Search results for: parametric study of loop heat pipe
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 50993

Search results for: parametric study of loop heat pipe

46943 Design of RF Generator and Its Testing in Heating of Nickel Ferrite Nanoparticles

Authors: D. Suman, M. Venkateshwara Rao

Abstract:

Cancer is a disease caused by an uncontrolled division of abnormal cells in a part of the body, which is affecting millions of people leading to death. Even though there have been tremendous developments taken place over the last few decades the effective therapy for cancer is still not a reality. The existing techniques of cancer therapy are chemotherapy and radio therapy which are having their limitations in terms of the side effects, patient discomfort, radiation hazards and the localization of treatment. This paper describes a novel method for cancer therapy by using RF-hyperthermia application of nanoparticles. We have synthesized ferromagnetic nanoparticles and characterized by using XRD and TEM. These nanoparticles after the biocompatibility studies will be injected in to the body with a suitable tracer element having affinity to the specific tumor site. When RF energy is applied to the nanoparticles at the tumor site it produces heat of excess room temperature and nearly 41-45°C is sufficient to kill the tumor cells. We have designed a RF source generator provided with a temperature feedback controller to control the radiation induced temperature of the tumor site. The temperature control is achieved through a negative feedback mechanism of the thermocouple and a relay connected to the power source of the RF generator. This method has advantages in terms of its effect like localized therapy, less radiation, and no side effects. It has several challenges in designing the RF source provided with coils suitable for the tumour site, biocompatibility of the nanomaterials, cooling system design for the RF coil. If we can overcome these challenges this method will be a huge benefit for the society.

Keywords: hyperthermia, cancer therapy, RF source generator, nanoparticles

Procedia PDF Downloads 449
46942 Improving Lutein Bioavailability by Nanotechnology Applications

Authors: Hulya Ilyasoglu Buyukkestelli, Sedef Nehir El

Abstract:

Lutein is a member of xanthophyll group of carotenoids found in fruits and vegetables. Lutein accumulates in the macula region of the retina and known as macular pigment which absorbs damaging light in the blue wavelengths. The presence of lutein in retina has been related to decreased risk of two common eye diseases, age-related macular degeneration, and cataract. Being a strong antioxidant, it may also have effects on prevention some types of cancer, cardiovascular disease, cognitive dysfunction. Humans are not capable of synthesizing lutein de novo; therefore it must be provided naturally by the diet, fortified foods, and beverages or nutritional supplement. However, poor bioavailability and physicochemical stability limit its usage in the food industry. Poor solubility in digestive fluids and sensitivity to heat, light, and oxygen are both affect the stability and bioavailability of lutein. In this context, new technologies, delivery systems and formulations have been applied to improve stability and solubility of lutein. Nanotechnology, including nanoemulsion, nanocrystal, nanoencapsulation technology and microencapsulation by complex coacervation, spray drying are promising ways of increasing solubilization of lutein and stability of it in different conditions. Bioavailability of lutein is also dependent on formulations used, starch formulations and milk proteins, especially sodium caseinate are found effective in improving the bioavailability of lutein. Designing foods with highly bioavailable and stabile lutein needs knowledge about current technologies, formulations, and further needs. This review provides an overview of the new technologies and formulations used to improve bioavailability of lutein and also gives a future outlook to food researches.

Keywords: bioavailability, formulation, lutein, nanotechnology

Procedia PDF Downloads 367
46941 A Study of the Travel Motivations of International Tourists in Visiting Thailand: A Case Study of Phuket

Authors: Suphaporn Rattanaphinanchai

Abstract:

The purpose of this study is to 1) describe and analyze the travel motivations of tourists visiting Phi Phi Islands after the Tsunami in 2004 and 2) to better understand whether there are significant differences in the tourists’ motivations in visiting Phi Phi Island after the Tsunami hit across tourists with different demographic profile. This study used Phi Phi Islands, which was damaged by the 2004 Indian Ocean tsunami as a case study. The instrument used in the present study is a self-administered questionnaire. A survey with 200 questionnaires was collected in May - December, 2015. Descriptive statistics, Independent Sample Mean T-tests, and Analysis of Variances was used to analyze the data. The result of the study showed that beauty of nature, good climate, and relaxing atmosphere motivated tourists in visiting Phi Phi Islands after the tsunami.

Keywords: motivation, Thailand, Thai tourism, Thai beaches

Procedia PDF Downloads 228
46940 Steam Reforming of Acetic Acid over Microwave-Synthesized Ce0.75Zr0.25O2 Supported Ni Catalysts

Authors: Panumard Kaewmora, Thirasak Rirksomboon, Vissanu Meeyoo

Abstract:

Due to the globally growing demands of petroleum fuel and fossil fuels, the scarcity or even depletion of fossil fuel sources could be inevitable. Alternatively, the utilization of renewable sources, such as biomass, has become attractive to the community. Biomass can be converted into bio-oil by fast pyrolysis. In water phase of bio-oil, acetic acid which is one of its main components can be converted to hydrogen with high selectivity over effective catalysts in steam reforming process. Steam reforming of acetic acid as model compound has been intensively investigated for hydrogen production using various metal oxide supported nickel catalysts and yet they seem to be rapidly deactivated depending on the support utilized. A catalyst support such as Ce1-xZrxO2 mixed oxide was proposed for alleviating this problem with the anticipation of enhancing hydrogen yield. However, catalyst preparation methods play a significant role in catalytic activity and performance of the catalysts. In this work, Ce0.75Zr0.25O2 mixed oxide solid solution support was prepared by urea hydrolysis using microwave as heat source. After that nickel metal was incorporated at 15 wt% by incipient wetness impregnation method. The catalysts were characterized by several techniques including BET, XRD, H2-TPR, XRF, SEM, and TEM as well as tested for the steam reforming of acetic acid at various operating conditions. Preliminary results showed that a hydrogen yield of ca. 32% with a relatively high acetic conversion was attained at 650°C.

Keywords: acetic acid, steam reforming, microwave, nickel, ceria, zirconia

Procedia PDF Downloads 164
46939 High-Temperature Behavior of Boiler Steel by Friction Stir Processing

Authors: Supreet Singh, Manpreet Kaur, Manoj Kumar

Abstract:

High temperature corrosion is an imperative material degradation method experienced in thermal power plants and other energy generation sectors. Metallic materials such as ferritic steels have special properties such as easy fabrication and machinibilty, low cost, but a serious drawback of these materials is the worsening in properties initiating from the interaction with the environments. The metallic materials do not endure higher temperatures for extensive period of time because of their poor corrosion resistance. Friction Stir Processing (FSP), has emerged as the potent surface modification means and control of microstructure in thermo mechanically heat affecting zones of various metal alloys. In the current research work, FSP was done on the boiler tube of SA 210 Grade A1 material which is regularly used by thermal power plants. The strengthening of SA210 Grade A1 boiler steel through microstructural refinement by Friction Stir Processing (FSP) and analyze the effect of the same on high temperature corrosion behavior. The high temperature corrosion performance of the unprocessed and the FSPed specimens were evaluated in the laboratory using molten salt environment of Na₂SO₄-82%Fe₂(SO₄). The unprocessed and FSPed low carbon steel Gr A1 evaluation was done in terms of microstructure, corrosion resistance, mechanical properties like hardness- tensile. The in-depth characterization was done by EBSD, SEM/EDS and X-ray mapping analyses with an aim to propose the mechanism behind high temperature corrosion behavior of the FSPed steel.

Keywords: boiler steel, characterization, corrosion, EBSD/SEM/EDS/XRD, friction stir processing

Procedia PDF Downloads 227
46938 A Method to Predict the Thermo-Elastic Behavior of Laser-Integrated Machine Tools

Authors: C. Brecher, M. Fey, F. Du Bois-Reymond, S. Neus

Abstract:

Additive manufacturing has emerged into a fast-growing section within the manufacturing technologies. Established machine tool manufacturers, such as DMG MORI, recently presented machine tools combining milling and laser welding. By this, machine tools can realize a higher degree of flexibility and a shorter production time. Still there are challenges that have to be accounted for in terms of maintaining the necessary machining accuracy - especially due to thermal effects arising through the use of high power laser processing units. To study the thermal behavior of laser-integrated machine tools, it is essential to analyze and simulate the thermal behavior of machine components, individual and assembled. This information will help to design a geometrically stable machine tool under the influence of high power laser processes. This paper presents an approach to decrease the loss of machining precision due to thermal impacts. Real effects of laser machining processes are considered and thus enable an optimized design of the machine tool, respective its components, in the early design phase. Core element of this approach is a matched FEM model considering all relevant variables arising, e.g. laser power, angle of laser beam, reflective coefficients and heat transfer coefficient. Hence, a systematic approach to obtain this matched FEM model is essential. Indicating the thermal behavior of structural components as well as predicting the laser beam path, to determine the relevant beam intensity on the structural components, there are the two constituent aspects of the method. To match the model both aspects of the method have to be combined and verified empirically. In this context, an essential machine component of a five axis machine tool, the turn-swivel table, serves as the demonstration object for the verification process. Therefore, a turn-swivel table test bench as well as an experimental set-up to measure the beam propagation were developed and are described in the paper. In addition to the empirical investigation, a simulative approach of the described types of experimental examination is presented. Concluding, it is shown that the method and a good understanding of the two core aspects, the thermo-elastic machine behavior and the laser beam path, as well as their combination helps designers to minimize the loss of precision in the early stages of the design phase.

Keywords: additive manufacturing, laser beam machining, machine tool, thermal effects

Procedia PDF Downloads 251
46937 The Effect of Online Analyzer Malfunction on the Performance of Sulfur Recovery Unit and Providing a Temporary Solution to Reduce the Emission Rate

Authors: Hamid Reza Mahdipoor, Mehdi Bahrami, Mohammad Bodaghi, Seyed Ali Akbar Mansoori

Abstract:

Nowadays, with stricter limitations to reduce emissions, considerable penalties are imposed if pollution limits are exceeded. Therefore, refineries, along with focusing on improving the quality of their products, are also focused on producing products with the least environmental impact. The duty of the sulfur recovery unit (SRU) is to convert H₂S gas coming from the upstream units to elemental sulfur and minimize the burning of sulfur compounds to SO₂. The Claus process is a common process for converting H₂S to sulfur, including a reaction furnace followed by catalytic reactors and sulfur condensers. In addition to a Claus section, SRUs usually consist of a tail gas treatment (TGT) section to decrease the concentration of SO₂ in the flue gas below the emission limits. To operate an SRU properly, the flow rate of combustion air to the reaction furnace must be adjusted so that the Claus reaction is performed according to stoichiometry. Accurate control of the air demand leads to an optimum recovery of sulfur during the flow and composition fluctuations in the acid gas feed. Therefore, the major control system in the SRU is the air demand control loop, which includes a feed-forward control system based on predetermined feed flow rates and a feed-back control system based on the signal from the tail gas online analyzer. The use of online analyzers requires compliance with the installation and operation instructions. Unfortunately, most of these analyzers in Iran are out of service for different reasons, like the low importance of environmental issues and a lack of access to after-sales services due to sanctions. In this paper, an SRU in Iran was simulated and calibrated using industrial experimental data. Afterward, the effect of the malfunction of the online analyzer on the performance of SRU was investigated using the calibrated simulation. The results showed that an increase in the SO₂ concentration in the tail gas led to an increase in the temperature of the reduction reactor in the TGT section. This increase in temperature caused the failure of TGT and increased the concentration of SO₂ from 750 ppm to 35,000 ppm. In addition, the lack of a control system for the adjustment of the combustion air caused further increases in SO₂ emissions. In some processes, the major variable cannot be controlled directly due to difficulty in measurement or a long delay in the sampling system. In these cases, a secondary variable, which can be measured more easily, is considered to be controlled. With the correct selection of this variable, the main variable is also controlled along with the secondary variable. This strategy for controlling a process system is referred to as inferential control" and is considered in this paper. Therefore, a sensitivity analysis was performed to investigate the sensitivity of other measurable parameters to input disturbances. The results revealed that the output temperature of the first Claus reactor could be used for inferential control of the combustion air. Applying this method to the operation led to maximizing the sulfur recovery in the Claus section.

Keywords: sulfur recovery, online analyzer, inferential control, SO₂ emission

Procedia PDF Downloads 64
46936 Image Processing of Scanning Electron Microscope Micrograph of Ferrite and Pearlite Steel for Recognition of Micro-Constituents

Authors: Subir Gupta, Subhas Ganguly

Abstract:

In this paper, we demonstrate the new area of application of image processing in metallurgical images to develop the more opportunity for structure-property correlation based approaches of alloy design. The present exercise focuses on the development of image processing tools suitable for phrase segmentation, grain boundary detection and recognition of micro-constituents in SEM micrographs of ferrite and pearlite steels. A comprehensive data of micrographs have been experimentally developed encompassing the variation of ferrite and pearlite volume fractions and taking images at different magnification (500X, 1000X, 15000X, 2000X, 3000X and 5000X) under scanning electron microscope. The variation in the volume fraction has been achieved using four different plain carbon steel containing 0.1, 0.22, 0.35 and 0.48 wt% C heat treated under annealing and normalizing treatments. The obtained data pool of micrographs arbitrarily divided into two parts to developing training and testing sets of micrographs. The statistical recognition features for ferrite and pearlite constituents have been developed by learning from training set of micrographs. The obtained features for microstructure pattern recognition are applied to test set of micrographs. The analysis of the result shows that the developed strategy can successfully detect the micro constitutes across the wide range of magnification and variation of volume fractions of the constituents in the structure with an accuracy of about +/- 5%.

Keywords: SEM micrograph, metallurgical image processing, ferrite pearlite steel, microstructure

Procedia PDF Downloads 190
46935 Techno-Economic Analysis of the Production of Aniline

Authors: Dharshini M., Hema N. S.

Abstract:

The project for the production of aniline is done by providing 295.46 tons per day of nitrobenzene as feed. The material and energy balance calculations for the different equipment like distillation column, heat exchangers, reactor and mixer are carried out with simulation via DWSIM. The conversion of nitrobenzene to aniline by hydrogenation process is considered to be 96% and the total production of the plant was found to be 215 TPD. The cost estimation of the process is carried out to estimate the feasibility of the plant. The net profit and percentage return of investment is estimated to be ₹27 crores and 24.6%. The payback period was estimated to be 4.05 years and the unit production cost is ₹113/kg. A techno-economic analysis was performed for the production of aniline; the result includes economic analysis and sensitivity analysis of critical factors. From economic analysis, larger the plant scale increases the total capital investment and annual operating cost, even though the unit production cost decreases. Uncertainty analysis was performed to predict the influence of economic factors on profitability and the scenario analysis is one way to quantify uncertainty. In scenario analysis the best-case scenario and the worst-case scenario are compared with the base case scenario. The best-case scenario was found at a feed rate of 120 kmol/hr with a unit production cost of ₹112.05/kg and the worst-case scenario was found at a feed rate of 60 kmol/hr with a unit production cost of ₹115.9/kg. The base case is closely related to the best case by 99.2% in terms of unit production cost. since the unit production cost is less and the profitability is more with less payback time, it is feasible to construct a plant at this capacity.

Keywords: aniline, nitrobenzene, economic analysis, unit production cost

Procedia PDF Downloads 93
46934 Phospholipid Cationic and Zwitterionic Compounds as Potential Non-Toxic Antifouling Agents: A Study of Biofilm Formation Assessed by Micro-titer Assays with Marine Bacteria and Eco-toxicological Effect on Marine Microalgae

Authors: D. Malouch, M. Berchel, C. Dreanno, S. Stachowski-Haberkorn, P-A. Jaffres

Abstract:

Biofouling is a complex natural phenomenon that involves biological, physical and chemical properties related to the environment, the submerged surface and the living organisms involved. Bio-colonization of artificial structures can cause various economic and environmental impacts. The increase in costs associated with the over-consumption of fuel from biocolonized vessels has been widely studied. Measurement drifts from submerged sensors, as well as obstructions in heat exchangers, and deterioration of offshore structures are major difficulties that industries are dealing with. Therefore, surfaces that inhibit biocolonization are required in different areas (water treatment, marine paints, etc.) and many efforts have been devoted to produce efficient and eco-compatible antifouling agents. The different steps of surface fouling are widely described in literature. Studying the biofilm and its stages provides a better understanding of how to elaborate more efficient antifouling strategies. Several approaches are currently applied, such as the use of biocide anti-fouling paint (mainly with copper derivatives) and super-hydrophobic coatings. While these two processes are proving to be the most effective, they are not entirely satisfactory, especially in a context of a changing legislation. Nowadays, the challenge is to prevent biofouling with non-biocide compounds, offering a cost effective solution, but with no toxic effects on marine organisms. Since the micro-fouling phase plays an important role in the regulation of the following steps of biofilm formation, it is desired to reduce or delate biofouling of a given surface by inhibiting the micro-fouling at its early stages. In our recent works, we reported that some amphiphilic compounds exhibited bacteriostatic or bactericidal properties at a concentration that did not affect mammalian eukaryotic cells. These remarkable properties invited us to assess this type of bio-inspired phospholipids to prevent the colonization of surfaces by marine bacteria. Of note, other studies reported that amphiphilic compounds interacted with bacteria leading to a reduction of their development. An amphiphilic compound is a molecule consisting of a hydrophobic domain and a polar head (ionic or non-ionic). These compounds appear to have interesting antifouling properties: some ionic compounds have shown antimicrobial activity, and zwitterions can reduce nonspecific adsorption of proteins. Herein, we investigate the potential of amphiphilic compounds as inhibitors of bacterial growth and marine biofilm formation. The aim of this study is to compare the efficacy of four synthetic phospholipids that features a cationic charge or a zwitterionic polar-head group to prevent microfouling with marine bacteria. Toxicity of these compounds was also studied in order to identify the most promising compounds that inhibit biofilm development and show low cytotoxicity on two links representative of coastal marine food webs: phytoplankton and oyster larvae.

Keywords: amphiphilic phospholipids, biofilm, marine fouling, non-toxique assays

Procedia PDF Downloads 125
46933 Liquid Illumination: Fabricating Images of Fashion and Architecture

Authors: Sue Hershberger Yoder, Jon Yoder

Abstract:

“The appearance does not hide the essence, it reveals it; it is the essence.”—Jean-Paul Sartre, Being and Nothingness Three decades ago, transarchitect Marcos Novak developed an early form of algorithmic animation he called “liquid architecture.” In that project, digitally floating forms morphed seamlessly in cyberspace without claiming to evolve or improve. Change itself was seen as inevitable. And although some imagistic moments certainly stood out, none was hierarchically privileged over another. That project challenged longstanding assumptions about creativity and artistic genius by posing infinite parametric possibilities as inviting alternatives to traditional notions of stability, originality, and evolution. Through ephemeral processes of printing, milling, and projecting, the exhibition “Liquid Illumination” destabilizes the solid foundations of fashion and architecture. The installation is neither worn nor built in the conventional sense, but—like the sensual art forms of fashion and architecture—it is still radically embodied through the logics and techniques of design. Appearances are everything. Surface pattern and color are no longer understood as minor afterthoughts or vapid carriers of dubious content. Here, they become essential but ever-changing aspects of precisely fabricated images. Fourteen silk “colorways” (a term from the fashion industry) are framed selections from ongoing experiments with intricate pattern and complex color configurations. Whether these images are printed on fabric, milled in foam, or illuminated through projection, they explore and celebrate the untapped potentials of the surficial and superficial. Some components of individual prints appear to float in front of others through stereoscopic superimpositions; some figures appear to melt into others due to subtle changes in hue without corresponding changes in value; and some layers appear to vibrate via moiré effects that emerge from unexpected pattern and color combinations. The liturgical atmosphere of Liquid Illumination is intended to acknowledge that, like the simultaneously sacred and superficial qualities of rose windows and illuminated manuscripts, artistic and religious ideologies are also always malleable. The intellectual provocation of this paper pushes the boundaries of current thinking concerning viable applications for fashion print designs and architectural images—challenging traditional boundaries between fine art and design. The opportunistic installation of digital printing, CNC milling, and video projection mapping in a gallery that is normally reserved for fine art exhibitions raises important questions about cultural/commercial display, mass customization, digital reproduction, and the increasing prominence of surface effects (color, texture, pattern, reflection, saturation, etc.) across a range of artistic practices and design disciplines.

Keywords: fashion, print design, architecture, projection mapping, image, fabrication

Procedia PDF Downloads 81
46932 A Rotating Facility with High Temporal and Spatial Resolution Particle Image Velocimetry System to Investigate the Turbulent Boundary Layer Flow

Authors: Ruquan You, Haiwang Li, Zhi Tao

Abstract:

A time-resolved particle image velocimetry (PIV) system is developed to investigate the boundary layer flow with the effect of rotating Coriolis and buoyancy force. This time-resolved PIV system consists of a 10 Watts continuous laser diode and a high-speed camera. The laser diode is able to provide a less than 1mm thickness sheet light, and the high-speed camera can capture the 6400 frames per second with 1024×1024 pixels. The whole laser and the camera are fixed on the rotating facility with 1 radius meters and up to 500 revolutions per minute, which can measure the boundary flow velocity in the rotating channel with and without ribs directly at rotating conditions. To investigate the effect of buoyancy force, transparent heater glasses are used to provide the constant thermal heat flux, and then the density differences are generated near the channel wall, and the buoyancy force can be simulated when the channel is rotating. Due to the high temporal and spatial resolution of the system, the proper orthogonal decomposition (POD) can be developed to analyze the characteristic of the turbulent boundary layer flow at rotating conditions. With this rotating facility and PIV system, the velocity profile, Reynolds shear stress, spatial and temporal correlation, and the POD modes of the turbulent boundary layer flow can be discussed.

Keywords: rotating facility, PIV, boundary layer flow, spatial and temporal resolution

Procedia PDF Downloads 168
46931 Production of Pour Point Depressant for Paraffinic Crude Oils

Authors: Mosaad Attia Elkasaby

Abstract:

The crude oil contains paraffines, aromatics, and asphaltenes in addition to some organic impurities, with increasing demands to reduce the cost of crude oil production, the uses of a pour point depressant is mandatory to maintain good flow rate. The wax materials cause many problems during production, storage, and transport, especially at low temperature, as these waxes tend, at low temperatures, to precipitate on the wall lines, thus leads to the high viscosity of crude oil and impede the flow rate, which represents an additional burden for crude oil pumping system from the place of production to the refinery. There are many ways to solve this problem, including, but not limited to, heat the crude and the use of organic solvents. But one of the most important disadvantages of these methods is the high economic cost. The aim of this innovation is to manufacture some polymeric materials (polymers based on aniline) that are processed locally that can be used as a pour point depressant of crude oil. For the first time, polymer based on aniline is modified and used with a number of organic solvents and tested with solvent (Styrene). It was found that the polymer based on aniline, when modified, had full solubility in styrene, unlike other organic solvent that was used in the past, such as chloroform and toluene. We also used a new solvent (PONA) that is obtained from the process of hydrotreating and separation of straight run naphtha to dissolve polymer based on aniline as a pour point depressant of crude oil. This innovative include studies conducted on highly paraffinic crude oil (C.O.1 and C.O.2). On using concentration (2500 ppm) of polymer based on aniline, the pour point of crude oil has decreased from +33 to - 9°C in case of crude oil (C.O.1) and from + 42 to – 6°C in case crude oil (C.O.2) at the same concentration.

Keywords: PPD, aniline, paraffinic crude oils, polymers

Procedia PDF Downloads 80
46930 An Operators’ Real-sense-based Fire Simulation for Human Factors Validation in Nuclear Power Plants

Authors: Sa-Kil Kim, Jang-Soo Lee

Abstract:

On March 31, 1993, a severe fire accident took place in a nuclear power plant located in Narora in North India. The event involved a major fire in the turbine building of NAPS unit-1 and resulted in a total loss of power to the unit for 17 hours. In addition, there was a heavy ingress of smoke in the control room, mainly through the intake of the ventilation system, forcing the operators to vacate the control room. The Narora fire accident provides us lessons indicating that operators could lose their mind and predictable behaviors during a fire. After the Fukushima accident, which resulted from a natural disaster, unanticipated external events are also required to be prepared and controlled for the ultimate safety of nuclear power plants. From last year, our research team has developed a test and evaluation facility that can simulate external events such as an earthquake and fire based on the operators’ real-sense. As one of the results of the project, we proposed a unit real-sense-based facility that can simulate fire events in a control room for utilizing a test-bed of human factor validation. The test-bed has the operator’s workstation shape and functions to simulate fire conditions such as smoke, heat, and auditory alarms in accordance with the prepared fire scenarios. Furthermore, the test-bed can be used for the operators’ training and experience.

Keywords: human behavior in fire, human factors validation, nuclear power plants, real-sense-based fire simulation

Procedia PDF Downloads 267
46929 Resilience Compendium: Strategies to Reduce Communities' Risk to Disasters

Authors: Caroline Spencer, Suzanne Cross, Dudley McArdle, Frank Archer

Abstract:

Objectives: The evolution of the Victorian Compendium of Community-Based Resilience Building Case Studies and its capacity to help communities implement activities that encourage adaptation to disaster risk reduction and promote community resilience in rural and urban locations provide this paper's objectives. Background: Between 2012 and 2019, community groups presented at the Monash University Disaster Resilience Initiative (MUDRI) 'Advancing Community Resilience Annual Forums', provided opportunities for communities to impart local resilience activities, how to solve challenges and share unforeseen learning and be considered for inclusion in the Compendium. A key tenet of the Compendium encourages compiling and sharing of grass-roots resilience building activities to help communities before, during, and after unexpected emergencies. The online Compendium provides free access for anyone wanting to help communities build expertise, reduce program duplication, and save valuable community resources. Identifying case study features across the emergency phases and analyzing critical success factors helps communities understand what worked and what did not work to achieve success and avoid known barriers. International exemplars inform the Compendium, which represents an Australian first and enhances Victorian community resilience initiatives. Emergency Management Victoria provided seed funding for the Compendium. MUDRI matched this support and continues to fund the project. A joint Steering Committee with broad-based user input and Human ethics approval guides its continued growth. Methods: A thematic analysis of the Compendium identified case study features, including critical success factors. Results: The Compendium comprises 38 case studies, representing all eight Victorian regions. Case studies addressed emergency phases, before (29), during (7), and after (17) events. Case studies addressed all hazards (23), bushfires (11), heat (2), fire safety (1), and house fires (1). Twenty case studies used a framework. Thirty received funding, of which nine received less than $20,000 and five received more than $100,000. Twenty-nine addressed a whole of community perspective. Case studies revealed unique and valuable learning in diverse settings. Critical success factors included strong governance; board support, leadership, and trust; partnerships; commitment, adaptability, and stamina; community-led initiatives. Other success factors included a paid facilitator and local government support; external funding, and celebrating success. Anecdotally, we are aware that community groups reference Compendium and that its value adds to community resilience planning. Discussion: The Compendium offers an innovative contribution to resilience research and practice. It augments the seven resilience characteristics to strengthen and encourage communities as outlined in the Statewide Community Resilience Framework for Emergency Management; brings together people from across sectors to deliver distinct, yet connected actions to strengthen resilience as a part of the Rockefeller funded Resilient Melbourne Strategy, and supports communities and economies to be resilient when a shock occurs as identified in the recently published Australian National Disaster Risk Reduction Framework. Each case study offers learning about connecting with community and how to increase their resilience to disaster risks and to keep their community safe from unexpected emergencies. Conclusion: The Compendium enables diverse communities to adopt or adapt proven resilience activities, thereby preserving valuable community resources and offers the opportunity to extend to a national or international Compendium.

Keywords: case study, community, compendium, disaster risk reduction, resilience

Procedia PDF Downloads 107
46928 Thermodynamic and Immunochemical Studies of Antibody Biofunctionalized Gold Nanoparticles Mediated Photothermal Ablation in Human Liver Cancer Cells

Authors: Lucian Mocan, Flaviu Tabaran, Teodora Mocan, Cristian Matea, Cornel Iancu

Abstract:

We present method of Gold Nanoparticle enhanced laser thermal ablation of HepG2 cells (Human hepatocellular liver carcinoma cell line), based on a simple gold nanoparticle carrier system, such as serum albumin (BSA), and demonstrate its selective therapeutic efficacy. Hyperspectral, contrast phase, and confocal microscopy combined immunochemical staining were used to demonstrate the selective internalization of HSA-GNPs via Gp60 receptors and the caveolin-mediated endocytosis inside HepG2 cells. We examined the ability of laser-activated carbon nanotubes to induce Hsp70 expression using confocal microscopy. Hep G2 cells heat-shocked (laser activated BSA-GNPs) to 42°C demonstrated an up-regulation of Hsp70 compared with control cells (BSA-GNPs treated cells without laser), which showed no detectable constitutive expression of Hsp70. We observed a time-dependent induction in Hsp70 expression in Hep G2 treated with BSA-GNPs and LASER irradiated. The post-irradiation apoptotic rate of HepG2 cells treated with HSA-GNPs ranged from 88.24% (for 50 mg/L) at 60 seconds, while at 30 minute the rate increased to 92.34% (50 mg/L). These unique results may represent a major step in liver cancer treatment using nanolocalized thermal ablation by laser heating.

Keywords: gold nanoparticles, liver cancer, albumin, laser irradiation

Procedia PDF Downloads 286
46927 Fully Instrumented Small-Scale Fire Resistance Benches for Aeronautical Composites Assessment

Authors: Fabienne Samyn, Pauline Tranchard, Sophie Duquesne, Emilie Goncalves, Bruno Estebe, Serge Boubigot

Abstract:

Stringent fire safety regulations are enforced in the aeronautical industry due to the consequences that potential fire event on an aircraft might imply. This is so much true that the fire issue is considered right from the design of the aircraft structure. Due to the incorporation of an increasing amount of polymer matrix composites in replacement of more conventional materials like metals, the nature of the fire risks is changing. The choice of materials used is consequently of prime importance as well as the evaluation of its resistance to fire. The fire testing is mostly done using the so-called certification tests according to standards such as the ISO2685:1998(E). The latter describes a protocol to evaluate the fire resistance of structures located in fire zone (ability to withstand fire for 5min). The test consists in exposing an at least 300x300mm² sample to an 1100°C propane flame with a calibrated heat flux of 116kW/m². This type of test is time-consuming, expensive and gives access to limited information in terms of fire behavior of the materials (pass or fail test). Consequently, it can barely be used for material development purposes. In this context, the laboratory UMET in collaboration with industrial partners has developed a horizontal and a vertical small-scale instrumented fire benches for the characterization of the fire behavior of composites. The benches using smaller samples (no more than 150x150mm²) enables to cut downs costs and hence to increase sampling throughput. However, the main added value of our benches is the instrumentation used to collect useful information to understand the behavior of the materials. Indeed, measurements of the sample backside temperature are performed using IR camera in both configurations. In addition, for the vertical set up, a complete characterization of the degradation process, can be achieved via mass loss measurements and quantification of the gasses released during the tests. These benches have been used to characterize and study the fire behavior of aeronautical carbon/epoxy composites. The horizontal set up has been used in particular to study the performances and durability of protective intumescent coating on 2mm thick 2D laminates. The efficiency of this approach has been validated, and the optimized coating thickness has been determined as well as the performances after aging. Reductions of the performances after aging were attributed to the migration of some of the coating additives. The vertical set up has enabled to investigate the degradation process of composites under fire. An isotropic and a unidirectional 4mm thick laminates have been characterized using the bench and post-fire analyses. The mass loss measurements and the gas phase analyses of both composites do not present significant differences unlike the temperature profiles in the thickness of the samples. The differences have been attributed to differences of thermal conductivity as well as delamination that is much more pronounced for the isotropic composite (observed on the IR-images). This has been confirmed by X-ray microtomography. The developed benches have proven to be valuable tools to develop fire safe composites.

Keywords: aeronautical carbon/epoxy composite, durability, intumescent coating, small-scale ‘ISO 2685 like’ fire resistance test, X-ray microtomography

Procedia PDF Downloads 259
46926 A Non-Linear Eddy Viscosity Model for Turbulent Natural Convection in Geophysical Flows

Authors: J. P. Panda, K. Sasmal, H. V. Warrior

Abstract:

Eddy viscosity models in turbulence modeling can be mainly classified as linear and nonlinear models. Linear formulations are simple and require less computational resources but have the disadvantage that they cannot predict actual flow pattern in complex geophysical flows where streamline curvature and swirling motion are predominant. A constitutive equation of Reynolds stress anisotropy is adopted for the formulation of eddy viscosity including all the possible higher order terms quadratic in the mean velocity gradients, and a simplified model is developed for actual oceanic flows where only the vertical velocity gradients are important. The new model is incorporated into the one dimensional General Ocean Turbulence Model (GOTM). Two realistic oceanic test cases (OWS Papa and FLEX' 76) have been investigated. The new model predictions match well with the observational data and are better in comparison to the predictions of the two equation k-epsilon model. The proposed model can be easily incorporated in the three dimensional Princeton Ocean Model (POM) to simulate a wide range of oceanic processes. Practically, this model can be implemented in the coastal regions where trasverse shear induces higher vorticity, and for prediction of flow in estuaries and lakes, where depth is comparatively less. The model predictions of marine turbulence and other related data (e.g. Sea surface temperature, Surface heat flux and vertical temperature profile) can be utilized in short term ocean and climate forecasting and warning systems.

Keywords: Eddy viscosity, turbulence modeling, GOTM, CFD

Procedia PDF Downloads 189
46925 Folding Pathway and Thermodynamic Stability of Monomeric GroEL

Authors: Sarita Puri, Tapan K. Chaudhuri

Abstract:

Chaperonin GroEL is a tetradecameric Escherichia coli protein having identical subunits of 57 kDa. The elucidation of thermodynamic parameters related to stability for the native GroEL is not feasible as it undergoes irreversible unfolding because of its large size (800kDa) and multimeric nature. Nevertheless, it is important to determine the thermodynamic stability parameters for the highly stable GroEL protein as it helps in folding and holding of many substrate proteins during many cellular stresses. Properly folded monomers work as building-block for the formation of native tetradecameric GroEL. Spontaneous refolding behavior of monomeric GroEL makes it suitable for protein-denaturant interactions and thermodynamic stability based studies. The urea mediated unfolding is a three state process which means there is the formation of one intermediate state along with native and unfolded states. The heat mediated denaturation is a two-state process. The unfolding process is reversible as observed by the spontaneous refolding of denatured protein in both urea and head mediated refolding processes. Analysis of folding/unfolding data provides a measure of various thermodynamic stability parameters for the monomeric GroEL. The proposed mechanism of unfolding of monomeric GroEL is a three state process which involves formation of one stable intermediate having folded apical domain and unfolded equatorial, intermediate domains. Research in progress is to demonstrate the importance of specific residues in stability and oligomerization of GroEL protein. Several mutant versions of GroEL are under investigation to resolve the above mentioned issue.

Keywords: equilibrium unfolding, monomeric GroEl, spontaneous refolding, thermodynamic stability

Procedia PDF Downloads 268
46924 Analysis of a Multiejector Cooling System in a Truck at Different Loads

Authors: Leonardo E. Pacheco, Carlos A. Díaz

Abstract:

An alternative way of addressing the difficult to recover the useless heat is through an ejector refrigeration cycle for vehicles applications. A group of thermo-compressor supply the mechanical compressor function at conventional refrigeration compression system. The thermo-compressor group recovers the thermal energy from waste streams (exhaust gases product in internal combustion motors, gases burned in wellhead among others) to eliminate the power consumption of the mechanical compressor. These types of alternative cooling system (air-conditioners) present a kind of advantages in both the increase in energy efficiency and the improvement of the COP of the system being studied from their its mechanical simplicity (decrease of moving parts). An ejector refrigeration cycle represents a significant step forward in the optimization of the efficient use of energy in the process of air conditioning and an alternative to reduce the environmental impacts. On one side, with the energy recycling decreases the temperature of the gases thrown into the atmosphere, which contributes to the principal beneficiaries of the average temperature of the planet. In parallel, mitigating the environmental impact caused by the production and handling of conventional cooling fluids commonly available in the market, causing the destruction of the ozone layer. This work had studied the operation of the multiejector cooling system for a truck with a 420 HP engine at different rotation speed. The operation condition limits and the COP of multi-ejector cooling systems applied in a truck are analyzed for a variable rpm range from to 800–1800 rpm.

Keywords: ejector system, exhaust gas, multiejector cooling system, recovery energy

Procedia PDF Downloads 248
46923 Selective Oxidation of 6Mn-2Si Advanced High Strength Steels during Intercritical Annealing Treatment

Authors: Maedeh Pourmajidian, Joseph R. McDermid

Abstract:

Advanced High Strength Steels are revolutionizing both the steel and automotive industries due to their high specific strength and ability to absorb energy during crash events. This allows manufacturers to design vehicles with significantly increased fuel efficiency without compromising passenger safety. To maintain the structural integrity of the fabricated parts, they must be protected from corrosion damage through continuous hot-dip galvanizing process, which is challenging due to selective oxidation of Mn and Si on the surface of this AHSSs. The effects of process atmosphere oxygen partial pressure and small additions of Sn on the selective oxidation of a medium-Mn C-6Mn-2Si advanced high strength steel was investigated. Intercritical annealing heat treatments were carried out at 690˚C in an N2-5%H2 process atmosphere under dew points ranging from –50˚C to +5˚C. Surface oxide chemistries, morphologies, and thicknesses were determined at a variety of length scales by several techniques, including SEM, TEM+EELS, and XPS. TEM observations of the sample cross-sections revealed the transition to internal oxidation at the +5˚C dew point. EELS results suggested that the internal oxides network was composed of a multi-layer oxide structure with varying chemistry from oxide core towards the outer part. The combined effect of employing a known surface active element as a function of process atmosphere on the surface structure development and the possible impact on reactive wetting of the steel substrates by the continuous galvanizing zinc bath will be discussed.

Keywords: 3G AHSS, hot-dip galvanizing, oxygen partial pressure, selective oxidation

Procedia PDF Downloads 385
46922 Development of a Framework for Family Therapy for Adolescent Substance Abuse: A Perspective from India

Authors: Tanya Anand, Arun Kandasamy, L. N. Suman

Abstract:

Family based therapy for adolescent substance abuse has been studied to be effective in the West. Whereas, based on literature review, family therapy and interventions for adolescent substance abuse is still in its nascent stages in India. A multidimensional perspective to treatment has been indicated consistently in the Indian literature, but standardized therapy which addresses early substance abuse, from a social-ecological perspective has not been developed and studied for Indian population. While numerous researches have been conducted in India on the need of engaging the family in therapy for the purpose of symptom reduction, long-term maintenance of gains, and reducing family burnout, distress and dysfunction; a family based model in the Indian context has not been developed and tried, to the best of our knowledge. Hence, from the aim of building a model to treat adolescent substance abuse within the family context, experts in the area of mental health and deaddiction were interviewed to inform upon the clinical difficulties, challenges, uniqueness that Indian families present with. The integration of indigenous techniques that would be helpful in engaging families of young individuals with difficulties were also explored. Eight experts' who were interviewed, have 10-30 years of experience in working with families and substance users. An open-ended interview was conducted with the experts individually and audio-recorded. The interviews were then transcribed and subjected to qualitative analysis for building a framework and treatment guideline. Additionally, interviews with patients and their parents were conducted to elicit ‘felt needs’. The results of the analysis revealed culture-specific issues widely experienced within Indian families by adolescents and young adults, centering around the theme of Individuation versus collective identity and living. Substance abuse, in this framework, was found to be perceived as one of the maladaptive ways of the youth to disengage from the family and attempt at individuation and the responsibilities that are considered entitlements in the culture. On the other hand, interviews with family members revealed them to be engaging in inconsistent patterns of care and parenting. This was experienced and observed in terms of fostering interdependence within the family, sometimes within adverse socio-economic and societal conditions, where enacted and perceived stigma kept the individual and family members in a vicious loop of maladaptive coping patterns, dysfunctional family arrangements, and often leading to burnout with poor help seeking. The paper inform upon a framework that lays down the foundation for assessments, planning, case management and therapist competencies, required to address alcohol and drug issues in an Indian family context with such etiological factors at its heart. This paper will cover qualitative results of the interviews and present a model that may guide mental health professionals for treatment of adolescent substance use and family therapy.

Keywords: Indian families, family therapy, de-addiction, adolescent, youth, substance abuse, behavioral issues, felt needs, culture, etiology, model building, framework development, interviews

Procedia PDF Downloads 124
46921 The Efficacy of Preoperative Thermal Pulsation Treatment in Reducing Post Cataract Surgery Dry Eye Disease: A Systematic Review and Meta-analysis

Authors: Lugean K. Alomari, Rahaf K. Sharif, Basil K. Alomari, Hind M. Aljabri, Faisal F. Aljahdali, Amal A. Alomari, Saeed A. Alghamdi

Abstract:

Background: The thermal pulsation system is a therapy that uses heat and massage to treat dry eye disease; thus, some trials have been published to compare it with the conventional treatment. The aim of this study is to conduct a systematic review and meta-analysis comparing the efficacy of thermal pulsation systems with conventional treatment in patients undergoing cataract surgery. Methods: Medline, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) databases were searched for eligible trials. We included three randomized controlled trials (RCTs) that compared the thermal pulsation system with the conventional treatment in patients undergoing cataract surgery. A table of characteristics was plotted, and the Quality of the studies was assessed using the Cochrane risk-of-bias tool for randomized trials (RoB 2). Forest plots were plotted using the Random-effect Inverse Variance method. χ2 test and the Higgins-I-squared (I2) model were used to assess heterogeneity. A total of 201 cataract surgery patients were included, with 105 undergoing preoperative pulsation therapy and 96 receiving conventional treatment. Demographic analysis revealed comparable distributions across groups. Results: All the studies in our analysis are of good quality with a low risk of bias. A total of 201 patients were included in the analysis, out of which 105 underwent pulsation therapy, and 95 were in the control group. Tear Break-up Time (TBUT) analysis revealed no significant baseline differences, except pulsation therapy being better at 1 month. (SMD 0.42 [95%CI 0.14 - 0.70] p=0.004). This positive trend continued at three months (SMD 0.52 [95% CI (0.20 – 0.84)] p=0.002). Corneal fluorescein staining scores and Meibomian gland-yielding secretion scores showed no significant differences at baseline. However, at one month, pulsation therapy significantly improved Meibomian gland function (SMD -0.86 [95% CI (-1.20 - -0.53)] p<0.00001), indicating a reduced risk of dry eye syndrome. Conclusion: Preoperative pulsation therapy appears to enhance post-cataract surgery outcomes, particularly in terms of tear film stability and Meibomian gland secretory function. The sustained positive effects observed at one and three months post-surgery suggest the potential for long-term benefits.

Keywords: lipiflow, cataract, thermal pulsation, dry eye

Procedia PDF Downloads 9
46920 Threats to the Business Value: The Case of Mechanical Engineering Companies in the Czech Republic

Authors: Maria Reznakova, Michala Strnadova, Lukas Reznak

Abstract:

Successful achievement of strategic goals requires an effective performance management system, i.e. determining the appropriate indicators measuring the rate of goal achievement. Assuming that the goal of the owners is to grow the assets they invested in, it is vital to identify the key performance indicators, which contribute to value creation. These indicators are known as value drivers. Based on the undertaken literature search, a value driver is defined as any factor that affects the value of an enterprise. The important factors are then monitored by both financial and non-financial indicators. Financial performance indicators are most useful in strategic management, since they indicate whether a company's strategy implementation and execution are contributing to bottom line improvement. Non-financial indicators are mainly used for short-term decisions. The identification of value drivers, however, is problematic for companies which are not publicly traded. Therefore financial ratios continue to be used to measure the performance of companies, despite their considerable criticism. The main drawback of such indicators is the fact that they are calculated based on accounting data, while accounting rules may differ considerably across different environments. For successful enterprise performance management it is vital to avoid factors that may reduce (or even destroy) its value. Among the known factors reducing the enterprise value are the lack of capital, lack of strategic management system and poor quality of production. In order to gain further insight into the topic, the paper presents results of the research identifying factors that adversely affect the performance of mechanical engineering enterprises in the Czech Republic. The research methodology focuses on both the qualitative and the quantitative aspect of the topic. The qualitative data were obtained from a questionnaire survey of the enterprises senior management, while the quantitative financial data were obtained from the Analysis Major Database for European Sources (AMADEUS). The questionnaire prompted managers to list factors which negatively affect business performance of their enterprises. The range of potential factors was based on a secondary research – analysis of previously undertaken questionnaire surveys and research of studies published in the scientific literature. The results of the survey were evaluated both in general, by average scores, and by detailed sub-analyses of additional criteria. These include the company specific characteristics, such as its size and ownership structure. The evaluation also included a comparison of the managers’ opinions and the performance of their enterprises – measured by return on equity and return on assets ratios. The comparisons were tested by a series of non-parametric tests of statistical significance. The results of the analyses show that the factors most detrimental to the enterprise performance include the incompetence of responsible employees and the disregard to the customers‘ requirements.

Keywords: business value, financial ratios, performance measurement, value drivers

Procedia PDF Downloads 214
46919 Experimental Investigation of the Thermal Conductivity of Neodymium and Samarium Melts by a Laser Flash Technique

Authors: Igor V. Savchenko, Dmitrii A. Samoshkin

Abstract:

The active study of the properties of lanthanides has begun in the late 50s of the last century, when methods for their purification were developed and metals with a relatively low content of impurities were obtained. Nevertheless, up to date, many properties of the rare earth metals (REM) have not been experimentally investigated, or insufficiently studied. Currently, the thermal conductivity and thermal diffusivity of lanthanides have been studied most thoroughly in the low-temperature region and at moderate temperatures (near 293 K). In the high-temperature region, corresponding to the solid phase, data on the thermophysical characteristics of the REM are fragmentary and in some cases contradictory. Analysis of the literature showed that the data on the thermal conductivity and thermal diffusivity of light REM in the liquid state are few in number, little informative (only one point corresponds to the liquid state region), contradictory (the nature of the thermal conductivity change with temperature is not reproduced), as well as the results of measurements diverge significantly beyond the limits of the total errors. Thereby our experimental results allow to fill this gap and to clarify the existing information on the heat transfer coefficients of neodymium and samarium in a wide temperature range from the melting point up to 1770 K. The measurement of the thermal conductivity of investigated metallic melts was carried out by laser flash technique on an automated experimental setup LFA-427. Neodymium sample of brand NM-1 (99.21 wt % purity) and samarium sample of brand SmM-1 (99.94 wt % purity) were cut from metal ingots and then ones were annealed in a vacuum (1 mPa) at a temperature of 1400 K for 3 hours. Measuring cells of a special design from tantalum were used for experiments. Sealing of the cell with a sample inside it was carried out by argon-arc welding in the protective atmosphere of the glovebox. The glovebox was filled with argon with purity of 99.998 vol. %; argon was additionally cleaned up by continuous running through sponge titanium heated to 900–1000 K. The general systematic error in determining the thermal conductivity of investigated metallic melts was 2–5%. The approximation dependences and the reference tables of the thermal conductivity and thermal diffusivity coefficients were developed. New reliable experimental data on the transport properties of the REM and their changes in phase transitions can serve as a scientific basis for optimizing the industrial processes of production and use of these materials, as well as ones are of interest for the theory of thermophysical properties of substances, physics of metals, liquids and phase transformations.

Keywords: high temperatures, laser flash technique, liquid state, metallic melt, rare earth metals, thermal conductivity, thermal diffusivity

Procedia PDF Downloads 185
46918 Sustainability in Space: Implementation of Circular Economy and Material Efficiency Strategies in Space Missions

Authors: Hamda M. Al-Ali

Abstract:

The ultimate aim of space exploration has been centralized around the possibility of life on other planets in the solar system. This aim is driven by the detrimental effects that climate change could potentially have on human survival on Earth in the future. This drives humans to search for feasible solutions to increase environmental and economical sustainability on Earth and to evaluate and explore the ability of human survival on other planets such as Mars. To do that, frequent space missions are required to meet the ambitious human goals. This means that reliable and affordable access to space is required, which could be largely achieved through the use of reusable spacecrafts. Therefore, materials and resources must be used wisely to meet the increasing demand. Space missions are currently extremely expensive to operate. However, reusing materials hence spacecrafts, can potentially reduce overall mission costs as well as the negative impact on both space and Earth environments. This is because reusing materials leads to less waste generated per mission, and therefore fewer landfill sites are required. Reusing materials reduces resource consumption, material production, and the need for processing new and replacement spacecraft and launch vehicle parts. Consequently, this will ease and facilitate human access to outer space as it will reduce the demand for scarce resources, which will boost material efficiency in the space industry. Material efficiency expresses the extent to which resources are consumed in the production cycle and how the waste produced by the industrial process is minimized. The strategies proposed in this paper to boost material efficiency in the space sector are the introduction of key performance indicators that are able to measure material efficiency as well as the introduction of clearly defined policies and legislation that can be easily implemented within the general practices in the space industry. Another strategy to improve material efficiency is by amplifying energy and resource efficiency through reusing materials. The circularity of various spacecraft materials such as Kevlar, steel, and aluminum alloys could be maximized through reusing them directly or after galvanizing them with another layer of material to act as a protective coat. This research paper has an aim to investigate and discuss how to improve material efficiency in space missions considering circular economy concepts so that space and Earth become more economically and environmentally sustainable. The circular economy is a transition from a make-use-waste linear model to a closed-loop socio-economic model, which is regenerative and restorative in nature. The implementation of a circular economy will reduce waste and pollution through maximizing material efficiency, ensuring that businesses can thrive and sustain. Further research into the extent to which reusable launch vehicles reduce space mission costs have been discussed, along with the environmental and economic implications it could have on the space sector and the environment. This has been examined through research and in-depth literature review of published reports, books, scientific articles, and journals. Keywords such as material efficiency, circular economy, reusable launch vehicles and spacecraft materials were used to search for relevant literature.

Keywords: circular economy, key performance indicator, material efficiency, reusable launch vehicles, spacecraft materials

Procedia PDF Downloads 115
46917 Efficient Study of Substrate Integrated Waveguide Devices

Authors: J. Hajri, H. Hrizi, N. Sboui, H. Baudrand

Abstract:

This paper presents a study of SIW circuits (Substrate Integrated Waveguide) with a rigorous and fast original approach based on Iterative process (WCIP). The theoretical suggested study is validated by the simulation of two different examples of SIW circuits. The obtained results are in good agreement with those of measurement and with software HFSS.

Keywords: convergence study, HFSS, modal decomposition, SIW circuits, WCIP method

Procedia PDF Downloads 490
46916 Solar-Powered Water Purification Using Ozone and Sand Filtration

Authors: Kayla Youhanaie, Kenneth Dott, Greg Gillis-Smith

Abstract:

Access to clean water is a global challenge that affects nearly one-third of the world’s population. A lack of safe drinking water negatively affects a person’s health, safety, and economic status. However, many regions of the world that face this clean water challenge also have high solar energy potential. To address this worldwide issue and utilize available resources, a solar-powered water purification device was developed that could be implemented in communities around the world that lack access to potable water. The device uses ozone to destroy water-borne pathogens and sand filtration to filter out particulates from the water. To select the best method for this application, a quantitative energy efficiency comparison of three water purification methods was conducted: heat, UV light, and ozone. After constructing an initial prototype, the efficacy of the device was tested using agar petri dishes to test for bacteria growth in treated water samples at various time intervals after applying the device to contaminated water. The results demonstrated that the water purification device successfully removed all bacteria and particulates from the water within three minutes, making it safe for human consumption. These results, as well as the proposed design that utilizes widely available resources in target communities, suggest that the device is a sustainable solution to address the global water crisis and could improve the quality of life for millions of people worldwide.

Keywords: clean water, solar powered water purification, ozonation, sand filtration, global water crisis

Procedia PDF Downloads 59
46915 Amphiphilic Compounds as Potential Non-Toxic Antifouling Agents: A Study of Biofilm Formation Assessed by Micro-titer Assays with Marine Bacteria and Eco-toxicological Effect on Marine Algae

Authors: D. Malouch, M. Berchel, C. Dreanno, S. Stachowski-Haberkorn, P-A. Jaffres

Abstract:

Biofilm is a predominant lifestyle chosen by bacteria. Whether it is developed on an immerged surface or a mobile biofilm known as flocs, the bacteria within this form of life show properties different from its planktonic ones. Within the biofilm, the self-formed matrix of Extracellular Polymeric Substances (EPS) offers hydration, resources capture, enhanced resistance to antimicrobial agents, and allows cell-communication. Biofouling is a complex natural phenomenon that involves biological, physical and chemical properties related to the environment, the submerged surface and the living organisms involved. Bio-colonization of artificial structures can cause various economic and environmental impacts. The increase in costs associated with the over-consumption of fuel from biocolonized vessels has been widely studied. Measurement drifts from submerged sensors, as well as obstructions in heat exchangers, and deterioration of offshore structures are major difficulties that industries are dealing with. Therefore, surfaces that inhibit biocolonization are required in different areas (water treatment, marine paints, etc.) and many efforts have been devoted to produce efficient and eco-compatible antifouling agents. The different steps of surface fouling are widely described in literature. Studying the biofilm and its stages provides a better understanding of how to elaborate more efficient antifouling strategies. Several approaches are currently applied, such as the use of biocide anti-fouling paint6 (mainly with copper derivatives) and super-hydrophobic coatings. While these two processes are proving to be the most effective, they are not entirely satisfactory, especially in a context of a changing legislation. Nowadays, the challenge is to prevent biofouling with non-biocide compounds, offering a cost effective solution, but with no toxic effects on marine organisms. Since the micro-fouling phase plays an important role in the regulation of the following steps of biofilm formation7, it is desired to reduce or delate biofouling of a given surface by inhibiting the micro fouling at its early stages. In our recent works, we reported that some amphiphilic compounds exhibited bacteriostatic or bactericidal properties at a concentration that did not affect eukaryotic cells. These remarkable properties invited us to assess this type of bio-inspired phospholipids9 to prevent the colonization of surfaces by marine bacteria. Of note, other studies reported that amphiphilic compounds interacted with bacteria leading to a reduction of their development. An amphiphilic compound is a molecule consisting of a hydrophobic domain and a polar head (ionic or non-ionic). These compounds appear to have interesting antifouling properties: some ionic compounds have shown antimicrobial activity, and zwitterions can reduce nonspecific adsorption of proteins. Herein, we investigate the potential of amphiphilic compounds as inhibitors of bacterial growth and marine biofilm formation. The aim of this study is to compare the efficacy of four synthetic phospholipids that features a cationic charge (BSV36, KLN47) or a zwitterionic polar-head group (SL386, MB2871) to prevent microfouling with marine bacteria. We also study the toxicity of these compounds in order to identify the most promising compound that must feature high anti-adhesive properties and a low cytotoxicity on two links representative of coastal marine food webs: phytoplankton and oyster larvae.

Keywords: amphiphilic phospholipids, bacterial biofilm, marine microfouling, non-toxic antifouling

Procedia PDF Downloads 135
46914 PbLi Activation Due to Corrosion Products in WCLL BB (EU-DEMO) and Its Impact on Reactor Design and Recycling

Authors: Nicole Virgili, Marco Utili

Abstract:

The design of the Breeding Blanket in Tokamak fusion energy systems has to guarantee sufficient availability in addition to its functions, that are, tritium breeding self-sufficiency, power extraction and shielding (the magnets and the VV). All these function in the presence of extremely harsh operating conditions in terms of heat flux and neutron dose as well as chemical environment of the coolant and breeder that challenge structural materials (structural resistance and corrosion resistance). The movement and activation of fluids from the BB to the Ex-vessel components in a fusion power plant have an important radiological consideration because flowing material can carry radioactivity to safety-critical areas. This includes gamma-ray emission from activated fluid and activated corrosion products, and secondary activation resulting from neutron emission, with implication for the safety of maintenance personnel and damage to electrical and electronic equipment. In addition to the PbLi breeder activation, it is important to evaluate the contribution due to the activated corrosion products (ACPs) dissolved in the lead-lithium eutectic alloy, at different concentration levels. Therefore, the purpose of the study project is to evaluate the PbLi activity utilizing the FISPACT II inventory code. Emphasis is given on how the design of the EU-DEMO WCLL, and potential recycling of the breeder material will be impacted by the activation of PbLi and the associated active corrosion products (ACPs). For this scope the following Computational Tools, Data and Geometry have been considered: • Neutron source: EU-DEMO neutron flux < 1014/cm2/s • Neutron flux distribution in equatorial breeding blanket module (BBM) #13 in the WCLL BB outboard central zone, which is the most activated zone, with the aim to introduce a conservative component utilizing MNCP6. • The recommended geometry model: 2017 EU DEMO CAD model. • Blanket Module Material Specifications (Composition) • Activation calculations for different ACP concentration levels in the PbLi breeder, with a given chemistry in stationary equilibrium conditions, using FISPACT II code. Results suggest that there should be a waiting time of about 10 years from the shut-down (SD) to be able to safely manipulate the PbLi for recycling operations with simple shielding requirements. The dose rate is mainly given by the PbLi and the ACP concentration (x1 or x 100) does not shift the result. In conclusion, the results show that there is no impact on PbLi activation due to ACPs levels.

Keywords: activation, corrosion products, recycling, WCLL BB., PbLi

Procedia PDF Downloads 108