Search results for: crow search algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5207

Search results for: crow search algorithm

1097 Landsat 8-TIRS NEΔT at Kīlauea Volcano and the Active East Rift Zone, Hawaii

Authors: Flora Paganelli

Abstract:

The radiometric performance of remotely sensed images is important for volcanic monitoring. The Thermal Infrared Sensor (TIRS) on-board Landsat 8 was designed with specific requirements in regard to the noise-equivalent change in temperature (NEΔT) at ≤ 0.4 K at 300 K for the two thermal infrared bands B10 and B11. This study investigated the on-orbit NEΔT of the TIRS two bands from a scene-based method using clear-sky images over the volcanic activity of Kīlauea Volcano and the active East Rift Zone (Hawaii), in order to optimize the use of TIRS data. Results showed that the NEΔTs of the two bands exceeded the design specification by an order of magnitude at 300 K. Both separate bands and split window algorithm were examined to estimate the effect of NEΔT on the land surface temperature (LST) retrieval, and NEΔT contribution to the final LST error. These results were also useful in the current efforts to assess the requirements for volcanology research campaign using the Hyperspectral Infrared Imager (HyspIRI) whose airborne prototype MODIS/ASTER instruments is plan to be flown by NASA as a single campaign to the Hawaiian Islands in support of volcanology and coastal area monitoring in 2016.

Keywords: landsat 8, radiometric performance, thermal infrared sensor (TIRS), volcanology

Procedia PDF Downloads 241
1096 Multi Object Tracking for Predictive Collision Avoidance

Authors: Bruk Gebregziabher

Abstract:

The safe and efficient operation of Autonomous Mobile Robots (AMRs) in complex environments, such as manufacturing, logistics, and agriculture, necessitates accurate multiobject tracking and predictive collision avoidance. This paper presents algorithms and techniques for addressing these challenges using Lidar sensor data, emphasizing ensemble Kalman filter. The developed predictive collision avoidance algorithm employs the data provided by lidar sensors to track multiple objects and predict their velocities and future positions, enabling the AMR to navigate safely and effectively. A modification to the dynamic windowing approach is introduced to enhance the performance of the collision avoidance system. The overall system architecture encompasses object detection, multi-object tracking, and predictive collision avoidance control. The experimental results, obtained from both simulation and real-world data, demonstrate the effectiveness of the proposed methods in various scenarios, which lays the foundation for future research on global planners, other controllers, and the integration of additional sensors. This thesis contributes to the ongoing development of safe and efficient autonomous systems in complex and dynamic environments.

Keywords: autonomous mobile robots, multi-object tracking, predictive collision avoidance, ensemble Kalman filter, lidar sensors

Procedia PDF Downloads 84
1095 Visualization of Corrosion at Plate-Like Structures Based on Ultrasonic Wave Propagation Images

Authors: Aoqi Zhang, Changgil Lee Lee, Seunghee Park

Abstract:

A non-contact nondestructive technique using laser-induced ultrasonic wave generation method was applied to visualize corrosion damage at aluminum alloy plate structures. The ultrasonic waves were generated by a Nd:YAG pulse laser, and a galvanometer-based laser scanner was used to scan specific area at a target structure. At the same time, wave responses were measured at a piezoelectric sensor which was attached on the target structure. The visualization of structural damage was achieved by calculating logarithmic values of root mean square (RMS). Damage-sensitive feature was defined as the scattering characteristics of the waves that encounter corrosion damage. The corroded damage was artificially formed by hydrochloric acid. To observe the effect of the location where the corrosion was formed, the both sides of the plate were scanned with same scanning area. Also, the effect on the depth of the corrosion was considered as well as the effect on the size of the corrosion. The results indicated that the damages were successfully visualized for almost cases, whether the damages were formed at the front or back side. However, the damage could not be clearly detected because the depth of the corrosion was shallow. In the future works, it needs to develop signal processing algorithm to more clearly visualize the damage by improving signal-to-noise ratio.

Keywords: non-destructive testing, corrosion, pulsed laser scanning, ultrasonic waves, plate structure

Procedia PDF Downloads 300
1094 The 10-year Risk of Major Osteoporotic and Hip Fractures Among Indonesian People Living with HIV

Authors: Iqbal Pramukti, Mamat Lukman, Hasniatisari Harun, Kusman Ibrahim

Abstract:

Introduction: People living with HIV had a higher risk of osteoporotic fracture than the general population. The purpose of this study was to predict the 10-year risk of fracture among people living with HIV (PLWH) using FRAX™ and to identify characteristics related to the fracture risk. Methodology: This study consisted of 75 subjects. The ten-year probability of major osteoporotic fractures (MOF) and hip fractures was assessed using the FRAX™ algorithm. A cross-tabulation was used to identify the participant’s characteristics related to fracture risk. Results: The overall mean 10-year probability of fracture was 2.4% (1.7) for MOF and 0.4% (0.3) for hip fractures. For MOF score, participants with parents’ hip fracture history, smoking behavior and glucocorticoid use showed a higher MOF score than those who were not (3.1 vs. 2.5; 4.6 vs 2.5; and 3.4 vs 2.5, respectively). For HF score, participants with parents’ hip fracture history, smoking behavior and glucocorticoid use also showed a higher HF score than those who were not (0.5 vs. 0.3; 0.8 vs. 0.3; and 0.5 vs. 0.3, respectively). Conclusions: The 10-year risk of fracture was higher among PLWH with several factors, including the parent’s hip. Fracture history, smoking behavior and glucocorticoid used. Further analysis on determining factors using multivariate regression analysis with a larger sample size is required to confirm the factors associated with the high fracture risk.

Keywords: HIV, PLWH, osteoporotic fractures, hip fractures, 10-year risk of fracture, FRAX

Procedia PDF Downloads 49
1093 The Role and Effects of Communication on Occupational Safety: A Review

Authors: Pieter A. Cornelissen, Joris J. Van Hoof

Abstract:

The interest in improving occupational safety started almost simultaneously with the beginning of the Industrial Revolution. Yet, it was not until the late 1970’s before the role of communication was considered in scientific research regarding occupational safety. In recent years the importance of communication as a means to improve occupational safety has increased. Not only as communication might have a direct effect on safety performance and safety outcomes, but also as it can be viewed as a major component of other important safety-related elements (e.g., training, safety meetings, leadership). And while safety communication is an increasingly important topic in research, its operationalization is often vague and differs among studies. This is not only problematic when comparing results, but also in applying these results to practice and the work floor. By means of an in-depth analysis—building on an existing dataset—this review aims to overcome these problems. The initial database search yielded 25.527 articles, which was reduced to a research corpus of 176 articles. Focusing on the 37 articles of this corpus that addressed communication (related to safety outcomes and safety performance), the current study will provide a comprehensive overview of the role and effects of safety communication and outlines the conditions under which communication contributes to a safer work environment. The study shows that in literature a distinction is commonly made between safety communication (i.e., the exchange or dissemination of safety-related information) and feedback (i.e. a reactive form of communication). And although there is a consensus among researchers that both communication and feedback positively affect safety performance, there is a debate about the directness of this relationship. Whereas some researchers assume a direct relationship between safety communication and safety performance, others state that this relationship is mediated by safety climate. One of the key findings is that despite the strongly present view that safety communication is a formal and top-down safety management tool, researchers stress the importance of open communication that encourages and allows employees to express their worries, experiences, views, and share information. This raises questions with regard to other directions (e.g., bottom-up, horizontal) and forms of communication (e.g., informal). The current review proposes a framework to overcome the often vague and different operationalizations of safety communication. The proposed framework can be used to characterize safety communication in terms of stakeholders, direction, and characteristics of communication (e.g., medium usage).

Keywords: communication, feedback, occupational safety, review

Procedia PDF Downloads 302
1092 Climate Species Lists: A Combination of Methods for Urban Areas

Authors: Andrea Gion Saluz, Tal Hertig, Axel Heinrich, Stefan Stevanovic

Abstract:

Higher temperatures, seasonal changes in precipitation, and extreme weather events are increasingly affecting trees. To counteract the increasing challenges of urban trees, strategies are increasingly being sought to preserve existing tree populations on the one hand and to prepare for the coming years on the other. One such strategy lies in strategic climate tree species selection. The search is on for species or varieties that can cope with the new climatic conditions. Many efforts in German-speaking countries deal with this in detail, such as the tree lists of the German Conference of Garden Authorities (GALK), the project Stadtgrün 2021, or the instruments of the Climate Species Matrix by Prof. Dr. Roloff. In this context, different methods for a correct species selection are offered. One possibility is to select certain physiological attributes that indicate the climate resilience of a species. To calculate the dissimilarity of the present climate of different geographic regions in relation to the future climate of any city, a weighted (standardized) Euclidean distance (SED) for seasonal climate values is calculated for each region of the Earth. The calculation was performed in the QGIS geographic information system, using global raster datasets on monthly climate values in the 1981-2010 standard period. Data from a European forest inventory were used to identify tree species growing in the calculated analogue climate regions. The inventory used is the compilation of georeferenced point data at a 1 km grid resolution on the occurrence of tree species in 21 European countries. In this project, the results of the methodological application are shown for the city of Zurich for the year 2060. In the first step, analog climate regions based on projected climate values for the measuring station Kirche Fluntern (ZH) were searched for. In a further step, the methods mentioned above were applied to generate tree species lists for the city of Zurich. These lists were then qualitatively evaluated with respect to the suitability of the different tree species for the Zurich area to generate a cleaned and thus usable list of possible future tree species.

Keywords: climate change, climate region, climate tree, urban tree

Procedia PDF Downloads 108
1091 Determining the Presence of Brucella abortus Antibodies by the Indirect Elisa Method in Bovine Bulk Milk and Risk Factors in the Peri-Urban Zones of Bamenda Cameroon

Authors: Cha-ah C. N., Awah N. J., Mouiche M. M. M.

Abstract:

Brucellosis is a neglected zoonotic disease of animals and man caused by bacteria of genus Brucella. Though eradicated in some parts of the world, it remains endemic in sub-Saharan Africa including Cameroon. The aim of this study was to contribute to the epidemiology of brucellosis in the North-West region of Cameroon by detecting the presence of anti-Brucella antibodies in bovine bulk milk as this serves as a route of transmission from animals to man. A cross sectional study was conducted to determine the prevalence of Brucella abortus antibodies in bovine bulk milk in the peri-urban zones of Bamenda. One hundred bulk milk samples were collected from 100 herds and tested by milk I-ELISA test. The conducted study revealed the presence of anti-Brucella abortus antibodies in bovine bulk milk. The study revealed that bovine brucellosis is widespread in animal production systems in this area. The animal infection pressure in these systems has remained strong due to movement of livestock in search of pasture, co-existence of animal husbandry, communal sharing of grazing land, concentration of animals around water points, abortions in production systems, locality of production systems and failure to quarantine upon introduction of new animals. The circulation of Brucella abortus antibodies in cattle farms recorded in the study revealed potential public health implication and suggest economic importance of brucellosis to the cattle industry in the Northwest region of Cameroon. The risk for re-emergence and transmission of brucellosis is evident as a result of the co-existence of animal husbandry activities and social-cultural activities that promote brucellosis transmission. Well-designed countrywide, evidence-based studies of brucellosis are needed. These could help to generate reliable frequency and potential impact estimates, to identify Brucella reservoirs, and to propose control strategies of proven efficacy.

Keywords: brucellosis, bulk milk, northwest region Cameroon, prevalence

Procedia PDF Downloads 147
1090 Contribution of Artificial Intelligence in the Studies of Natural Compounds Against SARS-COV-2

Authors: Salah Belaidi

Abstract:

We have carried out extensive and in-depth research to search for bioactive compounds based on Algerian plants. A selection of 50 ligands from Algerian medicinal plants. Several compounds used in herbal medicine have been drawn using Marvin Sketch software. We determined the three-dimensional structures of the ligands with the MMFF94 force field in order to prepare these ligands for molecular docking. The 3D protein structure of the SARS-CoV-2 main protease was taken from the Protein Data Bank. We used AutoDockVina software to apply molecular docking. The hydrogen atoms were added during the molecular docking process, and all the twist bonds of the ligands were added using the (ligand) module in the AutoDock software. The COVID-19 main protease (Mpro) is a key enzyme that plays a vital role in viral transcription and mediating replication, so it is a very attractive drug target for SARS-CoV-2. In this work, an evaluation was carried out on the biologically active compounds present in these selected medicinal plants as effective inhibitors of the protease enzyme of COVID-19, with an in-depth computational calculation of the molecular docking using the Autodock Vina software. The top 7 ligands: Phloroglucinol, Afzelin, Myricetin-3-O- rutinosidTricin 7-neohesperidoside, Silybin, Silychristinthat and Kaempferol are selected among the 50 molecules studied which are Algerian medicinal plants, whose selection is based on the best binding energy which is relatively low compared to the reference molecule with binding affinities of -9.3, -9.3, -9, -8.9, -8 .5, 8.3 and -8.3 kcal mol-1 respectively. Then, we analyzed the ADME properties of the best7 ligands using the web server SwissADME. Two ligands (Silybin, Silychristin) were found to be potential candidates for the discovery and design of novel drug inhibitors of the protease enzyme of SARS-CoV-2. The stability of the two ligands in complexing with the Mpro protease was validated by molecular dynamics simulation; they revealed a stable trajectory in both techniques, RMSD and RMSF, by showing molecular properties with coherent interactions in molecular dynamics simulations. Finally, we conclude that the Silybin ligand forms a more stable complex with the Mpro protease compared to the Silychristin ligand.

Keywords: COVID-19, medicinal plants, molecular docking, ADME properties, molecular dynamics

Procedia PDF Downloads 35
1089 River Stage-Discharge Forecasting Based on Multiple-Gauge Strategy Using EEMD-DWT-LSSVM Approach

Authors: Farhad Alizadeh, Alireza Faregh Gharamaleki, Mojtaba Jalilzadeh, Houshang Gholami, Ali Akhoundzadeh

Abstract:

This study presented hybrid pre-processing approach along with a conceptual model to enhance the accuracy of river discharge prediction. In order to achieve this goal, Ensemble Empirical Mode Decomposition algorithm (EEMD), Discrete Wavelet Transform (DWT) and Mutual Information (MI) were employed as a hybrid pre-processing approach conjugated to Least Square Support Vector Machine (LSSVM). A conceptual strategy namely multi-station model was developed to forecast the Souris River discharge more accurately. The strategy used herein was capable of covering uncertainties and complexities of river discharge modeling. DWT and EEMD was coupled, and the feature selection was performed for decomposed sub-series using MI to be employed in multi-station model. In the proposed feature selection method, some useless sub-series were omitted to achieve better performance. Results approved efficiency of the proposed DWT-EEMD-MI approach to improve accuracy of multi-station modeling strategies.

Keywords: river stage-discharge process, LSSVM, discrete wavelet transform, Ensemble Empirical Decomposition Mode, multi-station modeling

Procedia PDF Downloads 175
1088 A Review of Lexical Retrieval Intervention in Primary Progressive Aphasia and Alzheimer's Disease: Mechanisms of Change, Cognition, and Generalisation

Authors: Ashleigh Beales, Anne Whitworth, Jade Cartwright

Abstract:

Background: While significant benefits of lexical retrieval intervention are evident within the Primary Progressive Aphasia (PPA) and Alzheimer’s disease (AD) literature, an understanding of the mechanisms that underlie change or improvement is limited. Change mechanisms have been explored in the non-progressive post-stroke literature that may offer insight into how interventions affect change with progressive language disorders. The potential influences of cognitive factors may also play a role here, interacting with the aims of intervention. Exploring how such processes have been applied is likely to grow our understanding of how interventions have, or have not, been effective, and how and why generalisation is likely, or not, to occur. Aims: This review of the literature aimed to (1) investigate the proposed mechanisms of change which underpin lexical interventions, mapping the PPA and AD lexical retrieval literature to theoretical accounts of mechanisms that underlie change within the broader intervention literature, (2) identify whether and which nonlinguistic cognitive functions have been engaged in intervention with these populations and any proposed influence, and (3) explore evidence of linguistic generalisation, with particular reference to change mechanisms employed in interventions. Main contribution: A search of Medline, PsycINFO, and CINAHL identified 36 articles that reported data for individuals with PPA or AD following lexical retrieval intervention. A review of the mechanisms of change identified 10 studies that used stimulation, 21 studies utilised relearning, three studies drew on reorganisation, and two studies used cognitive-relay. Significant treatment gains, predominantly based on linguistic performance measures, were reported for all client groups for each of the proposed mechanisms. Reorganisation and cognitive-relay change mechanisms were only targeted in PPA. Eighteen studies incorporated nonlinguistic cognitive functions in intervention; these were limited to autobiographical memory (16 studies), episodic memory (three studies), or both (one study). Linguistic generalisation outcomes were inconsistently reported in PPA and AD studies. Conclusion: This review highlights that individuals with PPA and AD may benefit from lexical retrieval intervention, irrespective of the mechanism of change. Thorough application of a theory of intervention is required to gain a greater understanding of the change mechanisms, as well as the interplay of nonlinguistic cognitive functions.

Keywords: Alzheimer's disease, lexical retrieval, mechanisms of change, primary progressive aphasia

Procedia PDF Downloads 203
1087 Consumer Welfare in the Platform Economy

Authors: Prama Mukhopadhyay

Abstract:

Starting from transport to food, today’s world platform economy and digital markets have taken over almost every sphere of consumers’ lives. Sellers and buyers are getting connected through platforms, which is acting as an intermediary. It has made consumer’s life easier in terms of time, price, choice and other factors. Having said that, there are several concerns regarding platforms. There are competition law concerns like unfair pricing, deep discounting by the platforms which affect the consumer welfare. Apart from that, the biggest problem is lack of transparency with respect to the business models, how it operates, price calculation, etc. In most of the cases, consumers are unaware of how their personal data are being used. In most of the cases, they are unaware of how algorithm uses their personal data to determine the price of the product or even to show the relevant products using their previous searches. Using personal or non-personal data without consumer’s consent is a huge legal concern. In addition to this, another major issue lies with the question of liability. If a dispute arises, who will be responsible? The seller or the platform? For example, if someone ordered food through a food delivery app and the food was bad, in this situation who will be liable: the restaurant or the food delivery platform? In this paper, the researcher tries to examine the legal concern related to platform economy from the consumer protection and consumer welfare perspectives. The paper analyses the cases from different jurisdictions and approach taken by the judiciaries. The author compares the existing legislation of EU, US and other Asian Countries and tries to highlight the best practices.

Keywords: competition, consumer, data, platform

Procedia PDF Downloads 144
1086 A Method for Identifying Unusual Transactions in E-commerce Through Extended Data Flow Conformance Checking

Authors: Handie Pramana Putra, Ani Dijah Rahajoe

Abstract:

The proliferation of smart devices and advancements in mobile communication technologies have permeated various facets of life with the widespread influence of e-commerce. Detecting abnormal transactions holds paramount significance in this realm due to the potential for substantial financial losses. Moreover, the fusion of data flow and control flow assumes a critical role in the exploration of process modeling and data analysis, contributing significantly to the accuracy and security of business processes. This paper introduces an alternative approach to identify abnormal transactions through a model that integrates both data and control flows. Referred to as the Extended Data Petri net (DPNE), our model encapsulates the entire process, encompassing user login to the e-commerce platform and concluding with the payment stage, including the mobile transaction process. We scrutinize the model's structure, formulate an algorithm for detecting anomalies in pertinent data, and elucidate the rationale and efficacy of the comprehensive system model. A case study validates the responsive performance of each system component, demonstrating the system's adeptness in evaluating every activity within mobile transactions. Ultimately, the results of anomaly detection are derived through a thorough and comprehensive analysis.

Keywords: database, data analysis, DPNE, extended data flow, e-commerce

Procedia PDF Downloads 56
1085 A Development of Holonomic Mobile Robot Using Fuzzy Multi-Layered Controller

Authors: Seungwoo Kim, Yeongcheol Cho

Abstract:

In this paper, a holonomic mobile robot is designed in omnidirectional wheels and an adaptive fuzzy controller is presented for its precise trajectories. A kind of adaptive controller based on fuzzy multi-layered algorithm is used to solve the big parametric uncertainty of motor-controlled dynamic system of 3-wheels omnidirectional mobile robot. The system parameters such as a tracking force are so time-varying due to the kinematic structure of omnidirectional wheels. The fuzzy adaptive control method is able to solve the problems of classical adaptive controller and conventional fuzzy adaptive controllers. The basic idea of new adaptive control scheme is that an adaptive controller can be constructed with parallel combination of robust controllers. This new adaptive controller uses a fuzzy multi-layered architecture which has several independent fuzzy controllers in parallel, each with different robust stability area. Out of several independent fuzzy controllers, the most suited one is selected by a system identifier which observes variations in the controlled system parameter. This paper proposes a design procedure which can be carried out mathematically and systematically from the model of a controlled system. Finally, the good performance of a holonomic mobile robot is confirmed through live tests of the tracking control task.

Keywords: fuzzy adaptive control, fuzzy multi-layered controller, holonomic mobile robot, omnidirectional wheels, robustness and stability.

Procedia PDF Downloads 359
1084 Power System Stability Enhancement Using Self Tuning Fuzzy PI Controller for TCSC

Authors: Salman Hameed

Abstract:

In this paper, a self-tuning fuzzy PI controller (STFPIC) is proposed for thyristor controlled series capacitor (TCSC) to improve power system dynamic performance. In a STFPIC controller, the output scaling factor is adjusted on-line by an updating factor (α). The value of α is determined from a fuzzy rule-base defined on error (e) and change of error (Δe) of the controlled variable. The proposed self-tuning controller is designed using a very simple control rule-base and the most natural and unbiased membership functions (MFs) (symmetric triangles with equal base and 50% overlap with neighboring MFs). The comparative performances of the proposed STFPIC and the standard fuzzy PI controller (FPIC) have been investigated on a multi-machine power system (namely, 4 machine two area system) through detailed non-linear simulation studies using MATLAB/SIMULINK. From the simulation studies it has been found out that for damping oscillations, the performance of the proposed STFPIC is better than that obtained by the standard FPIC. Moreover, the proposed STFPIC as well as the FPIC have been found to be quite effective in damping oscillations over a wide range of operating conditions and are quite effective in enhancing the power carrying capability of the power system significantly.

Keywords: genetic algorithm, power system stability, self-tuning fuzzy controller, thyristor controlled series capacitor

Procedia PDF Downloads 423
1083 Data and Model-based Metamodels for Prediction of Performance of Extended Hollo-Bolt Connections

Authors: M. Cabrera, W. Tizani, J. Ninic, F. Wang

Abstract:

Open section beam to concrete-filled tubular column structures has been increasingly utilized in construction over the past few decades due to their enhanced structural performance, as well as economic and architectural advantages. However, the use of this configuration in construction is limited due to the difficulties in connecting the structural members as there is no access to the inner part of the tube to install standard bolts. Blind-bolted systems are a relatively new approach to overcome this limitation as they only require access to one side of the tubular section to tighten the bolt. The performance of these connections in concrete-filled steel tubular sections remains uncharacterized due to the complex interactions between concrete, bolt, and steel section. Over the last years, research in structural performance has moved to a more sophisticated and efficient approach consisting of machine learning algorithms to generate metamodels. This method reduces the need for developing complex, and computationally expensive finite element models, optimizing the search for desirable design variables. Metamodels generated by a data fusion approach use numerical and experimental results by combining multiple models to capture the dependency between the simulation design variables and connection performance, learning the relations between different design parameters and predicting a given output. Fully characterizing this connection will transform high-rise and multistorey construction by means of the introduction of design guidance for moment-resisting blind-bolted connections, which is currently unavailable. This paper presents a review of the steps taken to develop metamodels generated by means of artificial neural network algorithms which predict the connection stress and stiffness based on the design parameters when using Extended Hollo-Bolt blind bolts. It also provides consideration of the failure modes and mechanisms that contribute to the deformability as well as the feasibility of achieving blind-bolted rigid connections when using the blind fastener.

Keywords: blind-bolted connections, concrete-filled tubular structures, finite element analysis, metamodeling

Procedia PDF Downloads 158
1082 Motion Performance Analyses and Trajectory Planning of the Movable Leg-Foot Lander

Authors: Shan Jia, Jinbao Chen, Jinhua Zhou, Jiacheng Qian

Abstract:

In response to the functional limitations of the fixed landers, those are to expand the detection range by the use of wheeled rovers with unavoidable path-repeatability in deep space exploration currently, a movable lander based on the leg-foot walking mechanism is presented. Firstly, a quadruped landing mechanism based on pushrod-damping is proposed. The configuration is of the bionic characteristics such as hip, knee and ankle joints, and the multi-function main/auxiliary buffers based on the crumple-energy absorption and screw-nut mechanism. Secondly, the workspace of the end of the leg-foot mechanism is solved by Monte Carlo method, and the key points on the desired trajectory of the end of the leg-foot mechanism are fitted by cubic spline curve. Finally, an optimal time-jerk trajectory based on weight coefficient is planned and analyzed by an adaptive genetic algorithm (AGA). The simulation results prove the rationality and stability of walking motion of the movable leg-foot lander in the star catalogue. In addition, this research can also provide a technical solution integrating of soft-landing, large-scale inspection and material transfer for future star catalogue exploration, and can even serve as the technical basis for developing the reusable landers.

Keywords: motion performance, trajectory planning, movable, leg-foot lander

Procedia PDF Downloads 139
1081 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks

Authors: Yao-Hong Tsai

Abstract:

Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.

Keywords: unmanned aerial vehicle, object tracking, deep learning, collision avoidance

Procedia PDF Downloads 160
1080 Improved Intracellular Protein Degradation System for Rapid Screening and Quantitative Study of Essential Fungal Proteins in Biopharmaceutical Development

Authors: Patarasuda Chaisupa, R. Clay Wright

Abstract:

The selection of appropriate biomolecular targets is a crucial aspect of biopharmaceutical development. The Auxin-Inducible Degron Degradation (AID) technology has demonstrated remarkable potential in efficiently and rapidly degrading target proteins, thereby enabling the identification and acquisition of drug targets. The AID system also offers a viable method to deplete specific proteins, particularly in cases where the degradation pathway has not been exploited or when the adaptation of proteins, including the cell environment, occurs to compensate for the mutation or gene knockout. In this study, we have engineered an improved AID system tailored to deplete proteins of interest. This AID construct combines the auxin-responsive E3 ubiquitin ligase binding domain, AFB2, and the substrate degron, IAA17, fused to the target genes. Essential genes of fungi with the lowest percent amino acid similarity to human and plant orthologs, according to the Basic Local Alignment Search Tool (BLAST), were cloned into the AID construct in S. cerevisiae (AID-tagged strains) using a modular yeast cloning toolkit for multipart assembly and direct genetic modification. Each E3 ubiquitin ligase and IAA17 degron was fused to a fluorescence protein, allowing for real-time monitoring of protein levels in response to different auxin doses via cytometry. Our AID system exhibited high sensitivity, with an EC50 value of 0.040 µM (SE = 0.016) for AFB2, enabling the specific promotion of IAA17::target protein degradation. Furthermore, we demonstrate how this improved AID system enhances quantitative functional studies of various proteins in fungi. The advancements made in auxin-inducible protein degradation in this study offer a powerful approach to investigating critical target protein viability in fungi, screening protein targets for drugs, and regulating intracellular protein abundance, thus revolutionizing the study of protein function underlying a diverse range of biological processes.

Keywords: synthetic biology, bioengineering, molecular biology, biotechnology

Procedia PDF Downloads 92
1079 Influence of Solenoid Configuration on Electromagnetic Acceleration of Plunger

Authors: Shreyansh Bharadwaj, Raghavendra Kollipara, Sijoy C. D., R. K. Mittal

Abstract:

Utilizing the Lorentz force to propel an electrically conductive plunger through a solenoid represents a fundamental application in electromagnetism. The parameters of the solenoid significantly influence the force exerted on the plunger, impacting its response. A parametric study has been done to understand the effect of these parameters on the force acting on the plunger. This study is done to determine the most optimal combination of parameters to obtain the fast response. Analysis has been carried out using an algorithm capable of simulating the scenario of a plunger undergoing acceleration within a solenoid. Authors have conducted an analysis focusing on several key configuration parameters of the solenoid. These parameters include the inter-layer gap (in the case of a multi-turn solenoid), different conductor diameters, varying numbers of turns, and diverse numbers of layers. Primary objective of this paper is to discern how alterations in these parameters affect the force applied to the plunger. Through extensive numerical simulations, a dataset has been generated and utilized to construct informative plots. These plots provide visual representations of the relationships between the solenoid configuration parameters and the resulting force exerted on the plunger, which can further be used to deduce scaling laws. This research endeavors to offer valuable insights into optimizing solenoid configurations for enhanced electromagnetic acceleration, thereby contributing to advancements in electromagnetic propulsion technology.

Keywords: Lorentz force, solenoid configuration, electromagnetic acceleration, parametric analysis, simulation

Procedia PDF Downloads 47
1078 Time/Temperature-Dependent Finite Element Model of Laminated Glass Beams

Authors: Alena Zemanová, Jan Zeman, Michal Šejnoha

Abstract:

The polymer foil used for manufacturing of laminated glass members behaves in a viscoelastic manner with temperature dependence. This contribution aims at incorporating the time/temperature-dependent behavior of interlayer to our earlier elastic finite element model for laminated glass beams. The model is based on a refined beam theory: each layer behaves according to the finite-strain shear deformable formulation by Reissner and the adjacent layers are connected via the Lagrange multipliers ensuring the inter-layer compatibility of a laminated unit. The time/temperature-dependent behavior of the interlayer is accounted for by the generalized Maxwell model and by the time-temperature superposition principle due to the Williams, Landel, and Ferry. The resulting system is solved by the Newton method with consistent linearization and the viscoelastic response is determined incrementally by the exponential algorithm. By comparing the model predictions against available experimental data, we demonstrate that the proposed formulation is reliable and accurately reproduces the behavior of the laminated glass units.

Keywords: finite element method, finite-strain Reissner model, Lagrange multipliers, generalized Maxwell model, laminated glass, Newton method, Williams-Landel-Ferry equation

Procedia PDF Downloads 431
1077 Children of Quarantine: A Post COVID-19 Mental Health Dilemma

Authors: Salman Abdul Majeed, Vidur Solanki, Ruqiya Shama Tareen

Abstract:

BACKGROUND: The COVID-19 pandemic has affected the way of living as we have known for all strata of society. While disease containment measures imposed by governmental agencies have been instrumental in controlling the spread of the virus, it has had profound collateral impacts on all populations. However, the disruption caused in the lives of one segment of population has been far more damaging than most others: the emotional wellbeing of our child and adolescent populations. This impact was even more pronounced in children who already suffered from neurodevelopmental or psychiatric disorders. In particular, school closures have not only led to profound social isolation, but also negative impacts on normal developmental opportunities and interruptions in mental health services obtained through school systems. It is too soon to understand the full impacts of quarantine, isolation, stress of social detachment and fear of pandemic, but we have started to see the devastating impact on C&A already. This review intends to shed light on the current understanding of psychiatric wellbeing of C&A during COVID-19 pandemic. METHOD: Literature search utilizing key words COVID-19 and children, quarantine and children, social isolation, Loneliness, pandemic stress and children, and mental health of children, disease containment measures was carried out. Over 200 articles were identified, out of which 81 articles were included in this review article. RESULTS: The disruption caused by COVID-19 in the lives of C&A is much more damaging and its impact is far reaching. The C&A ED visits for possible suicide attempts have jumped to 22.3% in 2020 and 39.1% during 2021. One study utilizing T1-weighted structural images, computed the thickness of cortical and subcortical structures including amygdala, hippocampus, and nucleus accumbens. The Peri-COVID group showed reduced cortical and subcortical thickness and more advanced brain aging compared to pre pandemic studies. CONCLUSION: Mental health resources for C&A remain under funded, neglected, and inaccessible to population that needs it most. Children with ongoing mental health disorders were impacted worst, along with those with predisposed biopsychosocial risk factors.

Keywords: COVID-19 and children, quarantine and children, social isolation, Loneliness, pandemic stress and children, disease containment measures, mental health of children

Procedia PDF Downloads 75
1076 An Automatic Speech Recognition of Conversational Telephone Speech in Malay Language

Authors: M. Draman, S. Z. Muhamad Yassin, M. S. Alias, Z. Lambak, M. I. Zulkifli, S. N. Padhi, K. N. Baharim, F. Maskuriy, A. I. A. Rahim

Abstract:

The performance of Malay automatic speech recognition (ASR) system for the call centre environment is presented. The system utilizes Kaldi toolkit as the platform to the entire library and algorithm used in performing the ASR task. The acoustic model implemented in this system uses a deep neural network (DNN) method to model the acoustic signal and the standard (n-gram) model for language modelling. With 80 hours of training data from the call centre recordings, the ASR system can achieve 72% of accuracy that corresponds to 28% of word error rate (WER). The testing was done using 20 hours of audio data. Despite the implementation of DNN, the system shows a low accuracy owing to the varieties of noises, accent and dialect that typically occurs in Malaysian call centre environment. This significant variation of speakers is reflected by the large standard deviation of the average word error rate (WERav) (i.e., ~ 10%). It is observed that the lowest WER (13.8%) was obtained from recording sample with a standard Malay dialect (central Malaysia) of native speaker as compared to 49% of the sample with the highest WER that contains conversation of the speaker that uses non-standard Malay dialect.

Keywords: conversational speech recognition, deep neural network, Malay language, speech recognition

Procedia PDF Downloads 322
1075 Speeding Up Lenia: A Comparative Study Between Existing Implementations and CUDA C++ with OpenGL Interop

Authors: L. Diogo, A. Legrand, J. Nguyen-Cao, J. Rogeau, S. Bornhofen

Abstract:

Lenia is a system of cellular automata with continuous states, space and time, which surprises not only with the emergence of interesting life-like structures but also with its beauty. This paper reports ongoing research on a GPU implementation of Lenia using CUDA C++ and OpenGL Interoperability. We demonstrate how CUDA as a low-level GPU programming paradigm allows optimizing performance and memory usage of the Lenia algorithm. A comparative analysis through experimental runs with existing implementations shows that the CUDA implementation outperforms the others by one order of magnitude or more. Cellular automata hold significant interest due to their ability to model complex phenomena in systems with simple rules and structures. They allow exploring emergent behavior such as self-organization and adaptation, and find applications in various fields, including computer science, physics, biology, and sociology. Unlike classic cellular automata which rely on discrete cells and values, Lenia generalizes the concept of cellular automata to continuous space, time and states, thus providing additional fluidity and richness in emerging phenomena. In the current literature, there are many implementations of Lenia utilizing various programming languages and visualization libraries. However, each implementation also presents certain drawbacks, which serve as motivation for further research and development. In particular, speed is a critical factor when studying Lenia, for several reasons. Rapid simulation allows researchers to observe the emergence of patterns and behaviors in more configurations, on bigger grids and over longer periods without annoying waiting times. Thereby, they enable the exploration and discovery of new species within the Lenia ecosystem more efficiently. Moreover, faster simulations are beneficial when we include additional time-consuming algorithms such as computer vision or machine learning to evolve and optimize specific Lenia configurations. We developed a Lenia implementation for GPU using the C++ and CUDA programming languages, and CUDA/OpenGL Interoperability for immediate rendering. The goal of our experiment is to benchmark this implementation compared to the existing ones in terms of speed, memory usage, configurability and scalability. In our comparison we focus on the most important Lenia implementations, selected for their prominence, accessibility and widespread use in the scientific community. The implementations include MATLAB, JavaScript, ShaderToy GLSL, Jupyter, Rust and R. The list is not exhaustive but provides a broad view of the principal current approaches and their respective strengths and weaknesses. Our comparison primarily considers computational performance and memory efficiency, as these factors are critical for large-scale simulations, but we also investigate the ease of use and configurability. The experimental runs conducted so far demonstrate that the CUDA C++ implementation outperforms the other implementations by one order of magnitude or more. The benefits of using the GPU become apparent especially with larger grids and convolution kernels. However, our research is still ongoing. We are currently exploring the impact of several software design choices and optimization techniques, such as convolution with Fast Fourier Transforms (FFT), various GPU memory management scenarios, and the trade-off between speed and accuracy using single versus double precision floating point arithmetic. The results will give valuable insights into the practice of parallel programming of the Lenia algorithm, and all conclusions will be thoroughly presented in the conference paper. The final version of our CUDA C++ implementation will be published on github and made freely accessible to the Alife community for further development.

Keywords: artificial life, cellular automaton, GPU optimization, Lenia, comparative analysis.

Procedia PDF Downloads 41
1074 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments

Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard

Abstract:

With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.

Keywords: activities of daily living, classification, internet of things, machine learning, prediction, smart home

Procedia PDF Downloads 357
1073 Optimal Design of Step-Stress Partially Life Test Using Multiply Censored Exponential Data with Random Removals

Authors: Showkat Ahmad Lone, Ahmadur Rahman, Ariful Islam

Abstract:

The major assumption in accelerated life tests (ALT) is that the mathematical model relating the lifetime of a test unit and the stress are known or can be assumed. In some cases, such life–stress relationships are not known and cannot be assumed, i.e. ALT data cannot be extrapolated to use condition. So, in such cases, partially accelerated life test (PALT) is a more suitable test to be performed for which tested units are subjected to both normal and accelerated conditions. This study deals with estimating information about failure times of items under step-stress partially accelerated life tests using progressive failure-censored hybrid data with random removals. The life data of the units under test is considered to follow exponential life distribution. The removals from the test are assumed to have binomial distributions. The point and interval maximum likelihood estimations are obtained for unknown distribution parameters and tampering coefficient. An optimum test plan is developed using the D-optimality criterion. The performances of the resulting estimators of the developed model parameters are evaluated and investigated by using a simulation algorithm.

Keywords: binomial distribution, d-optimality, multiple censoring, optimal design, partially accelerated life testing, simulation study

Procedia PDF Downloads 320
1072 Drying Kinects of Soybean Seeds

Authors: Amanda Rithieli Pereira Dos Santos, Rute Quelvia De Faria, Álvaro De Oliveira Cardoso, Anderson Rodrigo Da Silva, Érica Leão Fernandes Araújo

Abstract:

The study of the kinetics of drying has great importance for the mathematical modeling, allowing to know about the processes of transference of heat and mass between the products and to adjust dryers managing new technologies for these processes. The present work had the objective of studying the kinetics of drying of soybean seeds and adjusting different statistical models to the experimental data varying cultivar and temperature. Soybean seeds were pre-dried in a natural environment in order to reduce and homogenize the water content to the level of 14% (b.s.). Then, drying was carried out in a forced air circulation oven at controlled temperatures of 38, 43, 48, 53 and 58 ± 1 ° C, using two soybean cultivars, BRS 8780 and Sambaíba, until reaching a hygroscopic equilibrium. The experimental design was completely randomized in factorial 5 x 2 (temperature x cultivar) with 3 replicates. To the experimental data were adjusted eleven statistical models used to explain the drying process of agricultural products. Regression analysis was performed using the least squares Gauss-Newton algorithm to estimate the parameters. The degree of adjustment was evaluated from the analysis of the coefficient of determination (R²), the adjusted coefficient of determination (R² Aj.) And the standard error (S.E). The models that best represent the drying kinetics of soybean seeds are those of Midilli and Logarítmico.

Keywords: curve of drying seeds, Glycine max L., moisture ratio, statistical models

Procedia PDF Downloads 628
1071 An Unusual Cause of Electrocardiographic Artefact: Patient's Warming Blanket

Authors: Sanjay Dhiraaj, Puneet Goyal, Aditya Kapoor, Gaurav Misra

Abstract:

In electrocardiography, an ECG artefact is used to indicate something that is not heart-made. Although technological advancements have produced monitors with the potential of providing accurate information and reliable heart rate alarms, despite this, interference of the displayed electrocardiogram still occurs. These interferences can be from the various electrical gadgets present in the operating room or electrical signals from other parts of the body. Artefacts may also occur due to poor electrode contact with the body or due to machine malfunction. Knowing these artefacts is of utmost importance so as to avoid unnecessary and unwarranted diagnostic as well as interventional procedures. We report a case of ECG artefacts occurring due to patient warming blanket and its consequences. A 20-year-old male with a preoperative diagnosis of exstrophy epispadias complex was posted for surgery under epidural and general anaesthesia. Just after endotracheal intubation, we observed nonspecific ECG changes on the monitor. At a first glance, the monitor strip revealed broad QRs complexes suggesting a ventricular bigeminal rhythm. Closer analysis revealed these to be artefacts because although the complexes were looking broad on the first glance there was clear presence of normal sinus complexes which were immediately followed by 'broad complexes' or artefacts produced by some device or connection. These broad complexes were labeled as artefacts as they were originating in the absolute refractory period of the previous normal sinus beat. It would be physiologically impossible for the myocardium to depolarize so rapidly as to produce a second QRS complex. A search for the possible reason for the artefacts was made and after deepening the plane of anaesthesia, ruling out any possible electrolyte abnormalities, checking of ECG leads and its connections, changing monitors, checking all other monitoring connections, checking for proper grounding of anaesthesia machine and OT table, we found that after switching off the patient’s warming apparatus the rhythm returned to a normal sinus one and the 'broad complexes' or artefacts disappeared. As misdiagnosis of ECG artefacts may subject patients to unnecessary diagnostic and therapeutic interventions so a thorough knowledge of the patient and monitors allow for a quick interpretation and resolution of the problem.

Keywords: ECG artefacts, patient warming blanket, peri-operative arrhythmias, mobile messaging services

Procedia PDF Downloads 272
1070 A Low Cost Non-Destructive Grain Moisture Embedded System for Food Safety and Quality

Authors: Ritula Thakur, Babankumar S. Bansod, Puneet Mehta, S. Chatterji

Abstract:

Moisture plays an important role in storage, harvesting and processing of food grains and related agricultural products. It is an important characteristic of most agricultural products for maintenance of quality. Accurate knowledge of the moisture content can be of significant value in maintaining quality and preventing contamination of cereal grains. The present work reports the design and development of microcontroller based low cost non-destructive moisture meter, which uses complex impedance measurement method for moisture measurement of wheat using parallel plate capacitor arrangement. Moisture can conveniently be sensed by measuring the complex impedance using a small parallel-plate capacitor sensor filled with the kernels in-between the two plates of sensor, exciting the sensor at 30 KHz and 100 KHz frequencies. The effects of density and temperature variations were compensated by providing suitable compensations in the developed algorithm. The results were compared with standard dry oven technique and the developed method was found to be highly accurate with less than 1% error. The developed moisture meter is low cost, highly accurate, non-destructible method for determining the moisture of grains utilizing the fast computing capabilities of microcontroller.

Keywords: complex impedance, moisture content, electrical properties, safety of food

Procedia PDF Downloads 462
1069 Application of GA Optimization in Analysis of Variable Stiffness Composites

Authors: Nasim Fallahi, Erasmo Carrera, Alfonso Pagani

Abstract:

Variable angle tow describes the fibres which are curvilinearly steered in a composite lamina. Significantly, stiffness tailoring freedom of VAT composite laminate can be enlarged and enabled. Composite structures with curvilinear fibres have been shown to improve the buckling load carrying capability in contrast with the straight laminate composites. However, the optimal design and analysis of VAT are faced with high computational efforts due to the increasing number of variables. In this article, an efficient optimum solution has been used in combination with 1D Carrera’s Unified Formulation (CUF) to investigate the optimum fibre orientation angles for buckling analysis. The particular emphasis is on the LE-based CUF models, which provide a Lagrange Expansions to address a layerwise description of the problem unknowns. The first critical buckling load has been considered under simply supported boundary conditions. Special attention is lead to the sensitivity of buckling load corresponding to the fibre orientation angle in comparison with the results which obtain through the Genetic Algorithm (GA) optimization frame and then Artificial Neural Network (ANN) is applied to investigate the accuracy of the optimized model. As a result, numerical CUF approach with an optimal solution demonstrates the robustness and computational efficiency of proposed optimum methodology.

Keywords: beam structures, layerwise, optimization, variable stiffness

Procedia PDF Downloads 142
1068 Using Q-Learning to Auto-Tune PID Controller Gains for Online Quadcopter Altitude Stabilization

Authors: Y. Alrubyli

Abstract:

Unmanned Arial Vehicles (UAVs), and more specifically, quadcopters need to be stable during their flights. Altitude stability is usually achieved by using a PID controller that is built into the flight controller software. Furthermore, the PID controller has gains that need to be tuned to reach optimal altitude stabilization during the quadcopter’s flight. For that, control system engineers need to tune those gains by using extensive modeling of the environment, which might change from one environment and condition to another. As quadcopters penetrate more sectors, from the military to the consumer sectors, they have been put into complex and challenging environments more than ever before. Hence, intelligent self-stabilizing quadcopters are needed to maneuver through those complex environments and situations. Here we show that by using online reinforcement learning with minimal background knowledge, the altitude stability of the quadcopter can be achieved using a model-free approach. We found that by using background knowledge instead of letting the online reinforcement learning algorithm wander for a while to tune the PID gains, altitude stabilization can be achieved faster. In addition, using this approach will accelerate development by avoiding extensive simulations before applying the PID gains to the real-world quadcopter. Our results demonstrate the possibility of using the trial and error approach of reinforcement learning combined with background knowledge to achieve faster quadcopter altitude stabilization in different environments and conditions.

Keywords: reinforcement learning, Q-leanring, online learning, PID tuning, unmanned aerial vehicle, quadcopter

Procedia PDF Downloads 174