Search results for: numerical prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5454

Search results for: numerical prediction

1404 Comparison between the Efficiency of Heterojunction Thin Film InGaP\GaAs\Ge and InGaP\GaAs Solar Cell

Authors: F. Djaafar, B. Hadri, G. Bachir

Abstract:

This paper presents the design parameters for a thin film 3J InGaP/GaAs/Ge solar cell with a simulated maximum efficiency of 32.11% using Tcad Silvaco. Design parameters include the doping concentration, molar fraction, layers’ thickness and tunnel junction characteristics. An initial dual junction InGaP/GaAs model of a previous published heterojunction cell was simulated in Tcad Silvaco to accurately predict solar cell performance. To improve the solar cell’s performance, we have fixed meshing, material properties, models and numerical methods. However, thickness and layer doping concentration were taken as variables. We, first simulate the InGaP\GaAs dual junction cell by changing the doping concentrations and thicknesses which showed an increase in efficiency. Next, a triple junction InGaP/GaAs/Ge cell was modeled by adding a Ge layer to the previous dual junction InGaP/GaAs model with an InGaP /GaAs tunnel junction.

Keywords: heterojunction, modeling, simulation, thin film, Tcad Silvaco

Procedia PDF Downloads 359
1403 A Probabilistic Theory of the Buy-Low and Sell-High for Algorithmic Trading

Authors: Peter Shi

Abstract:

Algorithmic trading is a rapidly expanding domain within quantitative finance, constituting a substantial portion of trading volumes in the US financial market. The demand for rigorous and robust mathematical theories underpinning these trading algorithms is ever-growing. In this study, the author establishes a new stock market model that integrates the Efficient Market Hypothesis and the statistical arbitrage. The model, for the first time, finds probabilistic relations between the rational price and the market price in terms of the conditional expectation. The theory consequently leads to a mathematical justification of the old market adage: buy-low and sell-high. The thresholds for “low” and “high” are precisely derived using a max-min operation on Bayes’s error. This explicit connection harmonizes the Efficient Market Hypothesis and Statistical Arbitrage, demonstrating their compatibility in explaining market dynamics. The amalgamation represents a pioneering contribution to quantitative finance. The study culminates in comprehensive numerical tests using historical market data, affirming that the “buy-low” and “sell-high” algorithm derived from this theory significantly outperforms the general market over the long term in four out of six distinct market environments.

Keywords: efficient market hypothesis, behavioral finance, Bayes' decision, algorithmic trading, risk control, stock market

Procedia PDF Downloads 64
1402 Free Vibration Characteristics of Nanoplates with Various Edge Supports Incorporating Surface Free Energy Effects

Authors: Saeid Sahmani

Abstract:

Due to size-dependent behavior of nanostrustures, the classical continuum models are not applicable for the analyses at this submicrion size. Surface stress effect is one of the most important matters which make the nanoscale structures to have different properties compared to the conventional structures due to high surface to volume ratio. In the present study, free vibration characteristics of nanoplates are investigated including surface stress effects. To this end, non-classical plate model based on Gurtin-Murdoch elasticity theory is proposed to evaluate the surface stress effects on the vibrational behavior of nanoplates subjected to different boundary conditions. Generalized differential quadrature (GDQ) method is employed to discretize the governing non-classical differential equations along with various edge supports. Selected numerical results are given to demonstrate the distinction between the behavior of nanoplates predicted by the classical and present non-classical plate models that leads to illustrate the great influence of surface stress effect. It is observed that this influence quite depends on the magnitude of the surface elastic constants which are relevant to the selected material.

Keywords: nanomechanics, surface stress, free vibration, GDQ method, small scale effect

Procedia PDF Downloads 339
1401 Finite Element Analysis of Thermally-Induced Bistable Plate Using Four Plate Elements

Authors: Jixiao Tao, Xiaoqiao He

Abstract:

The present study deals with the finite element (FE) analysis of thermally-induced bistable plate using various plate elements. The quadrilateral plate elements include the 4-node conforming plate element based on the classical laminate plate theory (CLPT), the 4-node and 9-node Mindlin plate element based on the first-order shear deformation laminated plate theory (FSDT), and a displacement-based 4-node quadrilateral element (RDKQ-NL20). Using the von-Karman’s large deflection theory and the total Lagrangian (TL) approach, the nonlinear FE governing equations for plate under thermal load are derived. Convergence analysis for four elements is first conducted. These elements are then used to predict the stable shapes of thermally-induced bistable plate. Numerical test shows that the plate element based on FSDT, namely the 4-node and 9-node Mindlin, and the RDKQ-NL20 plate element can predict two stable cylindrical shapes while the 4-node conforming plate predicts a saddles shape. Comparing the simulation results with ABAQUS, the RDKQ-NL20 element shows the best accuracy among all the elements.

Keywords: Bistable, finite element method, geometrical nonlinearity, quadrilateral plate elements

Procedia PDF Downloads 211
1400 Thermal and Mechanical Finite Element Analysis of a Mineral Casting Machine Frame

Authors: H. Zou, B. Wang

Abstract:

Thermal distortion of the machine tool plays a critical role in its machining accuracy. This study investigates the thermal performance of a high-precision machine frame with future-oriented mineral casting components. A thermo-mechanical finite element model (FEM) was established to evaluate the thermal behavior of the frame under environmental thermal fluctuations. The validity of the presented FEM model was confirmed experimentally by a series of laser interferometer tests. Good agreement between numerical and experimental results demonstrates that the proposed model can accurately predict the thermal deformation of the frame with thermo-mechanical coupling effect. The results also show that keeping the workshop in thermally stable conditions is crucial for improving the machine accuracy of the system with large scale components. The goal of this paper is to investigate the feasibility of innovative mineral casting material applied in high-precision drilling machine and to provide a strategy for machine tool industry seeking a perfect substitute for classic frame materials such as cast iron and granite.

Keywords: thermo-mechanical model, finite element method, laser interferometer, mineral casting frame

Procedia PDF Downloads 296
1399 Soft Ground Improved by Prefabricated Vertical Drains with Vacuum and Thermal Preloading

Authors: Gia Lam Le, Dennis T. Bergado, Thi Ngoc Truc Nguyen

Abstract:

This study focuses on behaviors of improved soft clay using prefabricated vertical drain (PVD) combined with vacuum and electro-osmotic preloading. Large-scale consolidations of reconstituted soft Bangkok clay were conducted for PVD improvement with vacuum (vacuum-PVD), and vacuum combined with heat (vacuum-thermo-PVD). The research revealed that vacuum-thermo-PVD gives high efficiency of the consolidation rate compared to the vacuum-PVD. In addition, the magnitude of settlement of the specimen improved by the vacuum-thermo-PVD is higher than the vacuum-PVD because the assistance of heat causes the collapse of the clay structure. Particularly, to reach 90% degree of consolidation, the thermal-vacuum-PVD reduced about 58% consolidation time compared to the vacuum-PVD. The increase in consolidation rate is resulted from the increase in horizontal coefficient of consolidation, Ch, the reduction of the smear effect expressed by the ratio of the horizontal hydraulic conductivity in the undisturbed zone, kh, and the horizontal hydraulic conductivity in the smeared zone, ks. Furthermore, the shear strength, Su, increased about 100% when compared using the vacuum-thermal-PVD to the vacuum PVD. In addition, numerical simulations gave reasonable results compared to the laboratory data.

Keywords: PVD improvement, vacuum preloading, prefabricated vertical drain, thermal PVD

Procedia PDF Downloads 449
1398 CFD simulation of Near Wall Turbulence and Heat Transfer of Molten Salts

Authors: C. S. Sona, Makrand A. Khanwale, Channamallikarjun S. Mathpati

Abstract:

New generation nuclear power plants are currently being developed to be highly economical, to be passive safe, to produce hydrogen. An important feature of these reactors will be the use of coolants at temperature higher than that being used in current nuclear reactors. The molten fluoride salt with a eutectic composition of 46.5% LiF - 11.5% NaF - 42% KF (mol %) commonly known as FLiNaK is a leading candidate for heat transfer coolant for these nuclear reactors. CFD simulations were carried out using large eddy simulations to investigate the flow characteristics of molten FLiNaK at 850°C at a Reynolds number of 10,500 in a cylindrical pipe. Simulation results have been validated with the help of mean velocity profile using direct numerical simulation data. Transient velocity information was used to identify and characterise turbulent structures which are important for transfer of heat across solid-fluid interface. A wavelet transform based methodology called wavelet transform modulus maxima was used to identify and characterise the singularities. This analysis was also used for flow visualisation, and also to calculate the heat transfer coefficient using small eddy model. The predicted Nusselt number showed good agreement with the available experimental data.

Keywords: FLiNaK, heat transfer, molten salt, turbulent structures

Procedia PDF Downloads 440
1397 Diagnostic and Prognostic Use of Kinetics of Microrna and Cardiac Biomarker in Acute Myocardial Infarction

Authors: V. Kuzhandai Velu, R. Ramesh

Abstract:

Background and objectives: Acute myocardial infarction (AMI) is the most common cause of mortality and morbidity. Over the last decade, microRNAs (miRs) have emerged as a potential marker for detecting AMI. The current study evaluates the kinetics and importance of miRs in the differential diagnosis of ST-segment elevated MI (STEMI) and non-STEMI (NSTEMI) and its correlation to conventional biomarkers and to predict the immediate outcome of AMI for arrhythmias and left ventricular (LV) dysfunction. Materials and Method: A total of 100 AMI patients were recruited for the study. Routine cardiac biomarker and miRNA levels were measured during diagnosis and serially at admission, 6, 12, 24, and 72hrs. The baseline biochemical parameters were analyzed. The expression of miRs was compared between STEMI and NSTEMI at different time intervals. Diagnostic utility of miR-1, miR-133, miR-208, and miR-499 levels were analyzed by using RT-PCR and with various diagnostics statistical tools like ROC, odds ratio, and likelihood ratio. Results: The miR-1, miR-133, and miR-499 showed peak concentration at 6 hours, whereas miR-208 showed high significant differences at all time intervals. miR-133 demonstrated the maximum area under the curve at different time intervals in the differential diagnosis of STEMI and NSTEMI which was followed by miR-499 and miR-208. Evaluation of miRs for predicting arrhythmia and LV dysfunction using admission sample demonstrated that miR-1 (OR = 8.64; LR = 1.76) and miR-208 (OR = 26.25; LR = 5.96) showed maximum odds ratio and likelihood respectively. Conclusion: Circulating miRNA showed a highly significant difference between STEMI and NSTEMI in AMI patients. The peak was much earlier than the conventional biomarkers. miR-133, miR-208, and miR-499 can be used in the differential diagnosis of STEMI and NSTEMI, whereas miR-1 and miR-208 could be used in the prediction of arrhythmia and LV dysfunction, respectively.

Keywords: myocardial infarction, cardiac biomarkers, microRNA, arrhythmia, left ventricular dysfunction

Procedia PDF Downloads 118
1396 Performance Estimation of Two Port Multiple-Input and Multiple-Output Antenna for Wireless Local Area Network Applications

Authors: Radha Tomar, Satish K. Jain, Manish Panchal, P. S. Rathore

Abstract:

In the presented work, inset fed microstrip patch antenna (IFMPA) based two port MIMO Antenna system has been proposed, which is suitable for wireless local area network (WLAN) applications. IFMPA has been designed, optimized for 2.4 GHz and applied for MIMO formation. The optimized parameters of the proposed IFMPA have been used for fabrication of antenna and two port MIMO in a laboratory. Fabrication of the designed MIMO antenna has been done and tested experimentally for performance parameters like Envelope Correlation Coefficient (ECC), Mean Effective Gain (MEG), Directive Gain (DG), Channel Capacity Loss (CCL), Multiplexing Efficiency (ME) etc and results are compared with simulated parameters extracted with simulated S parameters to validate the results. The simulated and experimentally measured plots and numerical values of these MIMO performance parameters resembles very much with each other. This shows the success of MIMO antenna design methodology.

Keywords: multiple-input and multiple-output, wireless local area network, vector network analyzer, envelope correlation coefficient

Procedia PDF Downloads 45
1395 Assessment of the Impacts of Climate Change on Climatic Zones over the Korean Peninsula for Natural Disaster Management Information

Authors: Sejin Jung, Dongho Kang, Byungsik Kim

Abstract:

Assessing the impact of climate change requires the use of a multi-model ensemble (MME) to quantify uncertainties between scenarios and produce downscaled outlines for simulation of climate under the influence of different factors, including topography. This study decreases climate change scenarios from the 13 global climate models (GCMs) to assess the impacts of future climate change. Unlike South Korea, North Korea lacks in studies using climate change scenarios of the CoupledModelIntercomparisonProject (CMIP5), and only recently did the country start the projection of extreme precipitation episodes. One of the main purposes of this study is to predict changes in the average climatic conditions of North Korea in the future. The result of comparing downscaled climate change scenarios with observation data for a reference period indicates high applicability of the Multi-Model Ensemble (MME). Furthermore, the study classifies climatic zones by applying the Köppen-Geiger climate classification system to the MME, which is validated for future precipitation and temperature. The result suggests that the continental climate (D) that covers the inland area for the reference climate is expected to shift into the temperate climate (C). The coefficient of variation (CVs) in the temperature ensemble is particularly low for the southern coast of the Korean peninsula, and accordingly, a high possibility of the shifting climatic zone of the coast is predicted. This research was supported by a grant (MOIS-DP-2015-05) of Disaster Prediction and Mitigation Technology Development Program funded by Ministry of Interior and Safety (MOIS, Korea).

Keywords: MME, North Korea, Koppen–Geiger, climatic zones, coefficient of variation, CV

Procedia PDF Downloads 105
1394 Determination of Weld Seam Thickness in Welded Connection Subjected to Local Buckling Effects

Authors: Tugrul Tulunay, Iyas Devran Celik

Abstract:

When the materials used in structural steel industry are evaluated, box beam profiles are considerably preferred. As a result of the cross-sectional properties that these profiles possess, the connection of these profiles to each other and to profiles having different types of cross sections is becoming viable by means of additional measures. An important point to note in such combinations is continuous transfer of internal forces from element to element. At the beginning to ensure this continuity, header plate is needed to use. The connection of the plates to the elements works mainly through welds. In this study, it is aimed to determine the ideal welding thickness in box beam under bending effect and the joints exposed to local buckles that will form in the column. The connection with box column and box beam designed in this context was made by means of corner and circular filler welds. Corner welds of different thickness and analysis by types with different lengths depending on plate dimensions in numerical models were made with the help of ANSYS Workbench program and examined behaviours.

Keywords: welding thickness, box beam-column joints, design of steel structures, calculation and construction principles 2016, welded joints under local buckling

Procedia PDF Downloads 155
1393 Finite Element Simulation of an Offshore Monopile Subjected to Cyclic Loading Using Hypoplasticity with Intergranular Strain Anisotropy (ISA) for the Soil

Authors: William Fuentes, Melany Gil

Abstract:

Numerical simulations of offshore wind turbines (OWTs) in shallow waters demand sophisticated models considering the cyclic nature of the environmental loads. For the case of an OWT founded on sands, rapid loading may cause a reduction of the effective stress of the soil surrounding the structure. This eventually leads to its settlement, tilting, or other issues affecting its serviceability. In this work, a 3D FE model of an OWT founded on sand is constructed and analyzed. Cyclic loading with different histories is applied at certain points of the tower to simulate some environmental forces. The mechanical behavior of the soil is simulated through the recently proposed ISA-hypoplastic model for sands. The Intergranular Strain Anisotropy ISA can be interpreted as an enhancement of the intergranular strain theory, often used to extend hypoplastic formulations for the simulation of cyclic loading. In contrast to previous formulations, the proposed constitutive model introduces an elastic range for small strain amplitudes, includes the cyclic mobility effect and is able to capture the cyclic behavior of sands under a larger number of cycles. The model performance is carefully evaluated on the FE dynamic analysis of the OWT.

Keywords: offshore wind turbine, monopile, ISA, hypoplasticity

Procedia PDF Downloads 233
1392 Design and Analysis of Electric Power Production Unit for Low Enthalpy Geothermal Reservoir Applications

Authors: Ildar Akhmadullin, Mayank Tyagi

Abstract:

The subject of this paper is the design analysis of a single well power production unit from low enthalpy geothermal resources. A complexity of the project is defined by a low temperature heat source that usually makes such projects economically disadvantageous using the conventional binary power plant approach. A proposed new compact design is numerically analyzed. This paper describes a thermodynamic analysis, a working fluid choice, downhole heat exchanger (DHE) and turbine calculation results. The unit is able to produce 321 kW of electric power from a low enthalpy underground heat source utilizing n-Pentane as a working fluid. A geo-pressured reservoir located in Vermilion Parish, Louisiana, USA is selected as a prototype for the field application. With a brine temperature of 126℃, the optimal length of DHE is determined as 304.8 m (1000ft). All units (pipes, turbine, and pumps) are chosen from commercially available parts to bring this project closer to the industry requirements. Numerical calculations are based on petroleum industry standards. The project is sponsored by the Department of Energy of the US.

Keywords: downhole heat exchangers, geothermal power generation, organic rankine cycle, refrigerants, working fluids

Procedia PDF Downloads 308
1391 Unsteady Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching Sheet with a Non Uniform Heat Source/Sink

Authors: Bandari Shankar, Yohannes Yirga

Abstract:

In this paper, the problem of heat and mass transfer in unsteady MHD boundary-layer flow of nanofluids over stretching sheet with a non uniform heat source/sink is considered. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using Keller box method. The velocity, temperature, and concentration profiles were obtained and utilized to compute the skin-friction coefficient, local Nusselt number, and local Sherwood number for different values of the governing parameters viz. solid volume fraction parameter, unsteadiness parameter, magnetic field parameter, Schmidt number, space-dependent and temperature-dependent parameters for heat source/sink. A comparison of the numerical results of the present study with previously published data revealed an excellent agreement

Keywords: unsteady, heat and mass transfer, manetohydrodynamics, nanofluid, non-uniform heat source/sink, stretching sheet

Procedia PDF Downloads 259
1390 Modelling of Structures by Advanced Finites Elements Based on the Strain Approach

Authors: Sifeddine Abderrahmani, Sonia Bouafia

Abstract:

The finite element method is the most practical tool for the analysis of structures, whatever the geometrical shape and behavior. It is extensively used in many high-tech industries, such as civil or military engineering, for the modeling of bridges, motor bodies, fuselages, and airplane wings. Additionally, experience demonstrates that engineers like modeling their structures using the most basic finite elements. Numerous models of finite elements may be utilized in the numerical analysis depending on the interpolation field that is selected, and it is generally known that convergence to the proper value will occur considerably more quickly with a good displacement pattern than with a poor pattern, saving computation time. The method for creating finite elements using the strain approach (S.B.A.) is presented in this presentation. When the results are compared with those provided by equivalent displacement-based elements, having the same total number of degrees of freedom, an excellent convergence can be obtained through some application and validation tests using recently developed membrane elements, plate bending elements, and flat shell elements. The effectiveness and performance of the strain-based finite elements in modeling structures are proven by the findings for deflections and stresses.

Keywords: finite elements, plate bending, strain approach, displacement formulation, shell element

Procedia PDF Downloads 90
1389 Study of Bifurcation Curve with Aspect Ratio at Low Reynolds Number

Authors: Amit K. Singh, Subhankar Sen

Abstract:

The bifurcation curve of separation in steady two-dimensional viscous flow past an elliptic cylinder is studied by varying the angle of incidence (α) with different aspect ratio (ratio of minor to major axis). The solutions are based on numerical investigation, using finite element analysis, of the Navier-Stokes equations for incompressible flow. Results are presented for Reynolds number up to 50 and angle of incidence varies from 0° to 90°. Range of aspect ratio (Ar) is from 0.1 to 1 (in steps of 0.1) and flow is considered as unbounded flow. Bifurcation curve represents the locus of Reynolds numbers (Res) at which flow detaches or separates from the surface of the body at a given α and Ar. In earlier studies, effect of Ar on laminar separation curve or bifurcation curve is limited for Ar = 0.1, 0.2, 0.5 and 0.8. Some results are also available at α = 90° and 45°. The present study attempts to provide a systematic data and clear understanding on the effect of Ar at bifurcation curve and its point of maxima. In addition, issues regarding location of separation angle and maximum ratio of coefficient of lift to drag are studied. We found that nature of curve, separation angle and maximum ratio of lift to drag changes considerably with respect to change in Ar.

Keywords: aspect ratio, bifurcation curve, elliptic cylinder, GMRES, stabilized finite-element

Procedia PDF Downloads 335
1388 Improved Blood Glucose-Insulin Monitoring with Dual-Layer Predictive Control Design

Authors: Vahid Nademi

Abstract:

In response to widely used wearable medical devices equipped with a continuous glucose monitor (CGM) and insulin pump, the advanced control methods are still demanding to get the full benefit of these devices. Unlike costly clinical trials, implementing effective insulin-glucose control strategies can provide significant contributions to the patients suffering from chronic diseases such as diabetes. This study deals with a key role of two-layer insulin-glucose regulator based on model-predictive-control (MPC) scheme so that the patient’s predicted glucose profile is in compliance with the insulin level injected through insulin pump automatically. It is achieved by iterative optimization algorithm which is called an integrated perturbation analysis and sequential quadratic programming (IPA-SQP) solver for handling uncertainties due to unexpected variations in glucose-insulin values and body’s characteristics. The feasibility evaluation of the discussed control approach is also studied by means of numerical simulations of two case scenarios via measured data. The obtained results are presented to verify the superior and reliable performance of the proposed control scheme with no negative impact on patient safety.

Keywords: blood glucose monitoring, insulin pump, predictive control, optimization

Procedia PDF Downloads 130
1387 Truck Scheduling Problem in a Cross-Dock Centre with Fixed Due Dates

Authors: Mohsen S. Sajadieha, Danyar Molavia

Abstract:

In this paper, a truck scheduling problem is investigated at a two-touch cross-docking center with due dates for outbound trucks as a hard constraint. The objective is to minimize the total cost comprising penalty and delivery cost of delayed shipments. The sequence of unloading shipments is considered and is assumed that shipments are sent to shipping dock doors immediately after unloading and a First-In-First-Out (FIFO) policy is considered for loading the shipments. A mixed integer programming model is developed for the proposed model. Two meta-heuristic algorithms including genetic algorithm (GA) and variable neighborhood search (VNS) are developed to solve the problem in medium and large sized scales. The numerical results show that increase in due dates for outbound trucks has a crucial impact on the reduction of penalty costs of delayed shipments. In addition, by increase the due dates, the improvement in the objective function arises on average in comparison with the situation that the cross-dock is multi-touch and shipments are sent to shipping dock doors only after unloading the whole inbound truck.

Keywords: cross-docking, truck scheduling, fixed due date, door assignment

Procedia PDF Downloads 395
1386 Numerical Heat Transfer Performance of Water-Based Graphene Nanoplatelets

Authors: Ahmad Amiri, Hamed K. Arzani, S. N. Kazi, B. T. Chew

Abstract:

Since graphene nanoplatelet (GNP) is a promising material due to desirable thermal properties, this paper is related to the thermophysical and heat transfer performance of covalently functionalized GNP-based water/ethylene glycol nanofluid through an annular channel. After experimentally measuring thermophysical properties of prepared samples, a computational fluid dynamics study has been carried out to examine the heat transfer and pressure drop of well-dispersed and stabilized nanofluids. The effect of concentration of GNP and Reynolds number at constant wall temperature boundary condition under turbulent flow regime on convective heat transfer coefficient has been investigated. Based on the results, for different Reynolds numbers, the convective heat transfer coefficient of the prepared nanofluid is higher than that of the base fluid. Also, the enhancement of convective heat transfer coefficient and thermal conductivity increase with the increase of GNP concentration in base-fluid. Based on the results of this investigation, there is a significant enhancement on the heat transfer rate associated with loading well-dispersed GNP in base-fluid.

Keywords: nanofluid, turbulent flow, forced convection flow, graphene, annular, annulus

Procedia PDF Downloads 346
1385 A Priority Based Imbalanced Time Minimization Assignment Problem: An Iterative Approach

Authors: Ekta Jain, Kalpana Dahiya, Vanita Verma

Abstract:

This paper discusses a priority based imbalanced time minimization assignment problem dealing with the allocation of n jobs to m < n persons in which the project is carried out in two stages, viz. Stage-I and Stage-II. Stage-I consists of n1 ( < m) primary jobs and Stage-II consists of remaining (n-n1) secondary jobs which are commenced only after primary jobs are finished. Each job is to be allocated to exactly one person, and each person has to do at least one job. It is assumed that nature of the Stage-I jobs is such that one person can do exactly one primary job whereas a person can do more than one secondary job in Stage-II. In a particular stage, all persons start doing the jobs simultaneously, but if a person is doing more than one job, he does them one after the other in any order. The aim of the proposed study is to find the feasible assignment which minimizes the total time for the two stage execution of the project. For this, an iterative algorithm is proposed, which at each iteration, solves a constrained imbalanced time minimization assignment problem to generate a pair of Stage-I and Stage-II times. For solving this constrained problem, an algorithm is developed in the current paper. Later, alternate combinations based method to solve the priority based imbalanced problem is also discussed and a comparative study is carried out. Numerical illustrations are provided in support of the theory.

Keywords: assignment, imbalanced, priority, time minimization

Procedia PDF Downloads 216
1384 Correlation between Fetal Umbilical Cord pH and the Day, the Time and the Team Hand over Times: An Analysis of 6929 Deliveries of the Ulm University Hospital

Authors: Sabine Pau, Sophia Volz, Emanuel Bauer, Amelie De Gregorio, Frank Reister, Wolfgang Janni, Florian Ebner

Abstract:

Purpose: The umbilical cord pH is a well evaluated contributor for prediction of neonatal outcome. This study correlates nenonatal umbilical cord pH with the weekday of delivery, the time of birth as well as the staff hand over times (midwifes and doctors). Material and Methods: This retrospective study included all deliveries of a 20 year period (1994-2014) at our primary obstetric center. All deliveries with a newborn cord pH under 7,20 were included in this analysis (6929 of 48974 deliveries (14,4%)). Further subgroups were formed according to the pH (< 7,05; 7,05 – 7,09; 7,10 – 7,14; 7,15 – 7,19). The data were then separated in day- and night time (8am-8pm/8pm-8am) for a first analysis. Finally, handover times were defined at 6 am – 6.30 am, 2 pm -2.30 pm, 10 pm- 10.30 pm (midwives) and for the doctors 8-8.30 am, 4 – 4.30 pm (Monday- Thursday); 2 pm -2.30 pm (Friday) and 9 am – 9.30 am (weekend). Routinely a shift consists of at least three doctors as well as three midwives. Results: During the last 20 years, 6929 neonates were born with an umbilical cord ph < 7,20 ( < 7,05 : 7,1%; 7,05 – 7,09 : 10,9%; 7,10 – 7,14 : 30,2%; 7,15 – 7,19:51,8%). There was no significant difference between either night/day delivery (p = 0.408), delivery on different weekdays (p = 0.253), delivery between Monday to Thursday, Friday and the weekend (p = 0.496 ) or delivery during the handover times of the doctors as well as the midwives (p = 0.221). Even the standard deviation showed no differences between the groups. Conclusion: Despite an increased workload over the last 20 years, the standard of care remains high even during the handover times and night shifts. This applies for midwives and doctors. As the neonatal outcome depends on various factors, further studies are necessary to take more factors influencing the fetal outcome into consideration. In order to maintain this high standard of care, an adaption of work-load and changing conditions is necessary.

Keywords: delivery, fetal umbilical cord pH, day time, hand over times

Procedia PDF Downloads 301
1383 Investigation into the Suitability of Aggregates for Use in Superpave Design Method

Authors: Ahmad Idris, Armaya`u Suleiman Labo, Ado Yusuf Abdulfatah, Murtala Umar

Abstract:

Super pave is the short form of Superior Performing Asphalt Pavement and represents a basis for specifying component materials, asphalt mixture design and analysis, and pavement performance prediction. This new technology is the result of long research projects conducted by the strategic Highway Research program (SHRP) of the Federal Highway Administration. This research was aimed at examining the suitability of Aggregates found in Kano for used in super pave design method. Aggregates samples were collected from different sources in Kano Nigeria and their Engineering properties, as they relate to the SUPERPAVE design requirements were determined. The average result of Coarse Aggregate Angularity in Kano was found to be 87% and 86% of one fractured face and two or more fractured faces respectively with a standard of 80% and 85% respectively. Fine Aggregate Angularity average result was found to be 47% with a requirement of 45% minimum. A flat and elongated particle which was found to be 10% has a maximum criterion of 10%. Sand equivalent was found to be 51% with the criteria of 45% minimum. Strength tests were also carried out, and the results reflect the requirements of the standards. The tests include Impact value test, Aggregate crushing value and Aggregate Abrasion tests and the results are 27.5%, 26.7% and 13% respectively with a maximum criteria of 30%. Specific gravity was also carried out and the result was found to have an average value of 2.52 with a criterion of 2.6 to 2.9 and Water absorption was found to be 1.41% with maximum criteria of 0.6%. From the study, the result of the tests indicated that the aggregates properties have met the requirements of Super pave design method based on the specifications of ASTMD 5821, ASTM D 4791, AASHTO T176, AASHTO T33 and BS815.

Keywords: aggregates, construction, road design, super pave

Procedia PDF Downloads 231
1382 Energy Absorption of Circular Thin-Walled Tube with Curved-Crease Patterns under Axial Crushing

Authors: Grzegorz Dolzyk, Sungmoon Jung

Abstract:

Thin-walled tubes are commonly used as energy absorption devices for their excellent mechanical properties and high manufacturability. Techniques such as grooving and pre-folded origami shapes were introduced to circular and polygonal tubes to improve its energy absorption efficiency. This paper examines the energy absorption characteristics of circular tubes with pre-embedded curved-crease pattern. Set of numerical analyzes were conducted with different grooving patterns for tubes with various diameter (D) to thickness (t) ratio. It has been found that even very shallow grooving can positively affect thin wall tubes, leading to increased energy absorption and higher crushing load efficiency. The phenomenon is associated with nonsymmetric deformation that is usually observed for tubes with a high D/t ratio ( > 90). Grooving can redirect a natural mode of post-buckling deformation to a one with a higher number of lobes such that its beneficial and more stable. Also, the opposite effect can be achieved, and highly disrupted deformation can be a cause of reduced energy absorption capabilities. Curved-crease engraved patterns can be used to stabilize and change a form of hazardous post-buckling deformation.

Keywords: axial crushing, energy absorption, grooving, thin-wall structures

Procedia PDF Downloads 134
1381 Numerical Study on Parallel Rear-Spoiler on Super Cars

Authors: Anshul Ashu

Abstract:

Computers are applied to the vehicle aerodynamics in two ways. One of two is Computational Fluid Dynamics (CFD) and other is Computer Aided Flow Visualization (CAFV). Out of two CFD is chosen because it shows the result with computer graphics. The simulation of flow field around the vehicle is one of the important CFD applications. The flow field can be solved numerically using panel methods, k-ε method, and direct simulation methods. The spoiler is the tool in vehicle aerodynamics used to minimize unfavorable aerodynamic effects around the vehicle and the parallel spoiler is set of two spoilers which are designed in such a manner that it could effectively reduce the drag. In this study, the standard k-ε model of the simplified version of Bugatti Veyron, Audi R8 and Porsche 911 are used to simulate the external flow field. Flow simulation is done for variable Reynolds number. The flow simulation consists of three different levels, first over the model without a rear spoiler, second for over model with single rear spoiler, and third over the model with parallel rear-spoiler. The second and third level has following parameter: the shape of the spoiler, the angle of attack and attachment position. A thorough analysis of simulations results has been found. And a new parallel spoiler is designed. It shows a little improvement in vehicle aerodynamics with a decrease in vehicle aerodynamic drag and lift. Hence, it leads to good fuel economy and traction force of the model.

Keywords: drag, lift, flow simulation, spoiler

Procedia PDF Downloads 474
1380 Impact of Serum Estrogen and Progesterone Levels in the Outcome Pregnancy Rate in Frozen Embryo Transfer Cycles. A Prospective Cohort Study

Authors: Sayantika Biswas, Dipanshu Sur, Amitoj Athwal, Ratnabali Chakravorty

Abstract:

Title: Impact of serum estrogen and progesterone levels in the outcome pregnancy rate in frozen embryo transfer cycles. A prospective cohort study Objective: The aim of the current study was to evaluate the effect of serum estradiol (E2) and progesterone (P4) levels at different time points on pregnancy outcomes in frozen embryo transfer (FET) cycles. Materials & Method: A prospective cohort study was performed in patients undergoing frozen embryo transfer. Patients under age 37 years of age with at least one good blastocyst or three good day 3 embryos were included in the study. For endometrial preparation, 14 days of oral estradiol use (2X2 mg for 5 days. 3X2 mg for 4 days, and 4X2 mg for 5 days) was followed by vaginal progesterone twice a day and 50 mg intramuscular progesterone twice a day. Embryo transfer was scheduled 72-76 hrs or 116-120hrs after the initiation of progesterone. Serum E2 and P4 levels were examined at 4 times a) at the start of the menstrual cycle prior to the hormone supplementation. b) on the day of P4 start. c) on the day of ET. d) on the third day after ET. Result: A total 41 women were included in this study (mean age 31.8; SD 2.8). Clinical pregnancy rate was 65.55%. Serum E2 levels on at the start of the menstrual cycle prior to the hormone supplementation and on the day of P4 start were high in patients who achieved pregnancy compared to who did not (P=0.005 and P=0.019 respectively). P4 levels on on the day of ET were also high in patients with clinical pregnancy. On the day of P4 start, a serum E2 threshold of 186.4 pg/ml had a sensitivity of 82%, and P4 had a sensitivity of 71% for the prediction of clinical pregnancy at the threshold value 16.00 ng/ml. Conclusion: In women undergoing FET with hormone replacement, serum E2 level >186.4 pg/ml on the day of the start of progesterone and serum P4 levels >16.00 ng/ml on embryo transfer day are associated with clinical pregnancy.

Keywords: serum estradiol, serum progesterone, clinical pregnancy, frozen embryo transfer

Procedia PDF Downloads 68
1379 Flow Analysis of Viscous Nanofluid Due to Rotating Rigid Disk with Navier’s Slip: A Numerical Study

Authors: Khalil Ur Rehman, M. Y. Malik, Usman Ali

Abstract:

In this paper, the problem proposed by Von Karman is treated in the attendance of additional flow field effects when the liquid is spaced above the rotating rigid disk. To be more specific, a purely viscous fluid flow yield by rotating rigid disk with Navier’s condition is considered in both magnetohydrodynamic and hydrodynamic frames. The rotating flow regime is manifested with heat source/sink and chemically reactive species. Moreover, the features of thermophoresis and Brownian motion are reported by considering nanofluid model. The flow field formulation is obtained mathematically in terms of high order differential equations. The reduced system of equations is solved numerically through self-coded computational algorithm. The pertinent outcomes are discussed systematically and provided through graphical and tabular practices. A simultaneous way of study makes this attempt attractive in this sense that the article contains dual framework and validation of results with existing work confirms the execution of self-coded algorithm for fluid flow regime over a rotating rigid disk.

Keywords: Navier’s condition, Newtonian fluid model, chemical reaction, heat source/sink

Procedia PDF Downloads 162
1378 A Model for Solid Transportation Problem with Three Hierarchical Objectives under Uncertain Environment

Authors: Wajahat Ali, Shakeel Javaid

Abstract:

In this study, we have developed a mathematical programming model for a solid transportation problem with three objective functions arranged in hierarchical order. The mathematical programming models with more than one objective function to be solved in hierarchical order is termed as a multi-level programming model. Our study explores a Multi-Level Solid Transportation Problem with Uncertain Parameters (MLSTPWU). The proposed MLSTPWU model consists of three objective functions, viz. minimization of transportation cost, minimization of total transportation time, and minimization of deterioration during transportation. These three objective functions are supposed to be solved by decision-makers at three consecutive levels. Three constraint functions are added to the model, restricting the total availability, total demand, and capacity of modes of transportation. All the parameters involved in the model are assumed to be uncertain in nature. A solution method based on fuzzy logic is also discussed to obtain the compromise solution for the proposed model. Further, a simulated numerical example is discussed to establish the efficiency and applicability of the proposed model.

Keywords: solid transportation problem, multi-level programming, uncertain variable, uncertain environment

Procedia PDF Downloads 76
1377 Dynamics of a Susceptible-Infected-Recovered Model along with Time Delay, Modulated Incidence, and Nonlinear Treatment

Authors: Abhishek Kumar, Nilam

Abstract:

As we know that, time delay exists almost in every biological phenomenon. Therefore, in the present study, we propose a susceptible–infected–recovered (SIR) epidemic model along with time delay, modulated incidence rate of infection, and Holling Type II nonlinear treatment rate. The present model aims to provide a strategy to control the spread of epidemics. In the mathematical study of the model, it has been shown that the model has two equilibriums which are named as disease-free equilibrium (DFE) and endemic equilibrium (EE). Further, stability analysis of the model is discussed. To prove the stability of the model at DFE, we derived basic reproduction number, denoted by (R₀). With the help of basic reproduction number (R₀), we showed that the model is locally asymptotically stable at DFE when the basic reproduction number (R₀) less than unity and unstable when the basic reproduction number (R₀) is greater than unity. Furthermore, stability analysis of the model at endemic equilibrium has also been discussed. Finally, numerical simulations have been done using MATLAB 2012b to exemplify the theoretical results.

Keywords: time delayed SIR epidemic model, modulated incidence rate, Holling type II nonlinear treatment rate, stability

Procedia PDF Downloads 144
1376 Studies on Race Car Aerodynamics at Wing in Ground Effect

Authors: Dharni Vasudhevan Venkatesan, K. E. Shanjay, H. Sujith Kumar, N. A. Abhilash, D. Aswin Ram, V. R. Sanal Kumar

Abstract:

Numerical studies on race car aerodynamics at wing in ground effect have been carried out using a steady 3d, double precision, pressure-based, and standard k-epsilon turbulence model. Through various parametric analytical studies we have observed that at a particular speed and ground clearance of the wings a favorable negative lift was found high at a particular angle of attack for all the physical models considered in this paper. The fact is that if the ground clearance height to chord length (h/c) is too small, the developing boundary layers from either side (the ground and the lower surface of the wing) can interact, leading to an altered variation of the aerodynamic characteristics at wing in ground effect. Therefore a suitable ground clearance must be predicted throughout the racing for a better performance of the race car, which obviously depends upon the coupled effects of the topography, wing orientation with respect to the ground, the incoming flow features and/or the race car speed. We have concluded that for the design of high performance and high speed race cars the adjustable wings capable to alter the ground clearance and the angles of attack is the best design option for any race car for racing safely with variable speeds.

Keywords: external aerodynamics, external flow choking, race car aerodynamics, wing in ground effect

Procedia PDF Downloads 349
1375 Time-Dependent Behavior of Damaged Reinforced Concrete Shear Walls Strengthened with Composite Plates Having Variable Fibers Spacing

Authors: Redha Yeghnem, Laid Boulefrakh, Sid Ahmed Meftah, Abdelouahed Tounsi, El Abbas Adda Bedia

Abstract:

In this study, the time-dependent behavior of damaged reinforced concrete shear wall structures strengthened with composite plates having variable fibers spacing was investigated to analyze their seismic response. In the analytical formulation, the adherent and the adhesive layers are all modeled as shear walls, using the mixed finite element method (FEM). The anisotropic damage model is adopted to describe the damage extent of the RC shear walls. The phenomenon of creep and shrinkage of concrete has been determined by Eurocode 2. Large earthquakes recorded in Algeria (El-Asnam and Boumerdes) have been tested to demonstrate the accuracy of the proposed method. Numerical results are obtained for non uniform distributions of carbon fibers in epoxy matrices. The effects of damage extent and the delay mechanism creep and shrinkage of concrete are highlighted. Prospects are being studied.

Keywords: RC shear wall structures, composite plates, creep and shrinkage, damaged reinforced concrete structures, finite element method

Procedia PDF Downloads 351