Search results for: interstitial fluid pressure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5646

Search results for: interstitial fluid pressure

1566 Classroom Management Practices of Hotel, Restaurant, and Institution Management Instructors

Authors: Diana Ruth Caga-Anan

Abstract:

Classroom management is a critical skill but the styles are constantly evolving. It is constantly under pressure particularly in the college education level due to diversity in student profiles, modes of delivery, and marketization of higher education. This study sought to analyze the extent of implementation of classroom management practices (CMPs) of the college instructors of the Hotel, Restaurant, and Institution Management of a premier university in the Philippines. It was also determined if their length of teaching affects their classroom management style. A questionnaire with sixteen 'evidenced-based' CMPs grouped into five critical features of classroom management, adopted from the literature search of Simonsen et al. (2008), was administered to 4 instructor-respondents and to their 88 students. Weighted mean scores of each of the CMPs revealed that there were differences between the instructors’ self-scores and their students’ ratings on their implementation of CMPs. The critical feature of classroom management 'actively engage students in observable ways' got the highest mean score, corresponding to 'always' from the instructors’ self-rating and 'frequently' from their students’ ratings. However, 'use a continuum of strategies to respond to inappropriate behaviors' got the lowest scores from both the instructors and their students corresponding only to 'occasionally'. Analysis of variance showed that the only CMP affected by the length of teaching is the practice of 'prompting students to respond'. Based on the findings, some recommendations for the instructors to improve on the critical feature where they scored low are discussed and suggestions are included for future research.

Keywords: classroom management, CMPs, critical features, evidence-based classroom management practices

Procedia PDF Downloads 163
1565 Gender Differences in Walking Capacity and Cardiovascular Regulation in Patients with Peripheral Arterial Disease

Authors: Gabriel Cucato, Marilia Correia, Wagner Domingues, Aline Palmeira, Paulo Longano, Nelson Wolosker, Raphael Ritti-Dias

Abstract:

Women with peripheral arterial disease (PAD) present lower walking capacity in comparison with men. However, whether cardiovascular regulation is also different between genders is unknown. Thus, the aim of this study was to compare walking capacity and cardiovascular regulation between men and women with PAD. A total of 23 women (66±7 yrs) and 31 men (64±9 yrs) were recruited. Patients performed a 6-minute test and the onset claudication distance and total walking distance were measured. Additionally, cardiovascular regulation was assessed by arterial stiffness (pulse wave velocity and augmentation index) and heart rate variability (frequency domain). Independent T test or Mann-Whitney U test were performed. In comparison with men, women present lower onset claudication distance (108±66m vs. 143±50m; P=0.032) and total walking distance (286±83m vs. 361±91 m, P=0.007). Regarding cardiovascular regulation, there were no differences in heart rate variability SDNN (72±160ms vs. 32±22ms, P=0.587); RMSSD (75±209 vs. 25±22ms, P=0.726); pNN50 (11±17ms vs. 8±14ms, P=0.836) in women and men, respectively. Moreover, there were no difference in augmentation index (39±10% vs. 34±11%, P=0.103); pulse pressure (59±17mmHg vs. 56±19mmHg, P=0.593) and pulse wave velocity (8.6±2.6m\s vs. 9.0±2.7m/s, P=0.580). In conclusion, women have impaired walking capacity compared to men. However, sex differences were not observed on cardiovascular regulation in patients with PAD.

Keywords: exercise, intermittent claudication, cardiovascular load, arterial stiffness

Procedia PDF Downloads 386
1564 Simulation Modelling of the Transmission of Concentrated Solar Radiation through Optical Fibres to Thermal Application

Authors: M. Rahou, A. J. Andrews, G. Rosengarten

Abstract:

One of the main challenges in high-temperature solar thermal applications transfer concentrated solar radiation to the load with minimum energy loss and maximum overall efficiency. The use of a solar concentrator in conjunction with bundled optical fibres has potential advantages in terms of transmission energy efficiency, technical feasibility and cost-effectiveness compared to a conventional heat transfer system employing heat exchangers and a heat transfer fluid. In this paper, a theoretical and computer simulation method is described to estimate the net solar radiation transmission from a solar concentrator into and through optical fibres to a thermal application at the end of the fibres over distances of up to 100 m. A key input to the simulation is the angular distribution of radiation intensity at each point across the aperture plane of the optical fibre. This distribution depends on the optical properties of the solar concentrator, in this case, a parabolic mirror with a small secondary mirror with a common focal point and a point-focus Fresnel lens to give a collimated beam that pass into the optical fibre bundle. Since solar radiation comprises a broad band of wavelengths with very limited spatial coherence over the full range of spectrum only ray tracing models absorption within the fibre and reflections at the interface between core and cladding is employed, assuming no interference between rays. The intensity of the radiation across the exit plane of the fibre is found by integrating across all directions and wavelengths. Results of applying the simulation model to a parabolic concentrator and point-focus Fresnel lens with typical optical fibre bundle will be reported, to show how the energy transmission varies with the length of fibre.

Keywords: concentrated radiation, fibre bundle, parabolic dish, fresnel lens, transmission

Procedia PDF Downloads 558
1563 Approved Cyclic Treatment System of Grey Water

Authors: Hanen Filali, Mohamed Hachicha

Abstract:

Treated grey water (TGW) reuse emerged as an alternative resource to meet the growing demand for water for agricultural irrigation and reduce the pressure on limited existing fresh water. However, this reuse needs adapted management in order to avoid environmental and health risks. In this work, the treatment of grey water (GW) was studied from a cyclic treatment system that we designed and implemented in the greenhouse of National Research Institute for Rural Engineering, Water and Forests (INRGREF). This system is composed of three levels for treatment (TGW 1, TGW 2, and TGW 3). Each level includes a sandy soil box. The use of grey water was moderated depending on the chemical and microbiological quality obtained. Different samples of soils and treated grey water were performed and analyzed for 14 irrigation cycles. TGW through cyclic treatment showed physicochemical parameters like pH, electrical conductivity (EC), chemical oxygen demand (COD), biological oxygen demand (BOD5) in the range of 7,35-7,91, 1,69-5,03 dS/m, 102,6-54,2 mgO2/l, and 31,33-15,74 mgO2/l, respectively. Results showed a reduction in the pollutant load with a significant effect on the three treatment levels; however, an increase in salinity was observed during all irrigation cycles. Microbiological results showed good grey water treatment with low health risk on irrigated soil. Treated water quality was below permissible Tunisian standards (NT106.03), and treated water is suitable for non-potable options.

Keywords: treated grey water, irrigation, cyclic treatment, soils, physico-chemical parameters, microbiological parameters

Procedia PDF Downloads 88
1562 Knee Pain Reduction: Holistic vs. Traditional

Authors: Renee Moten

Abstract:

Introduction: Knee pain becomes chronic because the therapy used focuses only on the symptoms of knee pain and not the causes of knee pain. Preventing knee injuries is not in the toolbox of the traditional practitioner. This research was done to show that we must reduce the inflammation (holistically), reduce the swelling and regain flexibility before considering any type of exercise. This method of performing the correct exercise stops the bowing of the knee, corrects the walking gait, and starts to relieve knee, hip, back, and shoulder pain. Method: The holistic method that is used to heal knees is called the Knee Pain Recipe. It’s a six step system that only uses alternative medicine methods to reduce, relieve and restore knee joint mobility. The system is low cost, with no hospital bills, no physical therapy, and no painkillers that can cause damage to the kidneys and liver. This method has been tested on 200 women with knee, back, hip, and shoulder pain. Results: All 200 women reduce their knee pain by 50%, some by as much as 90%. Learning about ankle and foot flexibility, along with understanding the kinetic chain, helps improve the walking gait, which takes the pressure off the knee, hip and back. The knee pain recipe also has helped to reduce the need for a cortisone injection, stem cell procedures, to take painkillers, and surgeries. What has also been noted in the research was that if the women's knees were too far gone, the Knee Pain Recipe helped prepare the women for knee replacement surgery. Conclusion: It is believed that the Knee Pain Recipe, when performed by men and women from around the world, will give them a holistic alternative to drugs, injections, and surgeries.

Keywords: knee, surgery, healing, holistic

Procedia PDF Downloads 68
1561 Synthesising Highly Luminescent CdTe Quantum Dots Using Cannula Hot Injection Method

Authors: Erdem Elibol, Musa Cadırcı, Nedim Tutkun

Abstract:

Recently, colloidal quantum dots (CQDs) have drawn increasing attention due to their unique size tunability, which makes them potential candidates for numerous applications including photovoltaic, LEDs, and imaging. However, the main challenge to exploit CQDs properly is that there has not been an effective method to produce them with highly crystalline form and narrow size dispersion. Hot injection method is one of the widely used techniques to produce high-quality nanoparticles. In this method, the key parameter is to reduce the time for injection of the precursors into each other, which yields fast and constant nucleation rate and hence to highly monodisperse QDs. In conventional hot injection method, the injection of precursors is carried out using standard lab syringes with long needles. However, this technique is relatively slow and thus will result in poor optical properties in QDs. In this work, highly luminescent CdTe QDs were synthesised by transferring hot precursors into each other using cannula method. Unlike regular syringe technique, with the help of high pressure difference between two precursors’ flasks and wide cross-section of cannula, the hot cannulation process is too short which yields narrow size distribution and high quantum yield of CdTe QDs. Here QDs with full width half maximum (FWHM) of 28 nm was achieved. In addition, the photoluminescence quantum yield of our samples was measured to be about 21 ± 0.9 which is at least twice the previous record values for CdTe QDs wherein syringe was used to transfer precursors.

Keywords: CdTe, hot injection method, luminescent, quantum dots

Procedia PDF Downloads 312
1560 Numerical Investigation of Turbulent Inflow Strategy in Wind Energy Applications

Authors: Arijit Saha, Hassan Kassem, Leo Hoening

Abstract:

Ongoing climate change demands the increasing use of renewable energies. Wind energy plays an important role in this context since it can be applied almost everywhere in the world. To reduce the costs of wind turbines and to make them more competitive, simulations are very important since experiments are often too costly if at all possible. The wind turbine on a vast open area experiences the turbulence generated due to the atmosphere, so it was of utmost interest from this research point of view to generate the turbulence through various Inlet Turbulence Generation methods like Precursor cyclic and Kaimal Spectrum Exponential Coherence (KSEC) in the computational simulation domain. To be able to validate computational fluid dynamic simulations of wind turbines with the experimental data, it is crucial to set up the conditions in the simulation as close to reality as possible. This present work, therefore, aims at investigating the turbulent inflow strategy and boundary conditions of KSEC and providing a comparative analysis alongside the Precursor cyclic method for Large Eddy Simulation within the context of wind energy applications. For the generation of the turbulent box through KSEC method, firstly, the constrained data were collected from an auxiliary channel flow, and later processing was performed with the open-source tool PyconTurb, whereas for the precursor cyclic, only the data from the auxiliary channel were sufficient. The functionality of these methods was studied through various statistical properties such as variance, turbulent intensity, etc with respect to different Bulk Reynolds numbers, and a conclusion was drawn on the feasibility of KSEC method. Furthermore, it was found necessary to verify the obtained data with DNS case setup for its applicability to use it as a real field CFD simulation.

Keywords: Inlet Turbulence Generation, CFD, precursor cyclic, KSEC, large Eddy simulation, PyconTurb

Procedia PDF Downloads 87
1559 Structural and Optical Properties of RF-Sputtered ZnS and Zn(S,O) Thin Films

Authors: Ould Mohamed Cheikh, Mounir Chaik, Hind El Aakib, Mohamed Aggour, Abdelkader Outzourhit

Abstract:

Zinc sulfide [ZnS] and oxygenated zinc sulfide Zn(O,S) thin films were deposited on glass substrates, by reactive cathodic radio-frequency (RF) sputtering. The substrates power and percentage of oxygen were varied in the range of 100W to 250W and from 5% to 20% respectively. The structural, morphological and optical properties of these thin films were investigated. The optical properties (mainly the refractive index, absorption coefficient and optical band gap) were examined by optical transmission measurements in the ultraviolet-visible-near Infrared wavelength range. XRD analysis indicated that all sputtered ZnS films were a single phase with a preferential orientation along the (111) plane of zinc blend (ZB). The crystallite size was in the range of 19.5 nm to 48.5 nm, the crystallite size varied with RF power reaching a maximum at 200 W. The Zn(O,S) films, on the other hand, were amorphous. UV-Visible, measurements showed that the ZnS film had more than 80% transmittance in the visible wavelength region while that of Zn(O,S is 85%. Moreover, it was observed that the band gap energy of the ZnS films increases slightly from 3.4 to 3.52 eV as the RF power was increased. The optical band gap of Zn(O,S), on the other hand, decreased from 4.2 to 3.89 eV as the oxygen partial pressure is increased in the sputtering atmosphere at a fixed RF-power. Scanning electron microscopy observations revealed smooth surfaces for both type of films. The X-ray reflectometry measurements on the ZnS films showed that the density of the films (3.9 g/cm3) is close that of bulk ZnS.

Keywords: thin films Zn(O, S) properties, Zn(O, S) by Rf-sputtering, ZnS for solar cells, thin films for renewable energy

Procedia PDF Downloads 279
1558 A Second Spark Ignition Timing for the High Power Aircraft Radial Engine Using a CFD Transient Modeling

Authors: Tytus Tulwin, Adam Majczak

Abstract:

In aviation most important systems that impact the aircraft flight safety are duplicated. The ASz-62IR aircraft radial engine consists of two spark plugs powered by two separate magnetos. The relative difference in spark timing has an influence on the combustion process. The retardation of the second spark relative to the first spark was analyzed. The CFD simulation was developed as a multicycle transient model. Two independent spark sources imitate two flame fronts after an ignition period. It makes the combustion process shorter but only for certain range of second spark retardation. The model was validated by the in-cylinder pressure comparison. Combustion parameters were analyzed for different second spark retardation values. It was found that the most advantageous ignition timing in means of performance is simultaneous ignition. Nevertheless, for this engine the ignition time of the second spark plug is greatly retarded eliminating the advantageous performance influence. The reason behind this is maintaining high ignition certainty for all engine running conditions and for whole operating rpm range. In aviation the engine reliability is more important than its performance. Introducing electronic ignition system can yield from simultaneous ignition timing by increasing the engine performance and providing good reliability for all flight conditions. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: CFD, combustion, ignition, simulation, timing

Procedia PDF Downloads 379
1557 Mitigation Strategies in the Urban Context of Sydney, Australia

Authors: Hamed Reza Heshmat Mohajer, Lan Ding, Mattheos Santamouris

Abstract:

One of the worst environmental dangers for people who live in cities is the Urban Heat Island (UHI) impact which is anticipated to become stronger in the coming years as a result of climate change. Accordingly, the key aim of this paper is to study the interaction between the urban configuration and mitigation strategies including increasing albedo of the urban environment (reflective material), implementation of Urban Green Infrastructure (UGI) and/or a combination thereof. To analyse the microclimate models of different urban categories in the metropolis of Sydney, this study will assess meteorological parameters using a 3D model simulation tool of computational fluid dynamics (CFD) named ENVI-met. In this study, four main parameters are taken into consideration while assessing the effectiveness of UHI mitigation strategies: ambient air temperature, wind speed/direction, and outdoor thermal comfort. Layouts with present condition simulation studies from the basic model (scenario one) are taken as the benchmark. A base model is used to calculate the relative percentage variations between each scenario. The findings showed that maximum cooling potential across different urban layouts can be decreased by 2.15 °C degrees by combining high-albedo material with flora; besides layouts with open arrangements(OT1) present a highly remarkable improvement in ambient air temperature and outdoor thermal comfort when mitigation technologies applied compare to compact counterparts. Besides all layouts present a higher intensity on the maximum ambient air temperature reduction rather than the minimum ambient air temperature. On the other hand, Scenarios associated with an increase in greeneries are anticipated to have a slight cooling effect, especially on high-rise layouts.

Keywords: sustainable urban development, urban green infrastructure, high-albedo materials, heat island effect

Procedia PDF Downloads 85
1556 Optimization of the Dental Direct Digital Imaging by Applying the Self-Recognition Technology

Authors: Mina Dabirinezhad, Mohsen Bayat Pour, Amin Dabirinejad

Abstract:

This paper is intended to introduce the technology to solve some of the deficiencies of the direct digital radiology. Nowadays, digital radiology is the latest progression in dental imaging, which has become an essential part of dentistry. There are two main parts of the direct digital radiology comprised of an intraoral X-ray machine and a sensor (digital image receptor). The dentists and the dental nurses experience afflictions during the taking image process by the direct digital X-ray machine. For instance, sometimes they need to readjust the sensor in the mouth of the patient to take the X-ray image again due to the low quality of that. Another problem is, the position of the sensor may move in the mouth of the patient and it triggers off an inappropriate image for the dentists. It means that it is a time-consuming process for dentists or dental nurses. On the other hand, taking several the X-ray images brings some problems for the patient such as being harmful to their health and feeling pain in their mouth due to the pressure of the sensor to the jaw. The author provides a technology to solve the above-mentioned issues that is called “Self-Recognition Direct Digital Radiology” (SDDR). This technology is based on the principle that the intraoral X-ray machine is capable to diagnose the location of the sensor in the mouth of the patient automatically. In addition, to solve the aforementioned problems, SDDR technology brings out fewer environmental impacts in comparison to the previous version.

Keywords: Dental direct digital imaging, digital image receptor, digital x-ray machine, and environmental impacts

Procedia PDF Downloads 135
1555 Microstructure and Tribological Properties of AlSi5Cu2/SiC Composite

Authors: Magdalena Suśniak, Joanna Karwan-Baczewska

Abstract:

Microstructure and tribological properties of AlSi5Cu2 matrix composite reinforced with SiC have been studied by microscopic examination and basic tribological properties. Composite material was produced by the mechanical alloying and spark plasma sintering (SPS) technique. The mixture of AlSi5Cu2 chips with 0, 10, 15 wt. % of SiC powder were placed in 250 ml mixing jar and milled 40 hours. To prevent the extreme cold welding the 1 wt. % of stearic acid was added to the powder mixture as a process control agent. Mechanical alloying provide to obtain composites powder with uniform distribution of SiC in matrix. Composite powders were poured into a graphite and a pulsed electric current was passed through powder under vacuum to consolidate material. Processing conditions were: sintering temperature 450°C, uniaxial pressure 32MPa, time of sintering 5 minutes. After SPS process composite samples indicate higher hardness values, lower weight loss, and lower coefficient of friction as compared with the unreinforced alloy. Light microscope micrograph of the worn surfaces and wear debris revealed that in the unreinforced alloy the prominent wear mechanism was the adhesive wear. In the AlSi5Cu2/SiC composites, by increasing of SiC the wear mechanism changed from adhesive and micro-cutting to abrasive and delamination for composite with 20 SiC wt. %. In all the AlSi5Cu2/SiC composites, abrasive wear was the main wear mechanism.

Keywords: aluminum matrix composite, mechanical alloying, spark plasma sintering, AlSi5Cu2/SiC composite

Procedia PDF Downloads 380
1554 Design, Development and Analysis of Combined Darrieus and Savonius Wind Turbine

Authors: Ashish Bhattarai, Bishnu Bhatta, Hem Raj Joshi, Nabin Neupane, Pankaj Yadav

Abstract:

This report concerns the design, development, and analysis of the combined Darrieus and Savonius wind turbine. Vertical Axis Wind Turbines (VAWT's) are of two type's viz. Darrieus (lift type) and Savonius (drag type). The problem associated with Darrieus is the lack of self-starting while Savonius has low efficiency. There are 3 straight Darrieus blades having the cross-section of NACA(National Advisory Committee of Aeronautics) 0018 placed circumferentially and a helically twisted Savonius blade to get even torque distribution. This unique design allows the use of Savonius as a method of self-starting the wind turbine, which the Darrieus cannot achieve on its own. All the parts of the wind turbine are designed in CAD software, and simulation data were obtained via CFD(Computational Fluid Dynamics) approach. Also, the design was imported to FlashForge Finder to 3D print the wind turbine profile and finally, testing was carried out. The plastic material used for Savonius was ABS(Acrylonitrile Butadiene Styrene) and that for Darrieus was PLA(Polylactic Acid). From the data obtained experimentally, the hybrid VAWT so fabricated has been found to operate at the low cut-in speed of 3 m/s and maximum power output has been found to be 7.5537 watts at the wind speed of 6 m/s. The maximum rpm of the rotor blade is recorded to be 431 rpm(rotation per minute) at the wind velocity of 6 m/s, signifying its potentiality of wind power production. Besides, the data so obtained from both the process when analyzed through graph plots has shown the similar nature slope wise. Also, the difference between the experimental and theoretical data obtained has shown mechanical losses. The objective is to eliminate the need for external motors for self-starting purposes and study the performance of the model. The testing of the model was carried out for different wind velocities.

Keywords: VAWT, Darrieus, Savonius, helical blades, CFD, flash forge finder, ABS, PLA

Procedia PDF Downloads 195
1553 The Analysis of Defects Prediction in Injection Molding

Authors: Mehdi Moayyedian, Kazem Abhary, Romeo Marian

Abstract:

This paper presents an evaluation of a plastic defect in injection molding before it occurs in the process; it is known as the short shot defect. The evaluation of different parameters which affect the possibility of short shot defect is the aim of this paper. The analysis of short shot possibility is conducted via SolidWorks Plastics and Taguchi method to determine the most significant parameters. Finite Element Method (FEM) is employed to analyze two circular flat polypropylene plates of 1 mm thickness. Filling time, part cooling time, pressure holding time, melt temperature and gate type are chosen as process and geometric parameters, respectively. A methodology is presented herein to predict the possibility of the short-shot occurrence. The analysis determined melt temperature is the most influential parameter affecting the possibility of short shot defect with a contribution of 74.25%, and filling time with a contribution of 22%, followed by gate type with a contribution of 3.69%. It was also determined the optimum level of each parameter leading to a reduction in the possibility of short shot are gate type at level 1, filling time at level 3 and melt temperature at level 3. Finally, the most significant parameters affecting the possibility of short shot were determined to be melt temperature, filling time, and gate type.

Keywords: injection molding, plastic defects, short shot, Taguchi method

Procedia PDF Downloads 212
1552 Selective Solvent Extraction of Co from Ni and Mn through Outer-Sphere Interactions

Authors: Korban Oosthuizen, Robert C. Luckay

Abstract:

Due to the growing popularity of electric vehicles and the importance of cobalt as part of the cathode material for lithium-ion batteries, demand for this metal is on the rise. Recycling of the cathode materials by means of solvent extraction is an attractive means of recovering cobalt and easing the pressure on limited natural resources. In this study, a series of straight chain and macrocyclic diamine ligands were developed for the selective recovery of cobalt from the solution containing nickel and manganese by means of solvent extraction. This combination of metals is the major cathode material used in electric vehicle batteries. The ligands can be protonated and function as ion-pairing ligands targeting the anionic [CoCl₄]²⁻, a species which is not observed for Ni or Mn. Selectivity for Co was found to be good at very high chloride concentrations and low pH. Longer chains or larger macrocycles were found to enhance selectivity, and linear chains on the amide side groups also resulted in greater selectivity over the branched groups. The cation of the chloride salt used for adjusting chloride concentrations seems to play a major role in extraction through salting-out effects. The ligands developed in this study show good selectivity for Co over Ni and Mn but require very high chloride concentrations to function. This research does, however, open the door for further investigations into using diamines as solvent extraction ligands for the recovery of cobalt from spent lithium-ion batteries.

Keywords: hydrometallurgy, solvent extraction, cobalt, lithium-ion batteries

Procedia PDF Downloads 69
1551 Analyzing Nonsimilar Convective Heat Transfer in Copper/Alumina Nanofluid with Magnetic Field and Thermal Radiations

Authors: Abdulmohsen Alruwaili

Abstract:

A partial differential system featuring momentum and energy balance is often used to describe simulations of flow initiation and thermal shifting in boundary layers. The buoyancy force in terms of temperature is factored in the momentum balance equation. Buoyancy force causes the flow quantity to fluctuate along the streamwise direction 𝑋; therefore, the problem can be, to our best knowledge, analyzed through nonsimilar modeling. In this analysis, a nonsimilar model is evolved for radiative mixed convection of a magnetized power-law nanoliquid flow on top of a vertical plate installed in a stationary fluid. The upward linear stretching initiated the flow in the vertical direction. Assuming nanofluids are composite of copper (Cu) and alumina (Al₂O₃) nanoparticles, the viscous dissipation in this case is negligible. The nonsimilar system is dealt with analytically by local nonsimilarity (LNS) via numerical algorithm bvp4c. Surface temperature and flow field are shown visually in relation to factors like mixed convection, magnetic field strength, nanoparticle volume fraction, radiation parameters, and Prandtl number. The repercussions of magnetic and mixed convection parameters on the rate of energy transfer and friction coefficient are represented in tabular forms. The results obtained are compared to the published literature. It is found that the existence of nanoparticles significantly improves the temperature profile of considered nanoliquid. It is also observed that when the estimates of the magnetic parameter increase, the velocity profile decreases. Enhancement in nanoparticle concentration and mixed convection parameter improves the velocity profile.

Keywords: nanofluid, power law model, mixed convection, thermal radiation

Procedia PDF Downloads 11
1550 Curative Effect of Blumea lacera Leaves on Experimental Haemorrhoids in Rats

Authors: Priyanka Sharma, Tarkewshwar Dubey, Hemalatha Siva

Abstract:

Hemorrhoids are one of the most common anorectal diseases around the world. Severalfactors are involved in causing hemorrhoids including irregularbowel function (constipation, diarrhea), exercise, gravity, low fiberdiet, pregnancy, obesity, high abdominal pressure, prolongedsitting, genetic factors, and aging. Pain, bleeding, itching,swelling and anal discharge are the symptoms of the disease. Due to limitedmodern pharmacotherapeutic options available for treatment, theherbal medicines remain the choice of therapy. Blumea lacera (Burm f.) DC. belonging to the Asteraceae family is a common plain land weed of Bangladesh. Traditionally it has been used for treatment of hemorrhoids.Considering the above fact, present study was aimed to validate the ethnomedicinal use of B. lacera leaves on experimental hemorrhoids in rats. The anti-hemorrhoid activity was performed by using croton oil induced rat models. The parameters studied were assessment of TNF-α and IL-6, Evans blue exudation, macroscopic severity score, recto-anal coefficient, histomorphological scores. Also, in vivo antioxidant parameters and histopathological studies were also performed. All paramaters exhibited significant anti-hemorrhoid activity. Moreover ethanolic extract of B. lacera (EBL) leaves 400mg/kg showed ameliorative effect oncroton oil induced hemorrhoids.In conclusion, EBL exhibitedbeneficial effect on croton oil- induced hemorrhoids and validates its ethnomedicinal use in treatment of piles.

Keywords: haemorrhoids, IL-6, piles, TNF-α

Procedia PDF Downloads 290
1549 Caring for a Spinal Cord Injury Patient with Diabetic Nephropathy Receiving Hospice Palliative Care

Authors: Li-Ting Kung, Hui-Zhu Chen, Hsin-Tzu Lee, Wan-Yin Hsu

Abstract:

Patients with spinal cord injury combined with diabetic nephropathy may under a lot of painful conditions due to complications related to the illness itself or treatments, such as recurrent pressure ulcers, autonomic and peripheral neuropathy, as well as dialysis, for long term. This case report illustrated the nursing experience of transferring a spine cord injure patient who received hemodialysis due to adverse lifestyle-induced diabetic nephropathy to the hospice ward. Nursing care was provided in this patient from July 25th to August 30th, 2015. The tool of 'Gordon’s 11-item functional health assessment' and clinical observation, interviews as well as physical examination were used as data collections. Based on results of health assessment as above, the patient’s health problems were identified as the following: impaired skin integrity, chronic pain, and hopeless. Besides to relieve the symptom of pain due to disease or the treatment of hemodialysis and provide wound care, the first author also played a role to assist the patient to achieve his goal of receiving the hospice palliative care. Finally, with much effort of nurses to communicate with medical teams between the surgical and hospice wards, the patient was transferred to the hospice ward to have fulfilled his last wish of having a good death. We hope this nursing experience can be applied to other similar cases in the future.

Keywords: diabetic nephropathy, hospice care, palliative care, spinal cord injury

Procedia PDF Downloads 147
1548 Traumatic Osteoarthritis Induces Mechanical Hyperalgesia through IL-1β/TNF-α-Mediated Upregulation of the Sema4D Gene Expression

Authors: Hsiao-Chien Tsai, Yu-Pin Chen, Ruei-Ming Chen

Abstract:

Introduction: Osteoarthritis (OA) is characterized by joint destruction and causes chronic disability. One of the prominent symptoms is pain. Alleviating the pain is necessary and urgent for the therapy of OA patients. However, currently, understanding the mechanisms that drive OA-induced pain remains challenging, which hampers the optimistic management of pain in OA patients. Semaphorin 4D (Sema4D) participates in axon guidance pathway and bone remodeling, thus, may play a role in the regulation of pain in OA. In this study, we have established a rat model of OA to find out the mechanisms of OA-induced pain and to deliberate the roles of Sema4D. Methods: Behavioral changes and the pro-inflammatory cytokines (IL-1β, TNF-α, and IL-17) associated with pain were measured during the development of OA. Sema4D expression in cartilage and synovial membrane at 1, 4, and 12 weeks after inducing OA was analyzed. To assess if Sema4D is related to the neurogenesis in OA as an axon repellant, we analyzed the expression of PGP9.5 as well. Results: Synovitis and cartilage degradation were evident histologically during the development of OA. Mechanical hyperalgesia was most severe at week 1, then persisted thereafter. It was associated with stress coping strategies. Similar to the pain behavioral results, levels of IL-1β and TNF-α in synovial lavage fluid were significantly elevated in the OA group at weeks 1 and 4, respectively. Sema4D expression in cartilage and the synovial membrane was also enhanced in the OA group and was correlated with pain and pro-inflammatory cytokines. The marker of neurogenesis, PGP9.5, was also enhanced during the development of OA. Discussion: OA induced mechanical hyperalgesia, which might be through upregulating IL-1β/TNF-α-mediated Sema4D expressions. If anti-Sema4D treatment could reduce OA-induced mechanical hyperalgesia and prevent the subsequent progression of OA needs to be further investigated. Significance: OA can induce mechanical hyperalgesia through upregulation of IL-1β/TNF-α-mediated Sema4D and PGP9.5 expressions. And the upregulation of Sema4D may indicate the severity or active status of OA and OA-induced pain.

Keywords: traumatic osteoarthritis, mechanical hyperalgesia, Sema4D, inflammatory cytokines

Procedia PDF Downloads 73
1547 Hot Corrosion and Oxidation Degradation Mechanism of Turbine Materials in a Water Vapor Environment at a Higher Temperature

Authors: Mairaj Ahmad, L. Paglia, F. Marra, V. Genova, G. Pulci

Abstract:

This study employed Rene N4 and FSX 414 superalloys, which are used in numerous turbine engine components due of their high strength, outstanding fatigue, creep, thermal, and corrosion-resistant properties. An in-depth examination of corrosion mechanisms with vapor present at high temperature is necessary given the industrial trend toward introducing increasing amounts of hydrogen into combustion chambers in order to boost power generation and minimize pollution in contrast to conventional fuels. These superalloys were oxidized in recent tests for 500, 1000, 2000, 3000 and 4000 hours at 982±5°C temperatures with a steady airflow at a flow rate of 10L/min and 1.5 bar pressure. These superalloys were also examined for wet corrosion for 500, 1000, 2000, 3000, and 4000 hours in a combination of air and water vapor flowing at a 10L/min rate. Weight gain, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDS) were used to assess the oxidation and heat corrosion resistance capabilities of these alloys before and after 500, 1000, and 2000 hours. The oxidation/corrosion processes that accompany the formation of these oxide scales are shown in the graph of mass gain vs time. In both dry and wet oxidation, oxides like Al2O3, TiO2, NiCo2O4, Ni3Al, Ni3Ti, Cr2O3, MnCr2O4, CoCr2O4, and certain volatile compounds notably CrO2(OH)2, Cr(OH)3, Fe(OH)2, and Si(OH)4 are formed.

Keywords: hot corrosion, oxidation, turbine materials, high temperature corrosion, super alloys

Procedia PDF Downloads 79
1546 Work-Integrated Learning Practices: Comparative Case Studies across Three Countries

Authors: Shairn Hollis-Turner

Abstract:

The changing demands of workplace practice in the field of business information and administration have placed considerable pressure on educators to prepare students for the world of work. In this paper, we argue that appropriate forms of work-integrated learning (WIL) could enhance learning experiences in higher education and support educators to meet industry needs for changing times. The study aims to enhance business information and administration education from a practice perspective. The guiding research question is: How can a systematic understanding of work-integrated learning practices enhance learning experiences in higher education? The research design comprised comparative case studies across three countries and was framed by Activity Theory. Analysis of the findings highlighted the similarities across WIL systems for higher education practices and the differences within the activity systems. The findings showed similarities in program practice, content, placement, and in the struggles of students to find placements. The findings also showed misalignments between WIL preparation, delivery, and future focus of WIL at these institutions. The findings suggest that employment requirements vary across countries and that systems could be improved to meet the demands of workplace practice for changing times for the benefit of students’ learning and employability.

Keywords: business administration, business information, knowledge, post graduate diploma

Procedia PDF Downloads 45
1545 Framework for Decision Support Tool for Quality Control and Management in Botswana Manufacturing Companies

Authors: Mogale Sabone, Thabiso Ntlole

Abstract:

The pressure from globalization has made manufacturing organizations to move towards three major competitive arenas: quality, cost, and responsiveness. Quality is a universal value and has become a global issue. In order to survive and be able to provide customers with good products, manufacturing organizations’ supporting systems, tools, and structures it uses must grow or evolve. The majority of quality management concepts and strategies that are practiced recently are aimed at detecting and correcting problems which already exist and serve to limit losses. In agile manufacturing environment there is no room for defect and error so it needs a quality management which is proactively directed at problem prevention. This proactive quality management avoids losses by focusing on failure prevention, virtual elimination of the possibility of premature failure, mistake-proofing, and assuring consistently high quality in the definition and design of creation processes. To achieve this, a decision support tool for quality control and management is suggested. Current decision support tools/methods used by most manufacturing companies in Botswana for quality management and control are not integrated, for example they are not consistent since some tests results data is recorded manually only whilst others are recorded electronically. It is only a set of procedures not a tool. These procedures cannot offer interactive decision support. This point brings to light the aim of this research which is to develop a framework which will help manufacturing companies in Botswana build a decision support tool for quality control and management.

Keywords: decision support tool, manufacturing, quality control, quality management

Procedia PDF Downloads 560
1544 Saliva Cortisol and Yawning as a Predictor of Neurological Disease

Authors: Simon B. N. Thompson

Abstract:

Cortisol is important to our immune system, regulates our stress response, and is a factor in maintaining brain temperature. Saliva cortisol is a practical and useful non-invasive measurement that signifies the presence of the important hormone. Electrical activity in the jaw muscles typically rises when the muscles are moved during yawning and the electrical level is found to be correlated with the cortisol level. In two studies using identical paradigms, a total of 108 healthy subjects were exposed to yawning-provoking stimuli so that their cortisol levels and electrical nerve impulses from their jaw muscles was recorded. Electrical activity is highly correlated with cortisol levels in healthy people. The Hospital Anxiety and Depression Scale, Yawning Susceptibility Scale, General Health Questionnaire, demographic, health details were collected and exclusion criteria applied for voluntary recruitment: chronic fatigue, diabetes, fibromyalgia, heart condition, high blood pressure, hormone replacement therapy, multiple sclerosis, and stroke. Significant differences were found between the saliva cortisol samples for the yawners as compared with the non-yawners between rest and post-stimuli. Significant evidence supports the Thompson Cortisol Hypothesis that suggests rises in cortisol levels are associated with yawning. Ethics approval granted and professional code of conduct, confidentiality, and safety issues are approved therein.

Keywords: cortisol, diagnosis, neurological disease, thompson cortisol hypothesis, yawning

Procedia PDF Downloads 331
1543 A Rare Form of Rapidly Progressive Parkinsonism Associated with Dementia

Authors: Murat Emre, Zeynep Tufekcioglu

Abstract:

Objective: We describe a patient with late onset phenylketonuria which presented with rapidly progressive dementia and parkinsonism that were reversible after management. Background: Phenylketonuria is an autosomal recessive disorder due to mutations in the phenylalanine hydroxlase gene. It normally presents in childhood, in rare cases, however, it may have its onset in adulthood and may mimic other neurological disorders. Case description: A previously normal functioning, 59 year old man was admitted for blurred vision, cognitive impairment and gait difficulty which emerged over the past eight months. In neurological examination he had brisk reflexes, slow gait and left-dominant parkinsonism. Mini-mental state examination score was 25/30, neuropsychological testing revealed a dysexecutive syndrome with constructional apraxia and simultanagnosia. In cranial MRI there were bilateral diffuse hyper-intense lesions in parietal and occipital white matter with no significant atrophy. Electroencephalography showed diffuse slowing with predominance of teta waves. In cerebrospinal fluid examination protein level was slightly elevated (61mg/dL), oligoclonal bands were negative. Electromyography was normal. Routine laboratory examinations for rapidly progressive dementia and parkinsonism were also normal. Serum amino acid levels were determined to explore metabolic leukodystrophies and phenylalanine level was found to be highly elevated (1075 µmol/L) with normal tyrosine (61,20 µmol/L). His cognitive impairment and parkinsonian symptoms improved following three months of phenylalanine restricted diet. Conclusions: Late onset phenylketonuria is a rare, potentially reversible cause of rapidly progressive parkinsonism with dementia. It should be considered in the differential diagnosis of patients with suspicious features.

Keywords: dementia, neurology, Phenylketonuria, rapidly progressive parkinsonism

Procedia PDF Downloads 263
1542 Approximation of PE-MOCVD to ALD for TiN Concerning Resistivity and Chemical Composition

Authors: D. Geringswald, B. Hintze

Abstract:

The miniaturization of circuits is advancing. During chip manufacturing, structures are filled for example by metal organic chemical vapor deposition (MOCVD). Since this process reaches its limits in case of very high aspect ratios, the use of alternatives such as the atomic layer deposition (ALD) is possible, requiring the extension of existing coating systems. However, it is an unsolved question to what extent MOCVD can achieve results similar as an ALD process. In this context, this work addresses the characterization of a metal organic vapor deposition of titanium nitride. Based on the current state of the art, the film properties coating thickness, sheet resistance, resistivity, stress and chemical composition are considered. The used setting parameters are temperature, plasma gas ratio, plasma power, plasma treatment time, deposition time, deposition pressure, number of cycles and TDMAT flow. The derived process instructions for unstructured wafers and inside a structure with high aspect ratio include lowering the process temperature and increasing the number of cycles, the deposition and the plasma treatment time as well as the plasma gas ratio of hydrogen to nitrogen (H2:N2). In contrast to the current process configuration, the deposited titanium nitride (TiN) layer is more uniform inside the entire test structure. Consequently, this paper provides approaches to employ the MOCVD for structures with increasing aspect ratios.

Keywords: ALD, high aspect ratio, PE-MOCVD, TiN

Procedia PDF Downloads 294
1541 Effect of Kinesio Taping on Anaerobic Power and Maximum Oxygen Consumption after Eccentric Exercise

Authors: Disaphon Boobpachat, Nuttaset Manimmanakorn, Apiwan Manimmanakorn, Worrawut Thuwakum, Michael J. Hamlin

Abstract:

Objectives: To evaluate effect of kinesio tape compared to placebo tape and static stretching on recovery of anaerobic power and maximal oxygen uptake (Vo₂max) after intensive exercise. Methods: Thirty nine untrained healthy volunteers were randomized to 3 groups for each intervention: elastic tape, placebo tape and stretching. The participants performed intensive exercise on the dominant quadriceps by using isokinetic dynamometry machine. The recovery process was evaluated by creatine kinase (CK), pressure pain threshold (PPT), muscle soreness scale (MSS), maximum voluntary contraction (MVC), jump height, anaerobic power and Vo₂max at baseline, immediately post-exercise and post-exercise day 1, 2, 3 and 7. Results: The kinesio tape, placebo tape and stretching groups had significant changes of PPT, MVC, jump height at immediately post-exercise compared to baseline (p < 0.05), and changes of MSS, CK, anaerobic power and Vo₂max at day 1 post-exercise compared to baseline (p < 0.05). There was no significant difference of those outcomes among three groups. Additionally, all experimental groups had little effects on anaerobic power and Vo₂max compared to baseline and compared among three groups (p > 0.05). Conclusion: Kinesio tape and stretching did not improve recovery of anaerobic power and Vo₂max after eccentric exercise compared to placebo tape.

Keywords: stretching, eccentric exercise, Wingate test, muscle soreness

Procedia PDF Downloads 127
1540 Effects of Surface Roughness on a Unimorph Piezoelectric Micro-Electro-Mechanical Systems Vibrational Energy Harvester Using Finite Element Method Modeling

Authors: Jean Marriz M. Manzano, Marc D. Rosales, Magdaleno R. Vasquez Jr., Maria Theresa G. De Leon

Abstract:

This paper discusses the effects of surface roughness on a cantilever beam vibrational energy harvester. A silicon sample was fabricated using MEMS fabrication processes. When etching silicon using deep reactive ion etching (DRIE) at large etch depths, rougher surfaces are observed as a result of increased response in process pressure, amount of coil power and increased helium backside cooling readings. To account for the effects of surface roughness on the characteristics of the cantilever beam, finite element method (FEM) modeling was performed using actual roughness data from fabricated samples. It was found that when etching about 550um of silicon, root mean square roughness parameter, Sq, varies by 1 to 3 um (at 100um thick) across a 6-inch wafer. Given this Sq variation, FEM simulations predict an 8 to148 Hz shift in the resonant frequency while having no significant effect on the output power. The significant shift in the resonant frequency implies that careful consideration of surface roughness from fabrication processes must be done when designing energy harvesters.

Keywords: deep reactive ion etching, finite element method, microelectromechanical systems, multiphysics analysis, surface roughness, vibrational energy harvester

Procedia PDF Downloads 114
1539 The Optimization of an Industrial Recycling Line: Improving the Durability of Recycled Polyethyene Blends

Authors: Alae Lamtai, Said Elkoun, Hniya Kharmoudi, Mathieu Robert, Carl Diez

Abstract:

This study applies Taguchi's design of experiment methodology and grey relational analysis (GRA) for multi objective optimization of an industrial recycling line. This last is composed mainly of a mono and twin-screw extruder and a filtration system. Experiments were performed according to L₁₆ standard orthogonal array based on five process parameters, namely: mono screw design, screw speed of the mono and twin-screw extruder, melt pump pressure, and filter mesh size. The objective of this optimization is to improve the durability of the Polyethylene (PE) blend by decreasing the loss of Stress Crack resistance (SCR) using Notched Crack Ligament Stress (NCLS) test and Unnotched Crack Ligament Stress (UCLS) in parallel with increasing the gain of Izod impact strength of the Polyethylene (PE) blend before and after recycling. Based on Grey Relational Analysis (GRA), the optimal setting of process parameters was identified, and the results indicated that the mono-screw design and screw speed of both mono and twin-screw extruder impact significantly the mechanical properties of recycled Polyethylene (PE) blend.

Keywords: Taguchi, recycling line, polyethylene, stress crack resistance, Izod impact strength, grey relational analysis

Procedia PDF Downloads 70
1538 Performance Evaluation of Adsorption Refrigerating Systems

Authors: Nadia Allouache, Omar Rahli

Abstract:

Many promising technologies have been developed to harness the sun's energy. These technologies help in economizing energy and environmental protection. The solar refrigerating systems are one of these important technologies. In addition to environmental benefits and energy saving, adsorption refrigerating systems have many advantages such as lack of moving parts, simplicity of construction and low operating costs. The work aimed to establish the main factors that affect the performances of an adsorption refrigerating system using different geometries of adsorbers and different adsorbent-adsorbate pairs. The numerical modeling of the heat and mass transfer in the system, using various working pairs, such as: activated carbon-ammonia, calcium chlorid-ammonia, activated carbon fiber- methanol and activated carbon AC35-methanol, show that the adsorber design can influence the system performances; The thermal performances of system are better in the annular configuration case. An optimal value of generating temperature is observed in annular adsorber case for which the thermal performance of the cooling system is maximal. While in the plate adsorber, above a certain value of generating temperature, the performance of the system remains almost constant. The environmental conditions such as solar radiation and pressure have a great influence in the system efficiency, and the choice of the working pair depends on the environmental conditions and the geometry of the adsorber.

Keywords: adsorber geometry, numerical modeling, optimal environmental conditions, working pairs.

Procedia PDF Downloads 75
1537 A Modelling Study to Compare the Storm Surge along Oman Coast Due to Ashobaa and Nanauk Cyclones

Authors: R. V. Suresh Reddi, Vishnu S. Das, Mathew Leslie

Abstract:

The weather systems within the Arabian Sea is very dynamic in terms of monsoon and cyclone events. The storms generated in the Arabian Sea are more likely to progress in the north-west or west direction towards Oman. From the database of Joint Typhoon Warning Center (JTWC), the number of cyclones that hit the Oman coast or pass within close vicinity is noteworthy and therefore they must be considered when looking at coastal/port engineering design and development projects. This paper provides a case study of two cyclones, i.e., Nanauk (2014) and Ashobaa (2015) to assess the impact on storm surge off the Oman coast. These two cyclones have been selected since they are comparable in terms of maximum wind, cyclone duration, central pressure and month of occurrence. They are of similar strength but differ in track, allowing the impact of proximity to the coast to be considered. Of the two selected cyclones, Ashobaa is the 'extreme' case with close proximity while Nanauk remains further offshore and is considered as a more typical case. The available 'best-track' data from JTWC is obtained for the 2 selected cyclones, and the cyclone winds are generated using a 'Cyclone Wind Generation Tool' from MIKE (modelling software) from DHI (Danish Hydraulic Institute). Using MIKE 21 Hydrodynamic model powered by DHI the storm surge is estimated at selected offshore locations along the Oman coast.

Keywords: costal engineering, cyclone, storm surge, modelling

Procedia PDF Downloads 140