Search results for: the effectiveness of company
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5729

Search results for: the effectiveness of company

1709 Mindfulness, Acceptance and Meaning in Life for Adults with Cancer

Authors: Fernanda F. Zimmermann, Beverley Burrell, Jennifer Jordan

Abstract:

Introduction: Supportive care for people affected by cancer is recognised as a priority for research but yet there is little solid evidence of the effectiveness of psychological treatments for those with advanced cancer. The literature suggests that mindfulness-based interventions may be acceptable and beneficial for this population. This study aims to develop a mindfulness intervention to provide emotional support for advanced cancer population. The treatment package includes mindfulness meditation, developing an acceptance attitude and reflections on meaning in life. Methods: This study design is a one-group pre-post test with a mixed methods approach. Participants are recruited through public and private hospitals in Christchurch, NZ. Quantitative measures are the Acceptance and Action Questionnaire-II, Mindful Coping Scale and, the Meaning in Life Questionnaire. Qualitative semi-structured interviews enquire about emotional support before and after the diagnosis, participants’ thoughts about meaning in life, expectations and reflections on the mindfulness training. Qualitative data will be analysed using thematic analysis. Treatment consists of one to one 30 minutes session weekly for 4 weeks using a pre-recorded CD/podcast of the mindfulness training. This research is part of the presenter’s PhD study. Findings: This project is currently underway. The presenter will provide preliminary data on the acceptability of the mindfulness training package being delivered to participants along with the recruitment strategies. We anticipate that this novel treatment used as a self-management tool will reduce psychological distress and enable better coping for patients with advanced cancer.

Keywords: acceptance, cancer, meaning in life, mindfulness

Procedia PDF Downloads 353
1708 The Rehabilitation of Drug Addiction by Thai Indigenous Knowledge: A Case Study of Thamkrabok Monastery

Authors: Wanwimon Mekwimon

Abstract:

Drug addiction is a serious problem in Thailand which has occurred continuously and repeatedly and enormously impacting health and economy of drug users. The indigenous wisdom and folk medicine is an attractive alternative choice, especially in detoxification and rehabilitation period. There are two objectives: First is to study about rehabilitation process and the curing for drug eaters and 2nd is to investigate the effectiveness of the curing and rehabilitation process by indigenous wisdom at Tamkrabok monastery, Pra-Puttabat district, Saraburi province. The main informants are 10 curers, 15 patients and 17 after-1-year rehabilitators. In the process, the semi-structured questionnaire is administered, the data are analyzed and proved by triangulation. The curing and rehabilitation process which use herbal remedies has a period of 15 days (5 days for detoxification and 10 days for recovery period) and the occupational training and self-consciousness awakening were delivered. The follow-up process includes twice-a-month recall for 6 months, follow-up letters and in depth interview with their families. The outcome of 1 year post-treatment was 94% (16 from 17). There are many reasons for not relapsing: the recovering patients have drawn on their inner strength, self-awareness and coping skill as well as their family and social support while rehabilitation process which includes difficulties in contacting with family members. They can void themselves from high risk situations to relapse. Recommendations: The follow-up system should be improved for continuous quality improvement, there should be the qualification standard for herbal remedies and the comparison among rehabilitation process of Tamkrabok and another methods are to be guideline for the further development.

Keywords: rehabilitation, drug addiction, Thai indigenous knowledge, herbal remedies

Procedia PDF Downloads 244
1707 Exploring Teaching Strategies Utilized by Primary School English Language Teachers

Authors: Belyihun Muchie

Abstract:

Teaching strategies significantly influence the effectiveness of language teaching practices. Macro/micro ELT strategies realizes the practicality of language teaching in the classroom, where the teacher and students play together. The study aimed to identify teaching strategies employed by primary English language teachers in EFL classrooms. It also analyzed the alignment of teaching strategies with the contemporary language teaching approaches and principles. More over, the study evaluated primary English language teachers' perceptions of the challenges and benefits of implementing innovative teaching strategies. The study used a descriptive survey research design with mixed methods approaches and convergent parallel mixed methods of data collection and analysis. Ten primary schools were selected conveniently, including 60 teachers in total. To collect the adequate data classroom observation, questionnaire and document analysis were used. From the analysis, it was found that primary school English language teachers were not teaching English using innovative teaching strategies. Hence, the alignment of their teaching strategies with the principles and syllabus of the English subject was mismatched. Finally, although there were hindrances of employing innovative teaching strategies, teachers’ commitment of trying much alternatives, was found to be less. They voiced concerns about the erosion of respect for the teaching profession, low salaries, lack of incentives for best practices, insufficient teaching resources, and autocratic leadership within schools. Therefore, as teachers found it increasingly difficult to teach English, it was concluded that primary school English language teachers were not employing innovative ELT strategies in their EFL classroom for effective language teaching in Ethiopia.

Keywords: ELT strategies, descriptive survey research design, innovative teaching strategies, primary school English language teachers

Procedia PDF Downloads 9
1706 Radiosensitization Properties of Gold Nanoparticles in Brachytherapy of Uterus Cancer by High Dose Rate I-125 Seed: A Simulation Study by MCNPX and MCNP6 Codes

Authors: Elham Mansouri, Asghar Mesbahi

Abstract:

Purpose: In the current study, we aimed to investigate the macroscopic and microscopic dose enhancement effect of metallic nanoparticles in interstitial brachytherapy of uterus cancer by Iodin-125 source using a nano-lattice model in MCNPX (5) and MCNP6.1 codes. Materials and methods: Based on a nano-lattice simulation model containing a radiation source and a tumor tissue with cellular compartments loaded with 7mg/g spherical nanoparticles (bismuth, gold, and gadolinium), the energy deposited by the secondary electrons in microscopic and macroscopic level was estimated. Results: The results show that the values of macroscopic DEF is higher than microscopic DEF values and the macroscopic DEF values decreases as a function of distance from the brachytherapy source surface. Also, the results revealed a remarkable discrepancy between the DEF and secondary electron spectra calculated by MCNPX (5) and MCNP6.1 codes, which could be justified by the difference in energy cut-off and electron transport algorithms of two codes. Conclusion: According to the both MCNPX (5) and MCNP6.1 outputs, it could be concluded that the presence of metallic nanoparticles in the tumor tissue of uteruscancer increases the physical effectiveness of brachytherapy by I-125 source. The results presented herein give a physical view of radiosensitization potential of different metallic nanoparticles and could be considered in design of analytical and experimental radiosensitization studies in tumor regions using various radiotherapy modalities in the presence of heavy nanomaterials.

Keywords: MCNPX, MCNP6, nanoparticle, brachytherapy

Procedia PDF Downloads 102
1705 Efficient Human Motion Detection Feature Set by Using Local Phase Quantization Method

Authors: Arwa Alzughaibi

Abstract:

Human Motion detection is a challenging task due to a number of factors including variable appearance, posture and a wide range of illumination conditions and background. So, the first need of such a model is a reliable feature set that can discriminate between a human and a non-human form with a fair amount of confidence even under difficult conditions. By having richer representations, the classification task becomes easier and improved results can be achieved. The Aim of this paper is to investigate the reliable and accurate human motion detection models that are able to detect the human motions accurately under varying illumination levels and backgrounds. Different sets of features are tried and tested including Histogram of Oriented Gradients (HOG), Deformable Parts Model (DPM), Local Decorrelated Channel Feature (LDCF) and Aggregate Channel Feature (ACF). However, we propose an efficient and reliable human motion detection approach by combining Histogram of oriented gradients (HOG) and local phase quantization (LPQ) as the feature set, and implementing search pruning algorithm based on optical flow to reduce the number of false positive. Experimental results show the effectiveness of combining local phase quantization descriptor and the histogram of gradient to perform perfectly well for a large range of illumination conditions and backgrounds than the state-of-the-art human detectors. Areaunder th ROC Curve (AUC) of the proposed method achieved 0.781 for UCF dataset and 0.826 for CDW dataset which indicates that it performs comparably better than HOG, DPM, LDCF and ACF methods.

Keywords: human motion detection, histograms of oriented gradient, local phase quantization, local phase quantization

Procedia PDF Downloads 257
1704 Event Driven Dynamic Clustering and Data Aggregation in Wireless Sensor Network

Authors: Ashok V. Sutagundar, Sunilkumar S. Manvi

Abstract:

Energy, delay and bandwidth are the prime issues of wireless sensor network (WSN). Energy usage optimization and efficient bandwidth utilization are important issues in WSN. Event triggered data aggregation facilitates such optimal tasks for event affected area in WSN. Reliable delivery of the critical information to sink node is also a major challenge of WSN. To tackle these issues, we propose an event driven dynamic clustering and data aggregation scheme for WSN that enhances the life time of the network by minimizing redundant data transmission. The proposed scheme operates as follows: (1) Whenever the event is triggered, event triggered node selects the cluster head. (2) Cluster head gathers data from sensor nodes within the cluster. (3) Cluster head node identifies and classifies the events out of the collected data using Bayesian classifier. (4) Aggregation of data is done using statistical method. (5) Cluster head discovers the paths to the sink node using residual energy, path distance and bandwidth. (6) If the aggregated data is critical, cluster head sends the aggregated data over the multipath for reliable data communication. (7) Otherwise aggregated data is transmitted towards sink node over the single path which is having the more bandwidth and residual energy. The performance of the scheme is validated for various WSN scenarios to evaluate the effectiveness of the proposed approach in terms of aggregation time, cluster formation time and energy consumed for aggregation.

Keywords: wireless sensor network, dynamic clustering, data aggregation, wireless communication

Procedia PDF Downloads 450
1703 Method for Selecting and Prioritising Smart Services in Manufacturing Companies

Authors: Till Gramberg, Max Kellner, Erwin Gross

Abstract:

This paper presents a comprehensive investigation into the topic of smart services and IIoT-Platforms, focusing on their selection and prioritization in manufacturing organizations. First, a literature review is conducted to provide a basic understanding of the current state of research in the area of smart services. Based on discussed and established definitions, a definition approach for this paper is developed. In addition, value propositions for smart services are identified based on the literature and expert interviews. Furthermore, the general requirements for the provision of smart services are presented. Subsequently, existing approaches for the selection and development of smart services are identified and described. In order to determine the requirements for the selection of smart services, expert opinions from successful companies that have already implemented smart services are collected through semi-structured interviews. Based on the results, criteria for the evaluation of existing methods are derived. The existing methods are then evaluated according to the identified criteria. Furthermore, a novel method for the selection of smart services in manufacturing companies is developed, taking into account the identified criteria and the existing approaches. The developed concept for the method is verified in expert interviews. The method includes a collection of relevant smart services identified in the literature. The actual relevance of the use cases in the industrial environment was validated in an online survey. The required data and sensors are assigned to the smart service use cases. The value proposition of the use cases is evaluated in an expert workshop using different indicators. Based on this, a comparison is made between the identified value proposition and the required data, leading to a prioritization process. The prioritization process follows an established procedure for evaluating technical decision-making processes. In addition to the technical requirements, the prioritization process includes other evaluation criteria such as the economic benefit, the conformity of the new service offering with the company strategy, or the customer retention enabled by the smart service. Finally, the method is applied and validated in an industrial environment. The results of these experiments are critically reflected upon and an outlook on future developments in the area of smart services is given. This research contributes to a deeper understanding of the selection and prioritization process as well as the technical considerations associated with smart service implementation in manufacturing organizations. The proposed method serves as a valuable guide for decision makers, helping them to effectively select the most appropriate smart services for their specific organizational needs.

Keywords: smart services, IIoT, industrie 4.0, IIoT-platform, big data

Procedia PDF Downloads 88
1702 Authoring of Augmented Reality Manuals for Not Physically Available Products

Authors: Vito M. Manghisi, Michele Gattullo, Alessandro Evangelista, Enricoandrea Laviola

Abstract:

In this work, we compared two solutions for displaying a demo version of an Augmented Reality (AR) manual when the real product is not available, opting to replace it with its computer-aided design (CAD) model. AR has been proved to be effective in maintenance and assembly operations by many studies in the literature. However, most of them present solutions for existing products, usually converting old, printed manuals into AR manuals. In this case, authoring consists of defining how to convey existing instructions through AR. It is not a simple choice, and demo versions are created to test the design goodness. However, this becomes impossible when the product is not physically available, as for new products. A solution could be creating an entirely virtual environment with the product and the instructions. However, in this way, user interaction is completely different from that in the real application, then it would be hard testing the usability of the AR manual. This work aims to propose and compare two different solutions for the displaying of a demo version of an AR manual to support authoring in case of a product that is not physically available. We used as a case study that of an innovative semi-hermetic compressor that has not yet been produced. The applications were developed for a handheld device, using Unity 3D. The main issue was how to show the compressor and attach instructions on it. In one approach, we used Vuforia natural feature tracking to attach a CAD model of the compressor to a 2D image that is a drawing in scale 1:1 of the top-view of the CAD model. In this way, during the AR manual demonstration, the 3D model of the compressor is displayed on the user's device in place of the real compressor, and all the virtual instructions are attached to it. In the other approach, we first created a support application that shows the CAD model of the compressor on a marker. Then, we registered a video of this application, moving around the marker, obtaining a video that shows the CAD model from every point of view. For the AR manual, we used the Vuforia model target (360° option) to track the CAD model of the compressor, as it was the real compressor. Then, during the demonstration, the video is shown on a fixed large screen, and instructions are displayed attached to it in the AR manual. The first solution presents the main drawback to keeping the printed image with everyone working on the authoring of the AR manual, but allows to show the product in a real scale and interaction during the demonstration is very simple. The second one does not need a printed marker during the demonstration but a screen. Still, the compressor model is resized, and interaction is awkward since the user has to play the video on the screen to rotate the compressor. The two solutions were evaluated together with the company, and the preferred was the first one due to a more natural interaction.

Keywords: augmented reality, human computer interaction, operating instructions, maintenance, assembly

Procedia PDF Downloads 128
1701 Managing Organizational Change for a Transformation Project: The Billing and Customer Relationship Management Journey

Authors: Sharifah I. N. A. Syed Azmi, Nazarina Mohd Nasir

Abstract:

The Billing & Customer Relationship Management (BCRM) project is an important enabler towards realizing customer experience transformation. It involves technological shifts for future scalability, revision of multiple business processes and adoption of change by the users and impacted employees. This massive transition, if not managed properly, may result in the decline of business performance due to productivity drop. Organizational change management is an essential element in BCRM project implementation to ensure the system is well understood and embraced by all stakeholders. In order to move impacted employees from unaware state or denial mode to full-acceptance mindset and committing themselves in using the new system, their involvement in the whole change process starting from the initial stage is imperative. Through the BCRM Change Management Plan, a holistic approach was taken whereby the strategy and program for five key components namely executive sponsorship, continuous communication, process change readiness, organizational readiness and individual readiness were all carefully established. Roles of the project sponsor, change agents, change ambassadors and community of practice (CoP) were clearly defined in gaining high commitment and support across the entire organization. Continuous communication and engagement initiatives throughout project implementation have been carried out to reach all stakeholders. The business readiness was constantly monitored and assessed including effectiveness of end-user training, thorough review of process documentation and completion of roles realignment exercise.

Keywords: BCRM, change management, organizational change, transformation project

Procedia PDF Downloads 141
1700 Hidden Populations and Women: New Political, Methodological and Ethical Challenges

Authors: Renée Fregosi

Abstract:

The contribution presently proposed will report on the beginnings of a Franco-Chilean study to be launched in 2015 by a multidisciplinary team of Renée Fregosi Political Science University Paris 3 / CECIEC, Norma Muñoz Public Policies University of Santiago of Chile, Jean-Daniel Lelievre, Medicine Paris 11 University, Marcelo WOLFF Medicine University of Chile, Cecilia Blatrix Political Science University Paris-Tech, Ernesto OTTONE, Political Science University of Chile, Paul DENY Medicine Paris 13 University, Rafael Bugueno Medicine Hospital Urgencia Pública of Santiago, Eduardo CARRASCO Political Science Paris 3 University. The problem of hidden populations challenges some criteria and concepts to re-examine: in particular the concept of target population, sampling methods to "snowball" and the cost-effectiveness criterion that shows the connection of political and scientific fields. Furthermore, if the pattern of homosexual transmission still makes up the highest percentage of the modes of infection with HIV, there is a continuous increase in the number of people infected through heterosexual sex, including women and persons aged 50 years and older. This group can be described as " unknown risk people." Access to these populations is a major challenge and raises methodological, ethical and political issues of prevention, particularly on the issue of screening. This paper proposes an inventory of these types of problems and their articulation, to define a new phase in the prevention against HIV refocused on women.

Keywords: HIV testing, hidden populations, difficult to reach PLWHA, women, unknown risk people

Procedia PDF Downloads 522
1699 Well-Being in the Workplace: Do Christian Leaders Behave Differently?

Authors: Mariateresa Torchia, Helene Cristini, Hannele Kauppinen

Abstract:

Leadership plays a vital role in organizations. Leaders provide directions and facilitate the processes that enable organizations to achieve their goals and objectives. However, while productivity and financial objectives are often given the greatest emphasis, leaders also have the responsibility for instituting standards of ethical conduct and moral values that guide the behavior of employees. Leaders’ behaviors such as support, empowerment and a high-quality relationship with their employees might not only prevent stress, but also improve employees’ stress coping meanwhile contributing to their affective well-being. Stemming from Girard’s Mimetic Theory, this study aims at understanding how leaders can foster well-being in organizations. To do so, we explore which is the role leaders play in conflict management, resentment management and negative emotions dissipation. Furthermore, we examine whether and to what extent religiosity impacts the way in which leaders operate in relation to employees’ well-being. Indeed, given that organizational values are crucial to ethical behavior and firms’ values may be steeled by a deep sense of spirituality and religious identification, there is a need to take a closer look at the role religion and spirituality play in influencing the way leaders impact employees’ well-being. Thus, religion might work as an overarching logic that provides a set of principles guiding leaders’ everyday practices and relations with employees. We answer our research questions using a qualitative approach. We interviewed 27 Christian leaders (members of the Christian Entrepreneurs and Leaders Association – EDC, a non-profit organization created in 1926 including 3,000 French Christian Leaders & Entrepreneurs). Our results show that well-being can have a different meaning in relation to the type of companies, size, culture, country of analysis. Moreover the values and believes of leaders influence the way they see and foster well-being among employees. Furthermore, leaders can have both a positive or negative impact on well-being. Indeed on the one side, they could increase well-being in the company while on the other hand, they could be the source of resentment and conflicts among employees. Finally, we observed that Christian leaders possess characteristics that are sometimes missing in leaders (humility, inability to compare with others, attempt to be coherent with their values and beliefs, interest in the common good instead of the personal interest, having tougher dilemmas, collectively undertaking the firm). Moreover the Christian leader believes that the common good should come before personal interest. In other words, to them, not only short –termed profit shouldn’t guide strategical decisions but also leaders should feel responsible for their employees’ well-being. Last but not least, the study is not an apologia of Christian, yet it discusses the implications of these values through the light of Girard’s mimetic theory for both theory and practice.

Keywords: Christian leaders, employees well-being, leadership, mimetic theory

Procedia PDF Downloads 121
1698 Big Data and Cardiovascular Healthcare Management: Recent Advances, Future Potential and Pitfalls

Authors: Maariyah Irfan

Abstract:

Intro: Current cardiovascular (CV) care faces challenges such as low budgets and high hospital admission rates. This review aims to evaluate Big Data in CV healthcare management through the use of wearable devices in atrial fibrillation (AF) detection. AF may present intermittently, thus it is difficult for a healthcare professional to capture and diagnose a symptomatic rhythm. Methods: The iRhythm ZioPatch, AliveCor portable electrocardiogram (ECG), and Apple Watch were chosen for review due to their involvement in controlled clinical trials, and their integration with smartphones. The cost-effectiveness and AF detection of these devices were compared against the 12-lead ambulatory ECG (Holter monitor) that the NHS currently employs for the detection of AF. Results: The Zio patch was found to detect more arrhythmic events than the Holter monitor over a 2-week period. When patients presented to the emergency department with palpitations, AliveCor portable ECGs detected 6-fold more symptomatic events compared to the standard care group over 3-months. Based off preliminary results from the Apple Heart Study, only 0.5% of participants received irregular pulse notifications from the Apple Watch. Discussion: The Zio Patch and AliveCor devices have promising potential to be implemented into the standard duty of care offered by the NHS as they compare well to current routine measures. Nonetheless, companies must address the discrepancy between their target population and current consumers as those that could benefit the most from the innovation may be left out due to cost and access.

Keywords: atrial fibrillation, big data, cardiovascular healthcare management, wearable devices

Procedia PDF Downloads 132
1697 Comparing Hotels' Official Websites with Their Pages on Booking Sites: An Exploratory Study

Authors: Iman Shawky

Abstract:

Hotel websites frequently aim at encouraging visitors to become potential guests by completing their booking procedures, and accordingly, they have been proved to be attractive and appealing. That might be due to the consideration of them as one of the direct efficacious tools to promote and sell hotels' facilities, besides building strong communication with guests to create unforgettable brand images. This study tried to find out a step for five-star and four-star hotels to develop their websites to meet their visitors' or guests' requirements for an effective site. In addition, it aimed at exploring to what extent hotels' official websites compared with their pages on hotel booking sites still influence visitors' or guests' desires to book. Besides, it also aimed at investigating to what extent visitors or guests widely trust and use those sites to accomplish their booking. Furthermore, it tried to explore to what extent visitors' or guests' preferences of those sites can influence on hotels' financial performance. To achieve these objectives, the researcher conducted an exploratory study by surfing both hotels' official websites and their pages on booking sites of such hotels in Alexandria city in Egypt to make a comparison between them. Moreover, another separate comparison was made on Arab and foreign guests' views conducted by using a questionnaire during the past seven months to investigate the effectiveness of hotels' official websites against their pages on booking sites to trust and motive them to book. The results indicated that hotels' pages on booking sites represented widely trusted and used sites compared with their official websites for achieving visitors' or guests' booking process, while a few other visitors or guests still trusted official hotel websites for completing their booking.

Keywords: five-star and four-star hotels, hotel booking sites, hotels' financial performance, hotels' official websites

Procedia PDF Downloads 140
1696 Internet of Things Networks: Denial of Service Detection in Constrained Application Protocol Using Machine Learning Algorithm

Authors: Adamu Abdullahi, On Francisca, Saidu Isah Rambo, G. N. Obunadike, D. T. Chinyio

Abstract:

The paper discusses the potential threat of Denial of Service (DoS) attacks in the Internet of Things (IoT) networks on constrained application protocols (CoAP). As billions of IoT devices are expected to be connected to the internet in the coming years, the security of these devices is vulnerable to attacks, disrupting their functioning. This research aims to tackle this issue by applying mixed methods of qualitative and quantitative for feature selection, extraction, and cluster algorithms to detect DoS attacks in the Constrained Application Protocol (CoAP) using the Machine Learning Algorithm (MLA). The main objective of the research is to enhance the security scheme for CoAP in the IoT environment by analyzing the nature of DoS attacks and identifying a new set of features for detecting them in the IoT network environment. The aim is to demonstrate the effectiveness of the MLA in detecting DoS attacks and compare it with conventional intrusion detection systems for securing the CoAP in the IoT environment. Findings: The research identifies the appropriate node to detect DoS attacks in the IoT network environment and demonstrates how to detect the attacks through the MLA. The accuracy detection in both classification and network simulation environments shows that the k-means algorithm scored the highest percentage in the training and testing of the evaluation. The network simulation platform also achieved the highest percentage of 99.93% in overall accuracy. This work reviews conventional intrusion detection systems for securing the CoAP in the IoT environment. The DoS security issues associated with the CoAP are discussed.

Keywords: algorithm, CoAP, DoS, IoT, machine learning

Procedia PDF Downloads 80
1695 Exact Vibration Analysis of a Rectangular Nano-Plate Using Nonlocal Modified Sinusoidal Shear Deformation Theory

Authors: Korosh Khorshidi, Mohammad Khodadadi

Abstract:

In this paper, exact close form solution for out of plate free flexural vibration of moderately thick rectangular nanoplates are presented based on nonlocal modified trigonometric shear deformation theory, with assumptions of the Levy's type boundary conditions, for the first time. The aim of this study is to evaluate the effect of small-scale parameters on the frequency parameters of the moderately thick rectangular nano-plates. To describe the effects of small-scale parameters on vibrations of rectangular nanoplates, the Eringen theory is used. The Levy's type boundary conditions are combination of six different boundary conditions; specifically, two opposite edges are simply supported and any of the other two edges can be simply supported, clamped or free. Governing equations of motion and boundary conditions of the plate are derived by using the Hamilton’s principle. The present analytical solution can be obtained with any required accuracy and can be used as benchmark. Numerical results are presented to illustrate the effectiveness of the proposed method compared to other methods reported in the literature. Finally, the effect of boundary conditions, aspect ratios, small scale parameter and thickness ratios on nondimensional natural frequency parameters and frequency ratios are examined and discussed in detail.

Keywords: exact solution, nonlocal modified sinusoidal shear deformation theory, out of plane vibration, moderately thick rectangular plate

Procedia PDF Downloads 387
1694 Focus-Latent Dirichlet Allocation for Aspect-Level Opinion Mining

Authors: Mohsen Farhadloo, Majid Farhadloo

Abstract:

Aspect-level opinion mining that aims at discovering aspects (aspect identification) and their corresponding ratings (sentiment identification) from customer reviews have increasingly attracted attention of researchers and practitioners as it provides valuable insights about products/services from customer's points of view. Instead of addressing aspect identification and sentiment identification in two separate steps, it is possible to simultaneously identify both aspects and sentiments. In recent years many graphical models based on Latent Dirichlet Allocation (LDA) have been proposed to solve both aspect and sentiment identifications in a single step. Although LDA models have been effective tools for the statistical analysis of document collections, they also have shortcomings in addressing some unique characteristics of opinion mining. Our goal in this paper is to address one of the limitations of topic models to date; that is, they fail to directly model the associations among topics. Indeed in many text corpora, it is natural to expect that subsets of the latent topics have higher probabilities. We propose a probabilistic graphical model called focus-LDA, to better capture the associations among topics when applied to aspect-level opinion mining. Our experiments on real-life data sets demonstrate the improved effectiveness of the focus-LDA model in terms of the accuracy of the predictive distributions over held out documents. Furthermore, we demonstrate qualitatively that the focus-LDA topic model provides a natural way of visualizing and exploring unstructured collection of textual data.

Keywords: aspect-level opinion mining, document modeling, Latent Dirichlet Allocation, LDA, sentiment analysis

Procedia PDF Downloads 94
1693 Analyzing Factors Impacting COVID-19 Vaccination Rates

Authors: Dongseok Cho, Mitchell Driedger, Sera Han, Noman Khan, Mohammed Elmorsy, Mohamad El-Hajj

Abstract:

Since the approval of the COVID-19 vaccine in late 2020, vaccination rates have varied around the globe. Access to a vaccine supply, mandated vaccination policy, and vaccine hesitancy contribute to these rates. This study used COVID-19 vaccination data from Our World in Data and the Multilateral Leaders Task Force on COVID-19 to create two COVID-19 vaccination indices. The first index is the Vaccine Utilization Index (VUI), which measures how effectively each country has utilized its vaccine supply to doubly vaccinate its population. The second index is the Vaccination Acceleration Index (VAI), which evaluates how efficiently each country vaccinated its population within its first 150 days. Pearson correlations were created between these indices and country indicators obtained from the World Bank. The results of these correlations identify countries with stronger health indicators, such as lower mortality rates, lower age dependency ratios, and higher rates of immunization to other diseases, displaying higher VUI and VAI scores than countries with lesser values. VAI scores are also positively correlated to Governance and Economic indicators, such as regulatory quality, control of corruption, and GDP per capita. As represented by the VUI, proper utilization of the COVID-19 vaccine supply by country is observed in countries that display excellence in health practices. A country’s motivation to accelerate its vaccination rates within the first 150 days of vaccinating, as represented by the VAI, was largely a product of the governing body’s effectiveness and economic status, as well as overall excellence in health practises.

Keywords: data mining, Pearson correlation, COVID-19, vaccination rates and hesitancy

Procedia PDF Downloads 114
1692 Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data Towards Mapping Fruit Plantations in Highly Heterogenous Landscapes

Authors: Yingisani Chabalala, Elhadi Adam, Khalid Adem Ali

Abstract:

Mapping smallholder fruit plantations using optical data is challenging due to morphological landscape heterogeneity and crop types having overlapped spectral signatures. Furthermore, cloud covers limit the use of optical sensing, especially in subtropical climates where they are persistent. This research assessed the effectiveness of Sentinel-1 (S1) and Sentinel-2 (S2) data for mapping fruit trees and co-existing land-use types by using support vector machine (SVM) and random forest (RF) classifiers independently. These classifiers were also applied to fused data from the two sensors. Feature ranks were extracted using the RF mean decrease accuracy (MDA) and forward variable selection (FVS) to identify optimal spectral windows to classify fruit trees. Based on RF MDA and FVS, the SVM classifier resulted in relatively high classification accuracy with overall accuracy (OA) = 0.91.6% and kappa coefficient = 0.91% when applied to the fused satellite data. Application of SVM to S1, S2, S2 selected variables and S1S2 fusion independently produced OA = 27.64, Kappa coefficient = 0.13%; OA= 87%, Kappa coefficient = 86.89%; OA = 69.33, Kappa coefficient = 69. %; OA = 87.01%, Kappa coefficient = 87%, respectively. Results also indicated that the optimal spectral bands for fruit tree mapping are green (B3) and SWIR_2 (B10) for S2, whereas for S1, the vertical-horizontal (VH) polarization band. Including the textural metrics from the VV channel improved crop discrimination and co-existing land use cover types. The fusion approach proved robust and well-suited for accurate smallholder fruit plantation mapping.

Keywords: smallholder agriculture, fruit trees, data fusion, precision agriculture

Procedia PDF Downloads 54
1691 Literature Review of the Management of Parry Romberg Syndrome with Fillers

Authors: Sana Ilyas

Abstract:

Parry-Romberg syndrome is a rare condition clinically defined by slowly progressive atrophy of the skin and soft tissues. This usually effects one side of the face, although a few cases have been documented of bilateral presentation. It is more prevalent in females and usually affects the left side of the face. The syndrome can also be accompanied by neurological abnormalities. It usually occurs in the first two decades of life with a variable rate of progression. The aetiology is unknown, and the disease eventually stabilises. The treatment options usually involve surgical management. The least invasive of these options is the management of facial asymmetry, associated with Parry Romberg syndrome, through the use of tissue fillers. This paper will review the existing literature on the management of Parry Romberg syndrome with tissue filler. Aim: The aim of the study is to explore the current published literature for the management of Parry Romberg syndrome with fillers. It is to assess the development that has been made in this method of management, its benefits and limitations, and its effectiveness for the management of Parry Romberg syndrome. Methodology: There was a thorough assessment of the current literature published on this topic. PubMed database was used for search of the published literature on this method of the management. Papers were analysed and compared with one another to assess the success and limitation of the management of Parry Romberg with dermal fillers Results and Conclusion: Case reports of the use of tissue fillers discuss the varying degrees of success with the treatment. However, this procedure has it’s limitation, which are discussed in the paper in detail. However, it is still the least invasive of all the surgical options for the management of Parry Romberg Syndrome, and therefore, it is important to explore this option with patients, as they may be more comfortable with pursuingtreatment that is less invasive and can still improve their facial asymmetry

Keywords: dermal fillers, facial asymmetry, parry romberg syndrome, tissue fillers

Procedia PDF Downloads 87
1690 Effects of Boron Compounds in Rabbits Fed High Protein and Energy Diet: A Metabolomic and Transcriptomic Approach

Authors: Nuri Başpınar, Abdullah Başoğlu, Özgür Özdemir, Çağlayan Özel, FundaTerzi, Özgür Yaman

Abstract:

Current research is targeting new molecular mechanisms that underlie non-alcoholic fatty liver disease (NAFLD) and associated metabolic disorders like nonalcoholic steatohepatitis (NASH). Forty New Zealand White rabbits have been used and fed a high protein (HP) and energy diet based on grains and containing 11.76 MJ/kg. Boron added to 3 experimental groups’ drinking waters (30 mg boron/L) as boron compounds. Biochemical analysis including boron levels, and nuclear magnetic resonance (NMR) based metabolomics evaluation, and mRNA expression of peroxisome proliferator-activated receptor (PPAR) family were performed. LDL-cholesterol concentrations alone were decreased in all the experimental groups. Boron levels in serum and feces were increased. Content of acetate was in about 2x higher for anhydrous borax group, at least 3x higher for boric acid group. PPARα mRNA expression was significantly decreased in boric acid group. Anhydrous borax attenuated mRNA levels of PPARα, which was further suppressed by boric acid. Boron supplementation decreased the degenerative alterations in hepatocytes. Except borax group other boron groups did not have a pronounced change in tubular epithels of kidney. In conclusion, high protein and energy diet leads hepatocytes’ degenerative changes which can be prevented by boron supplementation. Boric acid seems to precede in this effectiveness.

Keywords: high protein and energy diet, boron, metabolomics, transcriptomic

Procedia PDF Downloads 627
1689 Preparation of Wireless Networks and Security; Challenges in Efficient Accession of Encrypted Data in Healthcare

Authors: M. Zayoud, S. Oueida, S. Ionescu, P. AbiChar

Abstract:

Background: Wireless sensor network is encompassed of diversified tools of information technology, which is widely applied in a range of domains, including military surveillance, weather forecasting, and earthquake forecasting. Strengthened grounds are always developed for wireless sensor networks, which usually emerges security issues during professional application. Thus, essential technological tools are necessary to be assessed for secure aggregation of data. Moreover, such practices have to be incorporated in the healthcare practices that shall be serving in the best of the mutual interest Objective: Aggregation of encrypted data has been assessed through homomorphic stream cipher to assure its effectiveness along with providing the optimum solutions to the field of healthcare. Methods: An experimental design has been incorporated, which utilized newly developed cipher along with CPU-constrained devices. Modular additions have also been employed to evaluate the nature of aggregated data. The processes of homomorphic stream cipher have been highlighted through different sensors and modular additions. Results: Homomorphic stream cipher has been recognized as simple and secure process, which has allowed efficient aggregation of encrypted data. In addition, the application has led its way to the improvisation of the healthcare practices. Statistical values can be easily computed through the aggregation on the basis of selected cipher. Sensed data in accordance with variance, mean, and standard deviation has also been computed through the selected tool. Conclusion: It can be concluded that homomorphic stream cipher can be an ideal tool for appropriate aggregation of data. Alongside, it shall also provide the best solutions to the healthcare sector.

Keywords: aggregation, cipher, homomorphic stream, encryption

Procedia PDF Downloads 260
1688 Computerized Scoring System: A Stethoscope to Understand Consumer's Emotion through His or Her Feedback

Authors: Chen Yang, Jun Hu, Ping Li, Lili Xue

Abstract:

Most companies pay careful attention to consumer feedback collection, so it is popular to find the ‘feedback’ button of all kinds of mobile apps. Yet it is much more changeling to analyze these feedback texts and to catch the true feelings of a consumer regarding either a problem or a complimentary of consumers who hands out the feedback. Especially to the Chinese content, it is possible that; in one context the Chinese feedback expresses positive feedback, but in the other context, the same Chinese feedback may be a negative one. For example, in Chinese, the feedback 'operating with loudness' works well with both refrigerator and stereo system. Apparently, this feedback towards a refrigerator shows negative feedback; however, the same feedback is positive towards a stereo system. By introducing Bradley, M. and Lang, P.'s Affective Norms for English Text (ANET) theory and Bucci W.’s Referential Activity (RA) theory, we, usability researchers at Pingan, are able to decipher the feedback and to find the hidden feelings behind the content. We subtract 2 disciplines ‘valence’ and ‘dominance’ out of 3 of ANET and 2 disciplines ‘concreteness’ and ‘specificity’ out of 4 of RA to organize our own rating system with a scale of 1 to 5 points. This rating system enables us to judge the feelings/emotion behind each feedback, and it works well with both single word/phrase and a whole paragraph. The result of the rating reflects the strength of the feeling/emotion of the consumer when he/she is typing the feedback. In our daily work, we first require a consumer to answer the net promoter score (NPS) before writing the feedback, so we can determine the feedback is positive or negative. Secondly, we code the feedback content according to company problematic list, which contains 200 problematic items. In this way, we are able to collect the data that how many feedbacks left by the consumer belong to one typical problem. Thirdly, we rate each feedback based on the rating system mentioned above to illustrate the strength of the feeling/emotion when our consumer writes the feedback. In this way, we actually obtain two kinds of data 1) the portion, which means how many feedbacks are ascribed into one problematic item and 2) the severity, how strong the negative feeling/emotion is when the consumer is writing this feedback. By crossing these two, and introducing the portion into X-axis and severity into Y-axis, we are able to find which typical problem gets the high score in both portion and severity. The higher the score of a problem has, the more urgent a problem is supposed to be solved as it means more people write stronger negative feelings in feedbacks regarding this problem. Moreover, by introducing hidden Markov model to program our rating system, we are able to computerize the scoring system and are able to process thousands of feedback in a short period of time, which is efficient and accurate enough for the industrial purpose.

Keywords: computerized scoring system, feeling/emotion of consumer feedback, referential activity, text mining

Procedia PDF Downloads 176
1687 Identification and Prioritisation of Students Requiring Literacy Intervention and Subsequent Communication with Key Stakeholders

Authors: Emilie Zimet

Abstract:

During networking and NCCD moderation meetings, best practices for identifying students who require Literacy Intervention are often discussed. Once these students are identified, consideration is given to the most effective process for prioritising those who have the greatest need for Literacy Support and the allocation of resources, tracking of intervention effectiveness and communicating with teachers/external providers/parents. Through a workshop, the group will investigate best practices to identify students who require literacy support and strategies to communicate and track their progress. In groups, participants will examine what they do in their settings and then compare with other models, including the researcher’s model, to decide the most effective path to identification and communication. Participants will complete a worksheet at the beginning of the session to deeply consider their current approaches. The participants will be asked to critically analyse their own identification processes for Literacy Intervention, ensuring students are not overlooked if they fall into the borderline category. A cut-off for students to access intervention will be considered so as not to place strain on already stretched resources along with the most effective allocation of resources. Furthermore, communicating learning needs and differentiation strategies to staff is paramount to the success of an intervention, and participants will look at the frequency of communication to share such strategies and updates. At the end of the session, the group will look at creating or evolving models that allow for best practices for the identification and communication of Literacy Interventions. The proposed outcome for this research is to develop a model of identification of students requiring Literacy Intervention that incorporates the allocation of resources and communication to key stakeholders. This will be done by pooling information and discussing a variety of models used in the participant's school settings.

Keywords: identification, student selection, communication, special education, school policy, planning for intervention

Procedia PDF Downloads 47
1686 AI Applications in Accounting: Transforming Finance with Technology

Authors: Alireza Karimi

Abstract:

Artificial Intelligence (AI) is reshaping various industries, and accounting is no exception. With the ability to process vast amounts of data quickly and accurately, AI is revolutionizing how financial professionals manage, analyze, and report financial information. In this article, we will explore the diverse applications of AI in accounting and its profound impact on the field. Automation of Repetitive Tasks: One of the most significant contributions of AI in accounting is automating repetitive tasks. AI-powered software can handle data entry, invoice processing, and reconciliation with minimal human intervention. This not only saves time but also reduces the risk of errors, leading to more accurate financial records. Pattern Recognition and Anomaly Detection: AI algorithms excel at pattern recognition. In accounting, this capability is leveraged to identify unusual patterns in financial data that might indicate fraud or errors. AI can swiftly detect discrepancies, enabling auditors and accountants to focus on resolving issues rather than hunting for them. Real-Time Financial Insights: AI-driven tools, using natural language processing and computer vision, can process documents faster than ever. This enables organizations to have real-time insights into their financial status, empowering decision-makers with up-to-date information for strategic planning. Fraud Detection and Prevention: AI is a powerful tool in the fight against financial fraud. It can analyze vast transaction datasets, flagging suspicious activities and reducing the likelihood of financial misconduct going unnoticed. This proactive approach safeguards a company's financial integrity. Enhanced Data Analysis and Forecasting: Machine learning, a subset of AI, is used for data analysis and forecasting. By examining historical financial data, AI models can provide forecasts and insights, aiding businesses in making informed financial decisions and optimizing their financial strategies. Artificial Intelligence is fundamentally transforming the accounting profession. From automating mundane tasks to enhancing data analysis and fraud detection, AI is making financial processes more efficient, accurate, and insightful. As AI continues to evolve, its role in accounting will only become more significant, offering accountants and finance professionals powerful tools to navigate the complexities of modern finance. Embracing AI in accounting is not just a trend; it's a necessity for staying competitive in the evolving financial landscape.

Keywords: artificial intelligence, accounting automation, financial analysis, fraud detection, machine learning in finance

Procedia PDF Downloads 63
1685 Analysis of the Level of Production Failures by Implementing New Assembly Line

Authors: Joanna Kochanska, Dagmara Gornicka, Anna Burduk

Abstract:

The article examines the process of implementing a new assembly line in a manufacturing enterprise of the household appliances industry area. At the initial stages of the project, a decision was made that one of its foundations should be the concept of lean management. Because of that, eliminating as many errors as possible in the first phases of its functioning was emphasized. During the start-up of the line, there were identified and documented all production losses (from serious machine failures, through any unplanned downtime, to micro-stops and quality defects). During 6 weeks (line start-up period), all errors resulting from problems in various areas were analyzed. These areas were, among the others, production, logistics, quality, and organization. The aim of the work was to analyze the occurrence of production failures during the initial phase of starting up the line and to propose a method for determining their critical level during its full functionality. There was examined the repeatability of the production losses in various areas and at different levels at such an early stage of implementation, by using the methods of statistical process control. Based on the Pareto analysis, there were identified the weakest points in order to focus improvement actions on them. The next step was to examine the effectiveness of the actions undertaken to reduce the level of recorded losses. Based on the obtained results, there was proposed a method for determining the critical failures level in the studied areas. The developed coefficient can be used as an alarm in case of imbalance of the production, which is caused by the increased failures level in production and production support processes in the period of the standardized functioning of the line.

Keywords: production failures, level of production losses, new production line implementation, assembly line, statistical process control

Procedia PDF Downloads 128
1684 Effectiveness of Catalysis in Ozonation for the Removal of Herbizide 2,4 Dichlorophenoxyacetic Acid from Contaminated Water

Authors: S. Shanthi

Abstract:

Catalyzed oxidation processes show extraordinary guarantee for application in numerous wastewater treatment ranges. Advanced oxidation processes are emerging innovation that might be utilized for particular objectives in wastewater treatment. This research work provides a solution for removal a refractory organic compound 2,4-dichlorophenoxyaceticacid a common water pollutant. All studies were done in batch mode in a constantly stirred reactor. Alternative ozonation processes catalysed by transition metals or granular activated carbon have been investigated for degradation of organics. Catalytic ozonation under study are homogeneous catalytic ozonation, which is based on ozone activation by transition metal ions present in aqueous solution, and secondly as heterogeneous catalytic ozonation in the presence of Granular Activated Carbon (GAC). The present studies reveal that heterogeneous catalytic ozonation using GAC favour the ozonation of 2,4-dichlorophenoxyaceticacid by increasing the rate of ozonation and a much higher degradation of substrates were obtained in a given time. Be that it may, Fe2+and Fe3+ ions decreased the rate of degradation of 2,4-dichlorophenoxyaceticacid indicating that it acts as a negative catalyst. In case of heterogeneous catalytic ozonation using GAC catalyst it was found that during the initial 5 minutes of contact solution concentration decreased significantly as the pollutants were adsorbed initially. Thereafter the substrate started getting oxidized and ozonation became a dominates the treatment process. The exhausted GAC was found to be regenerated in situ. The percentage reduction of the substrate was maximum achieved in minimum possible time when GAC catalyst is employed.

Keywords: ozonation, homogeneous catalysis, heterogeneous catalysis, granular activated carbon

Procedia PDF Downloads 250
1683 An Improved Robust Algorithm Based on Cubature Kalman Filter for Single-Frequency Global Navigation Satellite System/Inertial Navigation Tightly Coupled System

Authors: Hao Wang, Shuguo Pan

Abstract:

The Global Navigation Satellite System (GNSS) signal received by the dynamic vehicle in the harsh environment will be frequently interfered with and blocked, which generates gross error affecting the positioning accuracy of the GNSS/Inertial Navigation System (INS) integrated navigation. Therefore, this paper put forward an improved robust Cubature Kalman filter (CKF) algorithm for single-frequency GNSS/INS tightly coupled system ambiguity resolution. Firstly, the dynamic model and measurement model of a single-frequency GNSS/INS tightly coupled system was established, and the method for GNSS integer ambiguity resolution with INS aided is studied. Then, we analyzed the influence of pseudo-range observation with gross error on GNSS/INS integrated positioning accuracy. To reduce the influence of outliers, this paper improved the CKF algorithm and realized an intelligent selection of robust strategies by judging the ill-conditioned matrix. Finally, a field navigation test was performed to demonstrate the effectiveness of the proposed algorithm based on the double-differenced solution mode. The experiment has proved the improved robust algorithm can greatly weaken the influence of separate, continuous, and hybrid observation anomalies for enhancing the reliability and accuracy of GNSS/INS tightly coupled navigation solutions.

Keywords: GNSS/INS integrated navigation, ambiguity resolution, Cubature Kalman filter, Robust algorithm

Procedia PDF Downloads 97
1682 Effective Student Engaging Strategies to Enhance Academic Learning in Middle Eastern Classrooms: An Action Research Approach

Authors: Anjum Afrooze

Abstract:

The curriculum at General Sciences department in Prince Sultan University includes ‘Physical science’ for Computer Science, Information Technology and Business courses. Students are apathetic towards Physical Science and question, as to, ‘How this course is related to their majors?’ English is not a native language for the students and also for many instructors. More than sixty percent of the students come from institutions where English is not the medium of instruction, which makes student learning and academic achievement challenging. After observing the less enthusiastic student cohort for two consecutive semesters, the instructor was keen to find effective strategies to enhance learning and further encourage deep learning by engaging students in different tasks to empower them with necessary skills and motivate them. This study is participatory action research, in which instructor designs effective tasks to engage students in their learning. The study is conducted through two semesters with a total of 200 students. The effectiveness of this approach is studied using questionnaire at the end of each semester and teacher observation. Major outcomes of this study were overall improvement in students attitude towards science learning, enhancement of multiple skills like note taking, problem solving, language proficiency and also fortifying confidence. This process transformed instructor into engaging and reflecting practitioner. Also, these strategies were implemented by other instructors teaching the course and proved effective in opening a path to changes in related areas of the course curriculum. However, refinement in the strategies could be done based on student evaluation and instructors observation.

Keywords: group activity, language proficiency, reasoning skills, science learning

Procedia PDF Downloads 145
1681 HLB Disease Detection in Omani Lime Trees using Hyperspectral Imaging Based Techniques

Authors: Jacintha Menezes, Ramalingam Dharmalingam, Palaiahnakote Shivakumara

Abstract:

In the recent years, Omani acid lime cultivation and production has been affected by Citrus greening or Huanglongbing (HLB) disease. HLB disease is one of the most destructive diseases for citrus, with no remedies or countermeasures to stop the disease. Currently used Polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) HLB detection tests require lengthy and labor-intensive laboratory procedures. Furthermore, the equipment and staff needed to carry out the laboratory procedures are frequently specialized hence making them a less optimal solution for the detection of the disease. The current research uses hyperspectral imaging technology for automatic detection of citrus trees with HLB disease. Omani citrus tree leaf images were captured through portable Specim IQ hyperspectral camera. The research considered healthy, nutrition deficient, and HLB infected leaf samples based on the Polymerase chain reaction (PCR) test. The highresolution image samples were sliced to into sub cubes. The sub cubes were further processed to obtain RGB images with spatial features. Similarly, RGB spectral slices were obtained through a moving window on the wavelength. The resized spectral-Spatial RGB images were given to Convolution Neural Networks for deep features extraction. The current research was able to classify a given sample to the appropriate class with 92.86% accuracy indicating the effectiveness of the proposed techniques. The significant bands with a difference in three types of leaves are found to be 560nm, 678nm, 726 nm and 750nm.

Keywords: huanglongbing (HLB), hyperspectral imaging (HSI), · omani citrus, CNN

Procedia PDF Downloads 80
1680 Chemical Characterization and Prebiotic Effect of Water-Soluble Polysaccharides from Zizyphus lotus Leaves

Authors: Zakaria Boual, Abdellah Kemassi, Toufik Chouana, Philippe Michaud, Mohammed Didi Ould El Hadj

Abstract:

In order to investigate the prebiotic potential of oligosaccharides prepared by chemical hydrolysis of water-soluble polysaccharides (WSP) from Zizyphus lotus leaves, the effect of oligosaccharides on bacterial growth was studied. The chemical composition of WSP was evaluated by colorimetric assays revealed the average values: 7.05±0.73% proteins and 86.21±0.74% carbohydrates, among them 64.81±0.42% are neutral sugar and the rest 16.25±1.62% are uronic acids. The characterization of monosaccharides was determined by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) was found to be composed of galactose (23.95%), glucose (21.30%), rhamnose (20.28%), arabinose (9.55%), and glucuronic acid (22.95%). The effects of oligosaccharides on the growth of lactic acid bacteria were compared with those of fructo-oligosaccharide (RP95). The oligosaccharides concentration was 1g/L of man rogosa sharpe broth. Bacterial growth was assessed during 2, 4.5, 6.5, 9, 12, 16 and 24 h by measuring the optical density of the cultures at 600 nm (OD600) and pH values. During fermentation, pH in broth cultures decreased from 6.7 to 5.87±0.15. The enumeration of lactic acid bacteria indicated that oligosaccharides led to a significant increase in bacteria (P≤0.05) compared to the control. The fermentative metabolism appeared to be faster on RP95 than on oligosaccharides from Zizyphus lotus leaves. Both RP95 and oligosaccharides showed clear prebiotic effects, but had differences in fermentation kinetics because of to the different degree of polymerization. This study shows the prebiotic effectiveness of oligosaccharides, and provides proof for the selection of leaves of Zizyphus lotus for use as functional food ingredients.

Keywords: Zizyphus lotus, polysaccharides, characterization, prebiotic effects

Procedia PDF Downloads 410