect of greed’. A model called GLIMS, which stands for Greed Lines and Indices Measurement System is used to clarify the concept of greed and help measuring the economy of life index by fuzzy logic reasoning. The inputs of the model are from statistical indicators of natural resources consumption, financial realities, economic performance, social welfare and ethical and political facts. The outputs are concrete measures of three primary indices of ecological, economic and socio-political greed (ECOL-GI, ECON-GI, SOCI-GI) and one overall multidimensional economy of life index (EcoLife-I). EcoLife measurement aims to build awareness of an economy life and to address the effects of greed in systemic and structural aspects. It is a tool for ethical diagnosis and policy making.Keywords: greed line, sustainability indicators, fuzzy logic, eco-justice, World Council of Churches (WCC)
Procedia PDF Downloads 32122766 Recommendations Using Online Water Quality Sensors for Chlorinated Drinking Water Monitoring at Drinking Water Distribution Systems Exposed to Glyphosate
Authors: Angela Maria Fasnacht
Abstract:
Detection of anomalies due to contaminants’ presence, also known as early detection systems in water treatment plants, has become a critical point that deserves an in-depth study for their improvement and adaptation to current requirements. The design of these systems requires a detailed analysis and processing of the data in real-time, so it is necessary to apply various statistical methods appropriate to the data generated, such as Spearman’s Correlation, Factor Analysis, Cross-Correlation, and k-fold Cross-validation. Statistical analysis and methods allow the evaluation of large data sets to model the behavior of variables; in this sense, statistical treatment or analysis could be considered a vital step to be able to develop advanced models focused on machine learning that allows optimized data management in real-time, applied to early detection systems in water treatment processes. These techniques facilitate the development of new technologies used in advanced sensors. In this work, these methods were applied to identify the possible correlations between the measured parameters and the presence of the glyphosate contaminant in the single-pass system. The interaction between the initial concentration of glyphosate and the location of the sensors on the reading of the reported parameters was studied.Keywords: glyphosate, emergent contaminants, machine learning, probes, sensors, predictive
Procedia PDF Downloads 12222765 Generating Arabic Fonts Using Rational Cubic Ball Functions
Authors: Fakharuddin Ibrahim, Jamaludin Md. Ali, Ahmad Ramli
Abstract:
In this paper, we will discuss about the data interpolation by using the rational cubic Ball curve. To generate a curve with a better and satisfactory smoothness, the curve segments must be connected with a certain amount of continuity. The continuity that we will consider is of type G1 continuity. The conditions considered are known as the G1 Hermite condition. A simple application of the proposed method is to generate an Arabic font satisfying the required continuity.Keywords: data interpolation, rational ball curve, hermite condition, continuity
Procedia PDF Downloads 42922764 Teenagers’ Decisions to Undergo Orthodontic Treatment: A Qualitative Study
Authors: Babak Nematshahrbabaki, Fallahi Arezoo
Abstract:
Objective: The aim of this study was to describe teenagers’ decisions to undergo orthodontic treatment through a qualitative study. Materials and methods: Twenty-three patients (12 girls), aged 12–18 years, at a dental clinic in Sanandaj the western part of Iran participated. Face-to-face and semi-structured interviews and two focus group discussions were held to gather data. Data analyzed by the grounded theory method. Results: ‘Decision-making’ was the core category. During the data analysis four main themes were developed: ‘being like everyone else’, ‘being diagnosed’, ‘maintaining the mouth’ and ‘cultural-social and environmental factors’. Conclusions: cultural- social and environmental factors have crucial role in decision-making to undergo orthodontic treatment. The teenagers were not fully conscious of these external influences. They thought their decision to undergo orthodontic treatment is independent while it is related to cultural- social and environmental factors.Keywords: decision-making, qualitative study, teenager, orthodontic treatment
Procedia PDF Downloads 45222763 A Generalized Framework for Adaptive Machine Learning Deployments in Algorithmic Trading
Authors: Robert Caulk
Abstract:
A generalized framework for adaptive machine learning deployments in algorithmic trading is introduced, tested, and released as open-source code. The presented software aims to test the hypothesis that recent data contains enough information to form a probabilistically favorable short-term price prediction. Further, the framework contains various adaptive machine learning techniques that are geared toward generating profit during strong trends and minimizing losses during trend changes. Results demonstrate that this adaptive machine learning approach is capable of capturing trends and generating profit. The presentation also discusses the importance of defining the parameter space associated with the dynamic training data-set and using the parameter space to identify and remove outliers from prediction data points. Meanwhile, the generalized architecture enables common users to exploit the powerful machinery while focusing on high-level feature engineering and model testing. The presentation also highlights common strengths and weaknesses associated with the presented technique and presents a broad range of well-tested starting points for feature set construction, target setting, and statistical methods for enforcing risk management and maintaining probabilistically favorable entry and exit points. The presentation also describes the end-to-end data processing tools associated with FreqAI, including automatic data fetching, data aggregation, feature engineering, safe and robust data pre-processing, outlier detection, custom machine learning and statistical tools, data post-processing, and adaptive training backtest emulation, and deployment of adaptive training in live environments. Finally, the generalized user interface is also discussed in the presentation. Feature engineering is simplified so that users can seed their feature sets with common indicator libraries (e.g. TA-lib, pandas-ta). The user also feeds data expansion parameters to fill out a large feature set for the model, which can contain as many as 10,000+ features. The presentation describes the various object-oriented programming techniques employed to make FreqAI agnostic to third-party libraries and external data sources. In other words, the back-end is constructed in such a way that users can leverage a broad range of common regression libraries (Catboost, LightGBM, Sklearn, etc) as well as common Neural Network libraries (TensorFlow, PyTorch) without worrying about the logistical complexities associated with data handling and API interactions. The presentation finishes by drawing conclusions about the most important parameters associated with a live deployment of the adaptive learning framework and provides the road map for future development in FreqAI.Keywords: machine learning, market trend detection, open-source, adaptive learning, parameter space exploration
Procedia PDF Downloads 8922762 Smart Sensor Data to Predict Machine Performance with IoT-Based Machine Learning and Artificial Intelligence
Authors: C. J. Rossouw, T. I. van Niekerk
Abstract:
The global manufacturing industry is utilizing the internet and cloud-based services to further explore the anatomy and optimize manufacturing processes in support of the movement into the Fourth Industrial Revolution (4IR). The 4IR from a third world and African perspective is hindered by the fact that many manufacturing systems that were developed in the third industrial revolution are not inherently equipped to utilize the internet and services of the 4IR, hindering the progression of third world manufacturing industries into the 4IR. This research focuses on the development of a non-invasive and cost-effective cyber-physical IoT system that will exploit a machine’s vibration to expose semantic characteristics in the manufacturing process and utilize these results through a real-time cloud-based machine condition monitoring system with the intention to optimize the system. A microcontroller-based IoT sensor was designed to acquire a machine’s mechanical vibration data, process it in real-time, and transmit it to a cloud-based platform via Wi-Fi and the internet. Time-frequency Fourier analysis was applied to the vibration data to form an image representation of the machine’s behaviour. This data was used to train a Convolutional Neural Network (CNN) to learn semantic characteristics in the machine’s behaviour and relate them to a state of operation. The same data was also used to train a Convolutional Autoencoder (CAE) to detect anomalies in the data. Real-time edge-based artificial intelligence was achieved by deploying the CNN and CAE on the sensor to analyse the vibration. A cloud platform was deployed to visualize the vibration data and the results of the CNN and CAE in real-time. The cyber-physical IoT system was deployed on a semi-automated metal granulation machine with a set of trained machine learning models. Using a single sensor, the system was able to accurately visualize three states of the machine’s operation in real-time. The system was also able to detect a variance in the material being granulated. The research demonstrates how non-IoT manufacturing systems can be equipped with edge-based artificial intelligence to establish a remote machine condition monitoring system.Keywords: IoT, cyber-physical systems, artificial intelligence, manufacturing, vibration analytics, continuous machine condition monitoring
Procedia PDF Downloads 8822761 Assessment of Land Suitability for Tea Cultivation Using Geoinformatics in the Mansehra and Abbottabad District, Pakistan
Authors: Nasir Ashraf, Sajid Rahid Ahmad, Adeel Ahmad
Abstract:
Pakistan is a major tea consumer country and ranked as the third largest importer of tea worldwide. Out of all beverage consumed in Pakistan, tea is the one with most demand for which tea import is inevitable. Being an agrarian country, Pakistan should cultivate its own tea and save the millions of dollars cost from tea import. So the need is to identify the most suitable areas with favorable weather condition and suitable soils where tea can be planted. This research is conducted over District Mansehra and District Abbottabad in Khyber Pakhtoonkhwah Province of Pakistan where the most favorable conditions for tea cultivation already exist and National Tea Research Institute has done successful experiments to cultivate high quality tea. High tech approach is adopted to meet the objectives of this research by using the remotely sensed data i.e. Aster DEM, Landsat8 Imagery. The Remote Sensing data was processed in Erdas Imagine, Envi and further analyzed in ESRI ArcGIS spatial analyst for final results and representation of result data in map layouts. Integration of remote sensing data with GIS provided the perfect suitability analysis. The results showed that out of all study area, 13.4% area is highly suitable while 33.44% area is suitable for tea plantation. The result of this research is an impressive GIS based outcome and structured format of data for the agriculture planners and Tea growers. Identification of suitable tea growing areas by using remotely sensed data and GIS techniques is a pressing need for the country. Analysis of this research lets the planners to address variety of action plans in an economical and scientific manner which can lead tea production in Pakistan to meet demand. This geomatics based model and approach may be used to identify more areas for tea cultivation to meet our demand which we can reduce by planting our own tea, and our country can be independent in tea production.Keywords: agrarian country, GIS, geoinformatics, suitability analysis, remote sensing
Procedia PDF Downloads 38922760 Machine Learning Algorithms for Rocket Propulsion
Authors: Rômulo Eustáquio Martins de Souza, Paulo Alexandre Rodrigues de Vasconcelos Figueiredo
Abstract:
In recent years, there has been a surge in interest in applying artificial intelligence techniques, particularly machine learning algorithms. Machine learning is a data-analysis technique that automates the creation of analytical models, making it especially useful for designing complex situations. As a result, this technology aids in reducing human intervention while producing accurate results. This methodology is also extensively used in aerospace engineering since this is a field that encompasses several high-complexity operations, such as rocket propulsion. Rocket propulsion is a high-risk operation in which engine failure could result in the loss of life. As a result, it is critical to use computational methods capable of precisely representing the spacecraft's analytical model to guarantee its security and operation. Thus, this paper describes the use of machine learning algorithms for rocket propulsion to aid the realization that this technique is an efficient way to deal with challenging and restrictive aerospace engineering activities. The paper focuses on three machine-learning-aided rocket propulsion applications: set-point control of an expander-bleed rocket engine, supersonic retro-propulsion of a small-scale rocket, and leak detection and isolation on rocket engine data. This paper describes the data-driven methods used for each implementation in depth and presents the obtained results.Keywords: data analysis, modeling, machine learning, aerospace, rocket propulsion
Procedia PDF Downloads 11522759 Resource Sharing Issues of Distributed Systems Influences on Healthcare Sector Concurrent Environment
Authors: Soo Hong Da, Ng Zheng Yao, Burra Venkata Durga Kumar
Abstract:
The Healthcare sector is a business that consists of providing medical services, manufacturing medical equipment and drugs as well as providing medical insurance to the public. Most of the time, the data stored in the healthcare database is to be related to patient’s information which is required to be accurate when it is accessed by authorized stakeholders. In distributed systems, one important issue is concurrency in the system as it ensures the shared resources to be synchronized and remains consistent through multiple read and write operations by multiple clients. The problems of concurrency in the healthcare sector are who gets the access and how the shared data is synchronized and remains consistent when there are two or more stakeholders attempting to the shared data simultaneously. In this paper, a framework that is beneficial to distributed healthcare sector concurrent environment is proposed. In the proposed framework, four different level nodes of the database, which are national center, regional center, referral center, and local center are explained. Moreover, the frame synchronization is not symmetrical. There are two synchronization techniques, which are complete and partial synchronization operation are explained. Furthermore, when there are multiple clients accessed at the same time, synchronization types are also discussed with cases at different levels and priorities to ensure data is synchronized throughout the processes.Keywords: resources, healthcare, concurrency, synchronization, stakeholders, database
Procedia PDF Downloads 15022758 Evaluation of Longitudinal Relaxation Time (T1) of Bone Marrow in Lumbar Vertebrae of Leukaemia Patients Undergoing Magnetic Resonance Imaging
Authors: M. G. R. S. Perera, B. S. Weerakoon, L. P. G. Sherminie, M. L. Jayatilake, R. D. Jayasinghe, W. Huang
Abstract:
The aim of this study was to measure and evaluate the Longitudinal Relaxation Times (T1) in bone marrow of an Acute Myeloid Leukaemia (AML) patient in order to explore the potential for a prognostic biomarker using Magnetic Resonance Imaging (MRI) which will be a non-invasive prognostic approach to AML. MR image data were collected in the DICOM format and MATLAB Simulink software was used in the image processing and data analysis. For quantitative MRI data analysis, Region of Interests (ROI) on multiple image slices were drawn encompassing vertebral bodies of L3, L4, and L5. T1 was evaluated using the T1 maps obtained. The estimated bone marrow mean value of T1 was 790.1 (ms) at 3T. However, the reported T1 value of healthy subjects is significantly (946.0 ms) higher than the present finding. This suggests that the T1 for bone marrow can be considered as a potential prognostic biomarker for AML patients.Keywords: acute myeloid leukaemia, longitudinal relaxation time, magnetic resonance imaging, prognostic biomarker.
Procedia PDF Downloads 53122757 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network
Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing
Abstract:
Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.Keywords: convolutional neural network, lithology, prediction of reservoir, seismic attributes
Procedia PDF Downloads 17722756 Children’s Experience of the Built Environment in the Initial Stages of a Settlement Formation: Case Study of Shahid-Keshvari New Settlement, Isfahan, Iran
Authors: Hassan Sheikh, Mehdi Nilipour, Amiraslan Fila
Abstract:
Many conventional town planning processes do little to give children and young people a voice on what is important about the urban environment. As a result of paying little attention to the children, their physical, social and mental needs are hardly met in urban environments. Therefore, urban spaces are impotent to attract children, while their recreational space has been confined to home or virtual spaces. Since children are just taking the first steps to learn the world beyond house borders, their living environment will profoundly influence almost all aspects of their lives. This puts a great deal of responsibility on the shoulders of planners, who need to balance a number of different issues in urban design to make places more child-friendly. The main purpose of present research is to analyze and plan a child-friendly environment in an on-going urban settlement development for the benefit of all residents. Assessing children’s needs and regard them in development strategies and policies will help to “plan for children”. Following this purpose, based on child-friendly environment studies, indicators of child-friendly environments were collected. Then three distinct characteristics of case study, which are being under-construction, lack of social ties between dwellers and high-rise building, determined seven indicators included basic services, Urban and environmental qualities, Family, kin, peers and community, Sense of belonging and continuity, participation, Safety, security and freedom of movement and human scale. With the survey, Informal observation and participation in small communities, essential data has been collected and analyzed by SPSS software. The field study is Shahid-Keshvari town in Isfahan, Iran. Eighty-six middle childhood, children (ages 8-13) participated. The results show Children's satisfaction is correlated with basic services and the quality of the environment, social environment and the safety and security. The considerable number of children and youth (55%) like to live somewhere other than the town. Satisfaction and sense of belonging and continuity have a strong inverse correlation with age. In other words, as age increases, satisfaction and consequently a sense of belonging will be reduced; thus children and youth consider their future somewhere out of the town. The main reason for dissatisfaction was the basic services and social environment. More than half of children (55%) expressed their wish to develop basic services in terms of availability, hierarchy, and quality. Among all recreational places, children showed more interest to the parks. About three-quarters (76%) considered building a park as a crucial item for residents. The significant number of children (54%) want to have a relationship with more friends. This could be due to the serious shortage of the leisure spaces such as parks or playgrounds. Also, the space around the house or space between the apartments has not been designed for play or children’s activities. Moreover, the presence of strangers and construction workers have a negative impact on children's sense of peace and security; 60% of children are afraid of theft and 36% of children found strangers as a menace. The analysis of children’s issues and suggestions provides an insight to plan and design of child-friendly environment in new towns.Keywords: child-friendly city (CFC), child-friendly environment, child participation, under-construction environment, Isfahan Shahid-Keshvari Town
Procedia PDF Downloads 37522755 A Comparison of Caesarean Section Indications and Characteristics in 2009 and 2020 in a Saudi Tertiary Hospital
Authors: Sarah K. Basudan, Ragad I. Al Jazzar, Zeinah Sulaihim, Hanan M. Al-Kadri
Abstract:
Background: Cesarean section has been increasing in recent years, with a wide range of etiologies contributing to this rise. This study aimed to assess the indications, outcomes, and complications in Riyadh, Saudi Arabia. Methods: A Retrospective Cohort study was conducted at King Abdulaziz medical city. The study includes two cohorts: G1 (2009) and G2 (2020) groups who met the inclusion criteria. The data was transferred to the SPSS (statistical package for social sciences) version 24 for analysis. The initial descriptive statistics were run for all variables, including numerical and categorical data. The numerical data were reported as median, and standard deviation and categorical data were reported as frequencies and percentages. Results: The data were collected from 399 women who were divided into two groups, G1(199) and G2(200). The mean age of all participants is 32+-6; G1 and G2 had significant differences in age means with 30+-6 and 34+-5, respectively, with a p-value of <0.001, which indicates delayed fertility by four years. Moreover, a breech presentation was less likely to occur in G2 (OR 0.64, CI: 0.21-0.62. P<0.001). Nonetheless, maternal causes such as repeated C-sections and maternal medical conditions were more likely to happen in G2 (OR 1.5, CI: 1.04-2.38, p=0.03) and (OR 5.4, CI: 1.12-23.9, P=0.01), respectively. Furthermore, postpartum hemorrhage showed an increase of 12% in G2 (OR 5.4, CI: 2.2-13.4, p<0.001). G2 was more likely to be admitted to the neonatal intensive care unit (NICU) (OR 16, CI: 7.4-38.7) and to special care baby (SCB) (OR 7.2, CI: 3.9-13.1), both with a p-value<0.001 compared to regular nursery admission. Conclusion: There are multiple factors that are contributing to the increase in c section rate in a Saudi tertiary hospitals. The factors were suggested to be previous c-sections, abnormal fetal heart rate, malpresentation, and maternal or fetal medical conditions.Keywords: cesarean sections, maternal indications, maternal complications, neonatal condition
Procedia PDF Downloads 8822754 Optimal Cropping Pattern in an Irrigation Project: A Hybrid Model of Artificial Neural Network and Modified Simplex Algorithm
Authors: Safayat Ali Shaikh
Abstract:
Software has been developed for optimal cropping pattern in an irrigation project considering land constraint, water availability constraint and pick up flow constraint using modified Simplex Algorithm. Artificial Neural Network Models (ANN) have been developed to predict rainfall. AR (1) model used to generate 1000 years rainfall data to train the ANN. Simulation has been done with expected rainfall data. Eight number crops and three types of soil class have been considered for optimization model. Area under each crop and each soil class have been quantified using Modified Simplex Algorithm to get optimum net return. Efficacy of the software has been tested using data of large irrigation project in India.Keywords: artificial neural network, large irrigation project, modified simplex algorithm, optimal cropping pattern
Procedia PDF Downloads 20322753 Two-Phase Sampling for Estimating a Finite Population Total in Presence of Missing Values
Authors: Daniel Fundi Murithi
Abstract:
Missing data is a real bane in many surveys. To overcome the problems caused by missing data, partial deletion, and single imputation methods, among others, have been proposed. However, problems such as discarding usable data and inaccuracy in reproducing known population parameters and standard errors are associated with them. For regression and stochastic imputation, it is assumed that there is a variable with complete cases to be used as a predictor in estimating missing values in the other variable, and the relationship between the two variables is linear, which might not be realistic in practice. In this project, we estimate population total in presence of missing values in two-phase sampling. Instead of regression or stochastic models, non-parametric model based regression model is used in imputing missing values. Empirical study showed that nonparametric model-based regression imputation is better in reproducing variance of population total estimate obtained when there were no missing values compared to mean, median, regression, and stochastic imputation methods. Although regression and stochastic imputation were better than nonparametric model-based imputation in reproducing population total estimates obtained when there were no missing values in one of the sample sizes considered, nonparametric model-based imputation may be used when the relationship between outcome and predictor variables is not linear.Keywords: finite population total, missing data, model-based imputation, two-phase sampling
Procedia PDF Downloads 13122752 Performance Analysis of Multichannel OCDMA-FSO Network under Different Pervasive Conditions
Authors: Saru Arora, Anurag Sharma, Harsukhpreet Singh
Abstract:
To meet the growing need of high data rate and bandwidth, various efforts has been made nowadays for the efficient communication systems. Optical Code Division Multiple Access over Free space optics communication system seems an effective role for providing transmission at high data rate with low bit error rate and low amount of multiple access interference. This paper demonstrates the OCDMA over FSO communication system up to the range of 7000 m at a data rate of 5 Gbps. Initially, the 8 user OCDMA-FSO system is simulated and pseudo orthogonal codes are used for encoding. Also, the simulative analysis of various performance parameters like power and core effective area that are having an effect on the Bit error rate (BER) of the system is carried out. The simulative analysis reveals that the length of the transmission is limited by the multi-access interference (MAI) effect which arises when the number of users increases in the system.Keywords: FSO, PSO, bit error rate (BER), opti system simulation, multiple access interference (MAI), q-factor
Procedia PDF Downloads 36622751 The Study of Implications on Modern Businesses Performances by Digital Communities: Case of Data Leak
Authors: Asim Majeed, Anwar Ul Haq, Ayesha Asim, Mike Lloyd-Williams, Arshad Jamal, Usman Butt
Abstract:
This study aims to investigate the impact of data leak of M&S customers on digital communities. Modern businesses are using digital communities as an important public relations tool for marketing purposes. This form of communication helps companies to build better relationship with their customers which also act as another source of information. The communication between the customers and the organizations is not regulated so users may post positive and negative comments. There are new platforms being developed on a daily basis and it is very crucial for the businesses to not only get themselves familiar with those but also know how to reach their existing and perspective consumers. The driving force of marketing and communication in modern businesses is the digital communities and these are continuously increasing and developing. This phenomenon is changing the way marketing is conducted. The current research has discussed the implications on M&S business performance since the data was exploited on digital communities; users contacted M&S and raised the security concerns. M&S closed down its website for few hours to try to resolve the issue. The next day M&S made a public apology about this incidence. This information was proliferated on various digital communities and it has impacted negatively on M&S brand name, sales and customers. The content analysis approach is being used to collect qualitative data from 100 digital bloggers including social media communities such as Facebook and Twitter. The results and finding provide useful new insights into the nature and form of security concerns of digital users. Findings have theoretical and practical implications. This research will showcase a large corporation utilizing various digital community platforms and can serve as a model for future organizations.Keywords: Digital, communities, performance, dissemination, implications, data, exploitation
Procedia PDF Downloads 40222750 Development and Validation of Work Movement Task Analysis: Part 1
Authors: Mohd Zubairy Bin Shamsudin
Abstract:
Work-related Musculoskeletal Disorder (WMSDs) is one of the occupational health problems encountered by workers over the world. In Malaysia, there is increasing in trend over the years, particularly in the manufacturing sectors. Current method to observe workplace WMSDs is self-report questionnaire, observation and direct measurement. Observational method is most frequently used by the researcher and practitioner because of the simplified, quick and versatile when it applies to the worksite. However, there are some limitations identified e.g. some approach does not cover a wide spectrum of biomechanics activity and not sufficiently sensitive to assess the actual risks. This paper elucidates the development of Work Movement Task Analysis (WMTA), which is an observational tool for industrial practitioners’ especially untrained personnel to assess WMSDs risk factors and provide a basis for suitable intervention. First stage of the development protocol involved literature reviews, practitioner survey, tool validation and reliability. A total of six themes/comments were received in face validity stage. New revision of WMTA consisted of four sections of postural (neck, back, shoulder, arms, and legs) and associated risk factors; movement, load, coupling and basic environmental factors (lighting, noise, odorless, heat and slippery floor). For inter-rater reliability study shows substantial agreement among rater with K = 0.70. Meanwhile, WMTA validation shows significant association between WMTA score and self-reported pain or discomfort for the back, shoulder&arms and knee&legs with p<0.05. This tool is expected to provide new workplace ergonomic observational tool to assess WMSDs for the next stage of the case study.Keywords: assessment, biomechanics, musculoskeletal disorders, observational tools
Procedia PDF Downloads 46922749 Analysis of Factors Affecting the Number of Infant and Maternal Mortality in East Java with Geographically Weighted Bivariate Generalized Poisson Regression Method
Authors: Luh Eka Suryani, Purhadi
Abstract:
Poisson regression is a non-linear regression model with response variable in the form of count data that follows Poisson distribution. Modeling for a pair of count data that show high correlation can be analyzed by Poisson Bivariate Regression. Data, the number of infant mortality and maternal mortality, are count data that can be analyzed by Poisson Bivariate Regression. The Poisson regression assumption is an equidispersion where the mean and variance values are equal. However, the actual count data has a variance value which can be greater or less than the mean value (overdispersion and underdispersion). Violations of this assumption can be overcome by applying Generalized Poisson Regression. Characteristics of each regency can affect the number of cases occurred. This issue can be overcome by spatial analysis called geographically weighted regression. This study analyzes the number of infant mortality and maternal mortality based on conditions in East Java in 2016 using Geographically Weighted Bivariate Generalized Poisson Regression (GWBGPR) method. Modeling is done with adaptive bisquare Kernel weighting which produces 3 regency groups based on infant mortality rate and 5 regency groups based on maternal mortality rate. Variables that significantly influence the number of infant and maternal mortality are the percentages of pregnant women visit health workers at least 4 times during pregnancy, pregnant women get Fe3 tablets, obstetric complication handled, clean household and healthy behavior, and married women with the first marriage age under 18 years.Keywords: adaptive bisquare kernel, GWBGPR, infant mortality, maternal mortality, overdispersion
Procedia PDF Downloads 160