Search results for: root mean square error
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4098

Search results for: root mean square error

108 Using Convolutional Neural Networks to Distinguish Different Sign Language Alphanumerics

Authors: Stephen L. Green, Alexander N. Gorban, Ivan Y. Tyukin

Abstract:

Within the past decade, using Convolutional Neural Networks (CNN)’s to create Deep Learning systems capable of translating Sign Language into text has been a breakthrough in breaking the communication barrier for deaf-mute people. Conventional research on this subject has been concerned with training the network to recognize the fingerspelling gestures of a given language and produce their corresponding alphanumerics. One of the problems with the current developing technology is that images are scarce, with little variations in the gestures being presented to the recognition program, often skewed towards single skin tones and hand sizes that makes a percentage of the population’s fingerspelling harder to detect. Along with this, current gesture detection programs are only trained on one finger spelling language despite there being one hundred and forty-two known variants so far. All of this presents a limitation for traditional exploitation for the state of current technologies such as CNN’s, due to their large number of required parameters. This work aims to present a technology that aims to resolve this issue by combining a pretrained legacy AI system for a generic object recognition task with a corrector method to uptrain the legacy network. This is a computationally efficient procedure that does not require large volumes of data even when covering a broad range of sign languages such as American Sign Language, British Sign Language and Chinese Sign Language (Pinyin). Implementing recent results on method concentration, namely the stochastic separation theorem, an AI system is supposed as an operate mapping an input present in the set of images u ∈ U to an output that exists in a set of predicted class labels q ∈ Q of the alphanumeric that q represents and the language it comes from. These inputs and outputs, along with the interval variables z ∈ Z represent the system’s current state which implies a mapping that assigns an element x ∈ ℝⁿ to the triple (u, z, q). As all xi are i.i.d vectors drawn from a product mean distribution, over a period of time the AI generates a large set of measurements xi called S that are grouped into two categories: the correct predictions M and the incorrect predictions Y. Once the network has made its predictions, a corrector can then be applied through centering S and Y by subtracting their means. The data is then regularized by applying the Kaiser rule to the resulting eigenmatrix and then whitened before being split into pairwise, positively correlated clusters. Each of these clusters produces a unique hyperplane and if any element x falls outside the region bounded by these lines then it is reported as an error. As a result of this methodology, a self-correcting recognition process is created that can identify fingerspelling from a variety of sign language and successfully identify the corresponding alphanumeric and what language the gesture originates from which no other neural network has been able to replicate.

Keywords: convolutional neural networks, deep learning, shallow correctors, sign language

Procedia PDF Downloads 100
107 The Importance of Dialogue, Self-Respect, and Cultural Etiquette in Multicultural Society: An Islamic and Secular Perspective

Authors: Julia A. Ermakova

Abstract:

In today's multicultural societies, dialogue, self-respect, and cultural etiquette play a vital role in fostering mutual respect and understanding. Whether viewed from an Islamic or secular perspective, the importance of these values cannot be overstated. Firstly, dialogue is essential in multicultural societies as it allows individuals from different cultural backgrounds to exchange ideas, opinions, and experiences. To engage in dialogue, one must be open and willing to listen, understand, and respect the views of others. This requires a level of self-awareness, where individuals must know themselves and their interlocutors to create a productive and respectful conversation. Secondly, self-respect is crucial for individuals living in multicultural societies (McLarney). One must have adequately high self-esteem and self-confidence to interact with others positively. By valuing oneself, individuals can create healthy relationships and foster mutual respect, which is essential in diverse communities. Thirdly, cultural etiquette is a way of demonstrating the beauty of one's culture by exhibiting good temperament (Al-Ghazali). Adab, a concept that encompasses good manners, praiseworthy words and deeds, and the pursuit of what is considered good, is highly valued in Islamic teachings. By adhering to Adab, individuals can guard against making mistakes and demonstrate respect for others. Islamic teachings provide etiquette for every situation in life, making up the way of life for Muslims. In the Islamic view, an elegant Muslim woman has several essential qualities, including cultural speech and erudition, speaking style, awareness of how to greet, the ability to receive compliments, lack of desire to argue, polite behavior, avoiding personal insults, and having good intentions (Al-Ghazali). The Quran highlights the inclination of people towards arguing, bickering, and disputes (Qur'an, 4:114). Therefore, it is imperative to avoid useless arguments and disputes, for they are poison that poisons our lives. The Prophet Muhammad, peace and blessings be upon him, warned that the most hateful person to Allah is an irreconcilable disputant (Al-Ghazali). By refraining from such behavior, individuals can foster respect and understanding in multicultural societies. From a secular perspective, respecting the views of others is crucial to engage in productive dialogue. The rule of argument emphasizes the importance of showing respect for the other person's views, allowing for the possibility of error on one's part, and avoiding telling someone they are wrong (Atamali). By exhibiting polite behavior and having respect for everyone, individuals can create a welcoming environment and avoid conflict. In conclusion, the importance of dialogue, self-respect, and cultural etiquette in multicultural societies cannot be overstated. By engaging in dialogue, respecting oneself and others, and adhering to cultural etiquette, individuals can foster mutual respect and understanding in diverse communities. Whether viewed from an Islamic or secular perspective, these values are essential for creating harmonious societies.

Keywords: multiculturalism, self-respect, cultural etiquette, adab, ethics, secular perspective

Procedia PDF Downloads 88
106 Assessing the Experiences of South African and Indian Legal Profession from the Perspective of Women Representation in Higher Judiciary: The Square Peg in a Round Hole Story

Authors: Sricheta Chowdhury

Abstract:

To require a woman to choose between her work and her personal life is the most acute form of discrimination that can be meted out against her. No woman should be given a choice to choose between her motherhood and her career at Bar, yet that is the most detrimental discrimination that has been happening in Indian Bar, which no one has questioned so far. The falling number of women in practice is a reality that isn’t garnering much attention given the sharp rise in women studying law but is not being able to continue in the profession. Moving from a colonial misogynist whim to a post-colonial “new-age construct of Indian woman” façade, the policymakers of the Indian Judiciary have done nothing so far to decolonize itself from its rudimentary understanding of ‘equality of gender’ when it comes to the legal profession. Therefore, when Indian jurisprudence was (and is) swooning to the sweeping effect of transformative constitutionalism in the understanding of equality as enshrined under the Indian Constitution, one cannot help but question why the legal profession remained out of brushing effect of achieving substantive equality. The Airline industry’s discriminatory policies were not spared from criticism, nor were the policies where women’s involvement in any establishment serving liquor (Anuj Garg case), but the judicial practice did not question the stereotypical bias of gender and unequal structural practices until recently. That necessitates the need to examine the existing Bar policies and the steps taken by the regulatory bodies in assessing the situations that are in favor or against the purpose of furthering women’s issues in present-day India. From a comparative feminist point of concern, South Africa’s pro-women Bar policies are attractive to assess their applicability and extent in terms of promoting inclusivity at the Bar. This article intends to tap on these two countries’ potential in carving a niche in giving women an equal platform to play a substantive role in designing governance policies through the Judiciary. The article analyses the current gender composition of the legal profession while endorsing the concept of substantive equality as a requisite in designing an appropriate appointment process of the judges. It studies the theoretical framework on gender equality, examines the international and regional instruments and analyses the scope of welfare policies that Indian legal and regulatory bodies can undertake towards a transformative initiative in re-modeling the Judiciary to a more diverse and inclusive institution. The methodology employs a comparative and analytical understanding of doctrinal resources. It makes quantitative use of secondary data and qualitative use of primary data collected for determining the present status of Indian women legal practitioners and judges. With respect to quantitative data, statistics on the representation of women as judges and chief justices and senior advocates from their official websites from 2018 till present have been utilized. In respect of qualitative data, results of the structured interviews conducted through open and close-ended questions with retired lady judges of the higher judiciary and senior advocates of the Supreme Court of India, contacted through snowball sampling, are utilized.

Keywords: gender, higher judiciary, legal profession, representation, substantive equality

Procedia PDF Downloads 83
105 Comparing Community Health Agents, Physicians and Nurses in Brazil's Family Health Strategy

Authors: Rahbel Rahman, Rogério Meireles Pinto, Margareth Santos Zanchetta

Abstract:

Background: Existing shortcomings of current health-service delivery include poor teamwork, competencies that do not address consumer needs, and episodic rather than continuous care. Brazil’s Sistema Único de Saúde (Unified Health System, UHS) is acknowledged worldwide as a model for delivering community-based care through Estratégia Saúde da Família (FHS; Family Health Strategy) interdisciplinary teams, comprised of Community Health Agents (in Portuguese, Agentes Comunitário de Saude, ACS), nurses, and physicians. FHS teams are mandated to collectively offer clinical care, disease prevention services, vector control, health surveillance and social services. Our study compares medical providers (nurses and physicians) and community-based providers (ACS) on their perceptions of work environment, professional skills, cognitive capacities and job context. Global health administrators and policy makers can leverage on similarities and differences across care providers to develop interprofessional training for community-based primary care. Methods: Cross-sectional data were collected from 168 ACS, 62 nurses and 32 physicians in Brazil. We compared providers’ demographic characteristics (age, race, and gender) and job context variables (caseload, work experience, work proximity to community, the length of commute, and familiarity with the community). Providers perceptions were compared to their work environment (work conditions and work resources), professional skills (consumer-input, interdisciplinary collaboration, efficacy of FHS teams, work-methods and decision-making autonomy), and cognitive capacities (knowledge and skills, skill variety, confidence and perseverance). Descriptive and bi-variate analysis, such as Pearson Chi-square and Analysis of Variance (ANOVA) F-tests, were performed to draw comparisons across providers. Results: Majority of participants were ACS (64%); 24% nurses; and 12% physicians. Majority of nurses and ACS identified as mixed races (ACS, n=85; nurses, n=27); most physicians identified as males (n=16; 52%), and white (n=18; 58%). Physicians were less likely to incorporate consumer-input and demonstrated greater decision-making autonomy than nurses and ACS. ACS reported the highest levels of knowledge and skills but the least confidence compared to nurses and physicians. ACS, nurses, and physicians were efficacious that FHS teams improved the quality of health in their catchment areas, though nurses tend to disagree that interdisciplinary collaboration facilitated their work. Conclusion: To our knowledge, there has been no study comparing key demographic and cognitive variables across ACS, nurses and physicians in the context of their work environment and professional training. We suggest that global health systems can leverage upon the diverse perspectives of providers to implement a community-based primary care model grounded in interprofessional training. Our study underscores the need for in-service trainings to instill reflective skills of providers, improve communication skills of medical providers and curative skills of ACS. Greater autonomy needs to be extended to community based providers to offer care integral to addressing consumer and community needs.

Keywords: global health systems, interdisciplinary health teams, community health agents, community-based care

Procedia PDF Downloads 230
104 Theorizing Optimal Use of Numbers and Anecdotes: The Science of Storytelling in Newsrooms

Authors: Hai L. Tran

Abstract:

When covering events and issues, the news media often employ both personal accounts as well as facts and figures. However, the process of using numbers and narratives in the newsroom is mostly operated through trial and error. There is a demonstrated need for the news industry to better understand the specific effects of storytelling and data-driven reporting on the audience as well as explanatory factors driving such effects. In the academic world, anecdotal evidence and statistical evidence have been studied in a mutually exclusive manner. Existing research tends to treat pertinent effects as though the use of one form precludes the other and as if a tradeoff is required. Meanwhile, narratives and statistical facts are often combined in various communication contexts, especially in news presentations. There is value in reconceptualizing and theorizing about both relative and collective impacts of numbers and narratives as well as the mechanism underlying such effects. The current undertaking seeks to link theory to practice by providing a complete picture of how and why people are influenced by information conveyed through quantitative and qualitative accounts. Specifically, the cognitive-experiential theory is invoked to argue that humans employ two distinct systems to process information. The rational system requires the processing of logical evidence effortful analytical cognitions, which are affect-free. Meanwhile, the experiential system is intuitive, rapid, automatic, and holistic, thereby demanding minimum cognitive resources and relating to the experience of affect. In certain situations, one system might dominate the other, but rational and experiential modes of processing operations in parallel and at the same time. As such, anecdotes and quantified facts impact audience response differently and a combination of data and narratives is more effective than either form of evidence. In addition, the present study identifies several media variables and human factors driving the effects of statistics and anecdotes. An integrative model is proposed to explain how message characteristics (modality, vividness, salience, congruency, position) and individual differences (involvement, numeracy skills, cognitive resources, cultural orientation) impact selective exposure, which in turn activates pertinent modes of processing, and thereby induces corresponding responses. The present study represents a step toward bridging theoretical frameworks from various disciplines to better understand the specific effects and the conditions under which the use of anecdotal evidence and/or statistical evidence enhances or undermines information processing. In addition to theoretical contributions, this research helps inform news professionals about the benefits and pitfalls of incorporating quantitative and qualitative accounts in reporting. It proposes a typology of possible scenarios and appropriate strategies for journalists to use when presenting news with anecdotes and numbers.

Keywords: data, narrative, number, anecdote, storytelling, news

Procedia PDF Downloads 79
103 Regional Hydrological Extremes Frequency Analysis Based on Statistical and Hydrological Models

Authors: Hadush Kidane Meresa

Abstract:

The hydrological extremes frequency analysis is the foundation for the hydraulic engineering design, flood protection, drought management and water resources management and planning to utilize the available water resource to meet the desired objectives of different organizations and sectors in a country. This spatial variation of the statistical characteristics of the extreme flood and drought events are key practice for regional flood and drought analysis and mitigation management. For different hydro-climate of the regions, where the data set is short, scarcity, poor quality and insufficient, the regionalization methods are applied to transfer at-site data to a region. This study aims in regional high and low flow frequency analysis for Poland River Basins. Due to high frequent occurring of hydrological extremes in the region and rapid water resources development in this basin have caused serious concerns over the flood and drought magnitude and frequencies of the river in Poland. The magnitude and frequency result of high and low flows in the basin is needed for flood and drought planning, management and protection at present and future. Hydrological homogeneous high and low flow regions are formed by the cluster analysis of site characteristics, using the hierarchical and C- mean clustering and PCA method. Statistical tests for regional homogeneity are utilized, by Discordancy and Heterogeneity measure tests. In compliance with results of the tests, the region river basin has been divided into ten homogeneous regions. In this study, frequency analysis of high and low flows using AM for high flow and 7-day minimum low flow series is conducted using six statistical distributions. The use of L-moment and LL-moment method showed a homogeneous region over entire province with Generalized logistic (GLOG), Generalized extreme value (GEV), Pearson type III (P-III), Generalized Pareto (GPAR), Weibull (WEI) and Power (PR) distributions as the regional drought and flood frequency distributions. The 95% percentile and Flow duration curves of 1, 7, 10, 30 days have been plotted for 10 stations. However, the cluster analysis performed two regions in west and east of the province where L-moment and LL-moment method demonstrated the homogeneity of the regions and GLOG and Pearson Type III (PIII) distributions as regional frequency distributions for each region, respectively. The spatial variation and regional frequency distribution of flood and drought characteristics for 10 best catchment from the whole region was selected and beside the main variable (streamflow: high and low) we used variables which are more related to physiographic and drainage characteristics for identify and delineate homogeneous pools and to derive best regression models for ungauged sites. Those are mean annual rainfall, seasonal flow, average slope, NDVI, aspect, flow length, flow direction, maximum soil moisture, elevation, and drainage order. The regional high-flow or low-flow relationship among one streamflow characteristics with (AM or 7-day mean annual low flows) some basin characteristics is developed using Generalized Linear Mixed Model (GLMM) and Generalized Least Square (GLS) regression model, providing a simple and effective method for estimation of flood and drought of desired return periods for ungauged catchments.

Keywords: flood , drought, frequency, magnitude, regionalization, stochastic, ungauged, Poland

Procedia PDF Downloads 602
102 3D CFD Model of Hydrodynamics in Lowland Dam Reservoir in Poland

Authors: Aleksandra Zieminska-Stolarska, Ireneusz Zbicinski

Abstract:

Introduction: The objective of the present work was to develop and validate a 3D CFD numerical model for simulating flow through 17 kilometers long dam reservoir of a complex bathymetry. In contrast to flowing waters, dam reservoirs were not emphasized in the early years of water quality modeling, as this issue has never been the major focus of urban development. Starting in the 1970s, however, it was recognized that natural and man-made lakes are equal, if not more important than estuaries and rivers from a recreational standpoint. The Sulejow Reservoir (Central Poland) was selected as the study area as representative of many lowland dam reservoirs and due availability of a large database of the ecological, hydrological and morphological parameters of the lake. Method: 3D, 2-phase and 1-phase CFD models were analysed to determine hydrodynamics in the Sulejow Reservoir. Development of 3D, 2-phase CFD model of flow requires a construction of mesh with millions of elements and overcome serious convergence problems. As 1-phase CFD model of flow in relation to 2-phase CFD model excludes from the simulations the dynamics of waves only, which should not change significantly water flow pattern for the case of lowland, dam reservoirs. In 1-phase CFD model, the phases (water-air) are separated by a plate which allows calculations of one phase (water) flow only. As the wind affects velocity of flow, to take into account the effect of the wind on hydrodynamics in 1-phase CFD model, the plate must move with speed and direction equal to the speed and direction of the upper water layer. To determine the velocity at which the plate will move on the water surface and interacts with the underlying layers of water and apply this value in 1-phase CFD model, the 2D, 2-phase model was elaborated. Result: Model was verified on the basis of the extensive flow measurements (StreamPro ADCP, USA). Excellent agreement (an average error less than 10%) between computed and measured velocity profiles was found. As a result of work, the following main conclusions can be presented: •The results indicate that the flow field in the Sulejow Reservoir is transient in nature, with swirl flows in the lower part of the lake. Recirculating zones, with the size of even half kilometer, may increase water retention time in this region •The results of simulations confirm the pronounced effect of the wind on the development of the water circulation zones in the reservoir which might affect the accumulation of nutrients in the epilimnion layer and result e.g. in the algae bloom. Conclusion: The resulting model is accurate and the methodology develop in the frame of this work can be applied to all types of storage reservoir configurations, characteristics, and hydrodynamics conditions. Large recirculating zones in the lake which increase water retention time and might affect the accumulation of nutrients were detected. Accurate CFD model of hydrodynamics in large water body could help in the development of forecast of water quality, especially in terms of eutrophication and water management of the big water bodies.

Keywords: CFD, mathematical modelling, dam reservoirs, hydrodynamics

Procedia PDF Downloads 401
101 User Experience Evaluation on the Usage of Commuter Line Train Ticket Vending Machine

Authors: Faishal Muhammad, Erlinda Muslim, Nadia Faradilla, Sayidul Fikri

Abstract:

To deal with the increase of mass transportation needs problem, PT. Kereta Commuter Jabodetabek (KCJ) implements Commuter Vending Machine (C-VIM) as the solution. For that background, C-VIM is implemented as a substitute to the conventional ticket windows with the purposes to make transaction process more efficient and to introduce self-service technology to the commuter line user. However, this implementation causing problems and long queues when the user is not accustomed to using the machine. The objective of this research is to evaluate user experience after using the commuter vending machine. The goal is to analyze the existing user experience problem and to achieve a better user experience design. The evaluation method is done by giving task scenario according to the features offered by the machine. The features are daily insured ticket sales, ticket refund, and multi-trip card top up. There 20 peoples that separated into two groups of respondents involved in this research, which consist of 5 males and 5 females each group. The experienced and inexperienced user to prove that there is a significant difference between both groups in the measurement. The user experience is measured by both quantitative and qualitative measurement. The quantitative measurement includes the user performance metrics such as task success, time on task, error, efficiency, and learnability. The qualitative measurement includes system usability scale questionnaire (SUS), questionnaire for user interface satisfaction (QUIS), and retrospective think aloud (RTA). Usability performance metrics shows that 4 out of 5 indicators are significantly different in both group. This shows that the inexperienced group is having a problem when using the C-VIM. Conventional ticket windows also show a better usability performance metrics compared to the C-VIM. From the data processing, the experienced group give the SUS score of 62 with the acceptability scale of 'marginal low', grade scale of “D”, and the adjective ratings of 'good' while the inexperienced group gives the SUS score of 51 with the acceptability scale of 'marginal low', grade scale of 'F', and the adjective ratings of 'ok'. This shows that both groups give a low score on the system usability scale. The QUIS score of the experienced group is 69,18 and the inexperienced group is 64,20. This shows the average QUIS score below 70 which indicate a problem with the user interface. RTA was done to obtain user experience issue when using C-VIM through interview protocols. The issue obtained then sorted using pareto concept and diagram. The solution of this research is interface redesign using activity relationship chart. This method resulted in a better interface with an average SUS score of 72,25, with the acceptable scale of 'acceptable', grade scale of 'B', and the adjective ratings of 'excellent'. From the time on task indicator of performance metrics also shows a significant better time by using the new interface design. Result in this study shows that C-VIM not yet have a good performance and user experience.

Keywords: activity relationship chart, commuter line vending machine, system usability scale, usability performance metrics, user experience evaluation

Procedia PDF Downloads 262
100 Lake Water Surface Variations and Its Influencing Factors in Tibetan Plateau in Recent 10 Years

Authors: Shanlong Lu, Jiming Jin, Xiaochun Wang

Abstract:

The Tibetan Plateau has the largest number of inland lakes with the highest elevation on the planet. These massive and large lakes are mostly in natural state and are less affected by human activities. Their shrinking or expansion can truly reflect regional climate and environmental changes and are sensitive indicators of global climate change. However, due to the sparsely populated nature of the plateau and the poor natural conditions, it is difficult to effectively obtain the change data of the lake, which has affected people's understanding of the temporal and spatial processes of lake water changes and their influencing factors. By using the MODIS (Moderate Resolution Imaging Spectroradiometer) MOD09Q1 surface reflectance images as basic data, this study produced the 8-day lake water surface data set of the Tibetan Plateau from 2000 to 2012 at 250 m spatial resolution, with a lake water surface extraction method of combined with lake water surface boundary buffer analyzing and lake by lake segmentation threshold determining. Then based on the dataset, the lake water surface variations and their influencing factors were analyzed, by using 4 typical natural geographical zones of Eastern Qinghai and Qilian, Southern Qinghai, Qiangtang, and Southern Tibet, and the watersheds of the top 10 lakes of Qinghai, Siling Co, Namco, Zhari NamCo, Tangra Yumco, Ngoring, UlanUla, Yamdrok Tso, Har and Gyaring as the analysis units. The accuracy analysis indicate that compared with water surface data of the 134 sample lakes extracted from the 30 m Landsat TM (Thematic Mapper ) images, the average overall accuracy of the lake water surface data set is 91.81% with average commission and omission error of 3.26% and 5.38%; the results also show strong linear (R2=0.9991) correlation with the global MODIS water mask dataset with overall accuracy of 86.30%; and the lake area difference between the Second National Lake Survey and this study is only 4.74%, respectively. This study provides reliable dataset for the lake change research of the plateau in the recent decade. The change trends and influencing factors analysis indicate that the total water surface area of lakes in the plateau showed overall increases, but only lakes with areas larger than 10 km2 had statistically significant increases. Furthermore, lakes with area larger than 100 km2 experienced an abrupt change in 2005. In addition, the annual average precipitation of Southern Tibet and Southern Qinghai experienced significant increasing and decreasing trends, and corresponding abrupt changes in 2004 and 2006, respectively. The annual average temperature of Southern Tibet and Qiangtang showed a significant increasing trend with an abrupt change in 2004. The major reason for the lake water surface variation in Eastern Qinghai and Qilian, Southern Qinghai and Southern Tibet is the changes of precipitation, and that for Qiangtang is the temperature variations.

Keywords: lake water surface variation, MODIS MOD09Q1, remote sensing, Tibetan Plateau

Procedia PDF Downloads 231
99 InAs/GaSb Superlattice Photodiode Array ns-Response

Authors: Utpal Das, Sona Das

Abstract:

InAs/GaSb type-II superlattice (T2SL) Mid-wave infrared (MWIR) focal plane arrays (FPAs) have recently seen rapid development. However, in small pixel size large format FPAs, the occurrence of high mesa sidewall surface leakage current is a major constraint necessitating proper surface passivation. A simple pixel isolation technique in InAs/GaSb T2SL detector arrays without the conventional mesa etching has been proposed to isolate the pixels by forming a more resistive higher band gap material from the SL, in the inter-pixel region. Here, a single step femtosecond (fs) laser anneal of the T2SL structure of the inter-pixel T2SL regions, have been used to increase the band gap between the pixels by QW-intermixing and hence increase isolation between the pixels. The p-i-n photodiode structure used here consists of a 506nm, (10 monolayer {ML}) InAs:Si (1x10¹⁸cm⁻³)/(10ML) GaSb SL as the bottom n-contact layer grown on an n-type GaSb substrate. The undoped absorber layer consists of 1.3µm, (10ML)InAs/(10ML)GaSb SL. The top p-contact layer is a 63nm, (10ML)InAs:Be(1x10¹⁸cm⁻³)/(10ML)GaSb T2SL. In order to improve the carrier transport, a 126nm of graded doped (10ML)InAs/(10ML)GaSb SL layer was added between the absorber and each contact layers. A 775nm 150fs-laser at a fluence of ~6mJ/cm² is used to expose the array where the pixel regions are masked by a Ti(200nm)-Au(300nm) cap. Here, in the inter-pixel regions, the p+ layer have been reactive ion etched (RIE) using CH₄+H₂ chemistry and removed before fs-laser exposure. The fs-laser anneal isolation improvement in 200-400μm pixels due to spatially selective quantum well intermixing for a blue shift of ~70meV in the inter-pixel regions is confirmed by FTIR measurements. Dark currents are measured between two adjacent pixels with the Ti(200nm)-Au(300nm) caps used as contacts. The T2SL quality in the active photodiode regions masked by the Ti-Au cap is hardly affected and retains the original quality of the detector. Although, fs-laser anneal of p+ only etched p-i-n T2SL diodes show a reduction in the reverse dark current, no significant improvement in the full RIE-etched mesa structures is noticeable. Hence for a 128x128 array fabrication of 8μm square pixels and 10µm pitch, SU8 polymer isolation after RIE pixel delineation has been used. X-n+ row contacts and Y-p+ column contacts have been used to measure the optical response of the individual pixels. The photo-response of these 8μm and other 200μm pixels under a 2ns optical pulse excitation from an Optical-Parametric-Oscillator (OPO), shows a peak responsivity of ~0.03A/W and 0.2mA/W, respectively, at λ~3.7μm. Temporal response of this detector array is seen to have a fast response ~10ns followed typical slow decay with ringing, attributed to impedance mismatch of the connecting co-axial cables. In conclusion, response times of a few ns have been measured in 8µm pixels of a 128x128 array. Although fs-laser anneal has been found to be useful in increasing the inter-pixel isolation in InAs/GaSb T2SL arrays by QW inter-mixing, it has not been found to be suitable for passivation of full RIE etched mesa structures with vertical walls on InAs/GaSb T2SL.

Keywords: band-gap blue-shift, fs-laser-anneal, InAs/GaSb T2SL, Inter-pixel isolation, ns-Response, photodiode array

Procedia PDF Downloads 152
98 Starting the Hospitalization Procedure with a Medicine Combination in the Cardiovascular Department of the Imam Reza (AS) Mashhad Hospital

Authors: Maryamsadat Habibi

Abstract:

Objective: pharmaceutical errors are avoidable occurrences that can result in inappropriate pharmaceutical use, patient harm, treatment failure, increased hospital costs and length of stay, and other outcomes that affect both the individual receiving treatment and the healthcare provider. This study aimed to perform a reconciliation of medications in the cardiovascular ward of Imam Reza Hospital in Mashhad, Iran, and evaluate the prevalence of medication discrepancies between the best medication list created for the patient by the pharmacist and the medication order of the treating physician there. Materials & Methods: The 97 patients in the cardiovascular ward of the Imam Reza Hospital in Mashhad were the subject of a cross-sectional study from June to September of 2021. After giving their informed consent and being admitted to the ward, all patients with at least one underlying condition and at least two medications being taken at home were included in the study. A medical reconciliation form was used to record patient demographics and medical histories during the first 24 hours of admission, and the information was contrasted with the doctors' orders. The doctor then discovered medication inconsistencies between the two lists and double-checked them to separate the intentional from the accidental anomalies. Finally, using SPSS software version 22, it was determined how common medical discrepancies are and how different sorts of discrepancies relate to various variables. Results: The average age of the participants in this study was 57.6915.84 years, with 57.7% of men and 42.3% of women. 95.9% of the patients among these people encountered at least one medication discrepancy, and 58.9% of them suffered at least one unintentional drug cessation. Out of the 659 medications registered in the study, 399 cases (60.54%) had inconsistencies, of which 161 cases (40.35%) involved the intentional stopping of a medication, 123 cases (30.82%) involved the stopping of a medication unintentionally, and 115 cases (28.82%) involved the continued use of a medication by adjusting the dose. Additionally, the category of cardiovascular pharmaceuticals and the category of gastrointestinal medications were found to have the highest medical inconsistencies in the current study. Furthermore, there was no correlation between the frequency of medical discrepancies and the following variables: age, ward, date of visit, type, and number of underlying diseases (P=0.13), P=0.61, P=0.72, P=0.82, P=0.44, and so forth. On the other hand, there was a statistically significant correlation between the number of medications taken at home (P=0.037) and the prevalence of medical discrepancies with gender (P=0.029). The results of this study revealed that 96% of patients admitted to the cardiovascular unit at Imam Reza Hospital had at least one medication error, which was typically an intentional drug discontinuance. According to the study's findings, patients admitted to Imam Reza Hospital's cardiovascular ward have a great potential for identifying and correcting various medication discrepancies as well as for avoiding prescription errors when the medication reconciliation method is used. As a result, it is essential to carry out a precise assessment to achieve the best treatment outcomes and avoid unintended medication discontinuation, unwanted drug-related events, and drug interactions between the patient's home medications and those prescribed in the hospital.

Keywords: drug combination, drug side effects, drug incompatibility, cardiovascular department

Procedia PDF Downloads 90
97 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review

Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni

Abstract:

Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.

Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing

Procedia PDF Downloads 71
96 Application of NBR 14861: 2011 for the Design of Prestress Hollow Core Slabs Subjected to Shear

Authors: Alessandra Aparecida Vieira França, Adriana de Paula Lacerda Santos, Mauro Lacerda Santos Filho

Abstract:

The purpose of this research i to study the behavior of precast prestressed hollow core slabs subjected to shear. In order to achieve this goal, shear tests were performed using hollow core slabs 26,5cm thick, with and without a concrete cover of 5 cm, without cores filled, with two cores filled and three cores filled with concrete. The tests were performed according to the procedures recommended by FIP (1992), the EN 1168:2005 and following the method presented in Costa (2009). The ultimate shear strength obtained within the tests was compared with the values of theoretical resistant shear calculated in accordance with the codes, which are being used in Brazil, noted: NBR 6118:2003 and NBR 14861:2011. When calculating the shear resistance through the equations presented in NBR 14861:2011, it was found that provision is much more accurate for the calculation of the shear strength of hollow core slabs than the NBR 6118 code. Due to the large difference between the calculated results, even for slabs without cores filled, the authors consulted the committee that drafted the NBR 14861:2011 and found that there is an error in the text of the standard, because the coefficient that is suggested, actually presents the double value than the needed one! The ABNT, later on, soon issued an amendment of NBR 14861:2011 with the necessary corrections. During the tests for the present study, it was confirmed that the concrete filling the cores contributes to increase the shear strength of hollow core slabs. But in case of slabs 26,5 cm thick, the quantity should be limited to a maximum of two cores filled, because most of the results for slabs with three cores filled were smaller. This confirmed the recommendation of NBR 14861:2011which is consistent with standard practice. After analyzing the configuration of cracking and failure mechanisms of hollow core slabs during the shear tests, strut and tie models were developed representing the forces acting on the slab at the moment of rupture. Through these models the authors were able to calculate the tensile stress acting on the concrete ties (ribs) and scaled the geometry of these ties. The conclusions of the research performed are the experiments results have shown that the mechanism of failure of the hollow-core slabs can be predicted using the strut-and-tie procedure, within a good range of accuracy. In addition, the needed of the correction of the Brazilian standard to review the correction factor σcp duplicated (in NBR14861/2011), and the limitation of the number of cores (Holes) to be filled with concrete, to increase the strength of the slab for the shear resistance. It is also suggested the increasing the amount of test results with 26.5 cm thick, and a larger range of thickness slabs, in order to obtain results of shear tests with cores concreted after the release of prestressing force. Another set of shear tests on slabs must be performed in slabs with cores filled and cover concrete reinforced with welded steel mesh for comparison with results of theoretical values calculated by the new revision of the standard NBR 14861:2011.

Keywords: prestressed hollow core slabs, shear, strut, tie models

Procedia PDF Downloads 333
95 Influence of Temperature and Immersion on the Behavior of a Polymer Composite

Authors: Quentin C.P. Bourgogne, Vanessa Bouchart, Pierre Chevrier, Emmanuel Dattoli

Abstract:

This study presents an experimental and theoretical work conducted on a PolyPhenylene Sulfide reinforced with 40%wt of short glass fibers (PPS GF40) and its matrix. Thermoplastics are widely used in the automotive industry to lightweight automotive parts. The replacement of metallic parts by thermoplastics is reaching under-the-hood parts, near the engine. In this area, the parts are subjected to high temperatures and are immersed in cooling liquid. This liquid is composed of water and glycol and can affect the mechanical properties of the composite. The aim of this work was thus to quantify the evolution of mechanical properties of the thermoplastic composite, as a function of temperature and liquid aging effects, in order to develop a reliable design of parts. An experimental campaign in the tensile mode was carried out at different temperatures and for various glycol proportions in the cooling liquid, for monotonic and cyclic loadings on a neat and a reinforced PPS. The results of these tests allowed to highlight some of the main physical phenomena occurring during these solicitations under tough hydro-thermal conditions. Indeed, the performed tests showed that temperature and liquid cooling aging can affect the mechanical behavior of the material in several ways. The more the cooling liquid contains water, the more the mechanical behavior is affected. It was observed that PPS showed a higher sensitivity to absorption than to chemical aggressiveness of the cooling liquid, explaining this dominant sensitivity. Two kinds of behaviors were noted: an elasto-plastic type under the glass transition temperature and a visco-pseudo-plastic one above it. It was also shown that viscosity is the leading phenomenon above the glass transition temperature for the PPS and could also be important under this temperature, mostly under cyclic conditions and when the stress rate is low. Finally, it was observed that soliciting this composite at high temperatures is decreasing the advantages of the presence of fibers. A new phenomenological model was then built to take into account these experimental observations. This new model allowed the prediction of the evolution of mechanical properties as a function of the loading environment, with a reduced number of parameters compared to precedent studies. It was also shown that the presented approach enables the description and the prediction of the mechanical response with very good accuracy (2% of average error at worst), over a wide range of hydrothermal conditions. A temperature-humidity equivalence principle was underlined for the PPS, allowing the consideration of aging effects within the proposed model. Then, a limit of improvement of the reachable accuracy was determinate for all models using this set of data by the application of an artificial intelligence-based model allowing a comparison between artificial intelligence-based models and phenomenological based ones.

Keywords: aging, analytical modeling, mechanical testing, polymer matrix composites, sequential model, thermomechanical

Procedia PDF Downloads 116
94 Automatic Content Curation of Visual Heritage

Authors: Delphine Ribes Lemay, Valentine Bernasconi, André Andrade, Lara DéFayes, Mathieu Salzmann, FréDéRic Kaplan, Nicolas Henchoz

Abstract:

Digitization and preservation of large heritage induce high maintenance costs to keep up with the technical standards and ensure sustainable access. Creating impactful usage is instrumental to justify the resources for long-term preservation. The Museum für Gestaltung of Zurich holds one of the biggest poster collections of the world from which 52’000 were digitised. In the process of building a digital installation to valorize the collection, one objective was to develop an algorithm capable of predicting the next poster to show according to the ones already displayed. The work presented here describes the steps to build an algorithm able to automatically create sequences of posters reflecting associations performed by curator and professional designers. The exposed challenge finds similarities with the domain of song playlist algorithms. Recently, artificial intelligence techniques and more specifically, deep-learning algorithms have been used to facilitate their generations. Promising results were found thanks to Recurrent Neural Networks (RNN) trained on manually generated playlist and paired with clusters of extracted features from songs. We used the same principles to create the proposed algorithm but applied to a challenging medium, posters. First, a convolutional autoencoder was trained to extract features of the posters. The 52’000 digital posters were used as a training set. Poster features were then clustered. Next, an RNN learned to predict the next cluster according to the previous ones. RNN training set was composed of poster sequences extracted from a collection of books from the Gestaltung Museum of Zurich dedicated to displaying posters. Finally, within the predicted cluster, the poster with the best proximity compared to the previous poster is selected. The mean square distance between features of posters was used to compute the proximity. To validate the predictive model, we compared sequences of 15 posters produced by our model to randomly and manually generated sequences. Manual sequences were created by a professional graphic designer. We asked 21 participants working as professional graphic designers to sort the sequences from the one with the strongest graphic line to the one with the weakest and to motivate their answer with a short description. The sequences produced by the designer were ranked first 60%, second 25% and third 15% of the time. The sequences produced by our predictive model were ranked first 25%, second 45% and third 30% of the time. The sequences produced randomly were ranked first 15%, second 29%, and third 55% of the time. Compared to designer sequences, and as reported by participants, model and random sequences lacked thematic continuity. According to the results, the proposed model is able to generate better poster sequencing compared to random sampling. Eventually, our algorithm is sometimes able to outperform a professional designer. As a next step, the proposed algorithm should include a possibility to create sequences according to a selected theme. To conclude, this work shows the potentiality of artificial intelligence techniques to learn from existing content and provide a tool to curate large sets of data, with a permanent renewal of the presented content.

Keywords: Artificial Intelligence, Digital Humanities, serendipity, design research

Procedia PDF Downloads 184
93 Microsimulation of Potential Crashes as a Road Safety Indicator

Authors: Vittorio Astarita, Giuseppe Guido, Vincenzo Pasquale Giofre, Alessandro Vitale

Abstract:

Traffic microsimulation has been used extensively to evaluate consequences of different traffic planning and control policies in terms of travel time delays, queues, pollutant emissions, and every other common measured performance while at the same time traffic safety has not been considered in common traffic microsimulation packages as a measure of performance for different traffic scenarios. Vehicle conflict techniques that were introduced at intersections in the early traffic researches carried out at the General Motor laboratory in the USA and in the Swedish traffic conflict manual have been applied to vehicles trajectories simulated in microscopic traffic simulators. The concept is that microsimulation can be used as a base for calculating the number of conflicts that will define the safety level of a traffic scenario. This allows engineers to identify unsafe road traffic maneuvers and helps in finding the right countermeasures that can improve safety. Unfortunately, most commonly used indicators do not consider conflicts between single vehicles and roadside obstacles and barriers. A great number of vehicle crashes take place with roadside objects or obstacles. Only some recent proposed indicators have been trying to address this issue. This paper introduces a new procedure based on the simulation of potential crash events for the evaluation of safety levels in microsimulation traffic scenarios, which takes into account also potential crashes with roadside objects and barriers. The procedure can be used to define new conflict indicators. The proposed simulation procedure generates with the random perturbation of vehicle trajectories a set of potential crashes which can be evaluated accurately in terms of DeltaV, the energy of the impact, and/or expected number of injuries or casualties. The procedure can also be applied to real trajectories giving birth to new surrogate safety performance indicators, which can be considered as “simulation-based”. The methodology and a specific safety performance indicator are described and applied to a simulated test traffic scenario. Results indicate that the procedure is able to evaluate safety levels both at the intersection level and in the presence of roadside obstacles. The procedure produces results that are expressed in the same unity of measure for both vehicle to vehicle and vehicle to roadside object conflicts. The total energy for a square meter of all generated crash can be used and is shown on the map, for the test network, after the application of a threshold to evidence the most dangerous points. Without any detailed calibration of the microsimulation model and without any calibration of the parameters of the procedure (standard values have been used), it is possible to identify dangerous points. A preliminary sensitivity analysis has shown that results are not dependent on the different energy thresholds and different parameters of the procedure. This paper introduces a specific new procedure and the implementation in the form of a software package that is able to assess road safety, also considering potential conflicts with roadside objects. Some of the principles that are at the base of this specific model are discussed. The procedure can be applied on common microsimulation packages once vehicle trajectories and the positions of roadside barriers and obstacles are known. The procedure has many calibration parameters and research efforts will have to be devoted to make confrontations with real crash data in order to obtain the best parameters that have the potential of giving an accurate evaluation of the risk of any traffic scenario.

Keywords: road safety, traffic, traffic safety, traffic simulation

Procedia PDF Downloads 135
92 Improving Fingerprinting-Based Localization System Using Generative AI

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarms, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 42
91 Biotite from Contact-Metamorphosed Rocks of the Dizi Series of the Greater Caucasus

Authors: Irakli Javakhishvili, Tamara Tsutsunava, Giorgi Beridze

Abstract:

The Caucasus is a component of the Mediterranean collision belt. The Dizi series is situated within the Greater Caucasian region of the Caucasus and crops out in the core of the Svaneti anticlinorium. The series was formed in the continental slope conditions on the southern passive margin of the small ocean basin. The Dizi series crops out on about 560 square km with the thickness 2000-2200 m. The rocks are faunally dated from the Devonian to the Triassic inclusive. The series is composed of terrigenous phyllitic schists, sandstones, quartzite aleurolites and lenses and interlayers of marbleized limestones. During the early Cimmerian orogeny, they underwent regional metamorphism of chlorite-sericite subfacies of greenschist facies. Typical minerals of metapelites are chlorite, sericite, augite, quartz, and tourmaline, but of basic rocks - actinolite, fibrolite, prehnite, calcite, and chlorite are developed. Into the Dizi series, polyphase intrusions of gabbros, diorites, quartz-diorites, syenite-diorites, syenites, and granitoids are intruded. Their K-Ar age dating (176-165Ma) points out that their formation corresponds to the Bathonian orogeny. The Dizi series is well-studied geologically, but very complicated processes of its regional and contact metamorphisms are insufficiently investigated. The aim of the authors was a detailed study of contact metamorphism processes of the series rocks. Investigations were accomplished applying the following methodologies: finding of key sections, a collection of material, microscopic study of samples, microprobe and structural analysis of minerals and X-ray determination of elements. The Dizi series rocks formed under the influence of the Bathonian magmatites on metapelites and carbonate-enriched rocks. They are represented by quartz, biotite, sericite, graphite, andalusite, muscovite, plagioclase, corundum, cordierite, clinopyroxene, hornblende, cummingtonite, actinolite, and tremolite bearing hornfels, marbles, and skarns. The contact metamorphism aureole reaches 350 meters. Biotite is developed only in contact-metamorphosed rocks and is a rather informative index mineral. In metapelites, biotite is formed as a result of the reaction between phengite, chlorite, and leucoxene, but in basites, it replaces actinolite or actinolite-hornblende. To study the compositional regularities of biotites, they were investigated from both - metapelites and metabasites. In total, biotite from the basites is characterized by an increased of titanium in contrast to biotite from metapelites. Biotites from metapelites are distinguished by an increased amount of aluminum. In biotites an increased amount of titanium and aluminum is observed as they approximate the contact, while their magnesia content decreases. Metapelite biotites are characterized by an increased amount of alumina in aluminum octahedrals, in contrast to biotite of the basites. In biotites of metapelites, the amount of tetrahedric aluminum is 28–34%, octahedral - 15–26%, and in basites tetrahedral aluminum is 28–33%, and octahedral 7–21%. As a result of the study of minerals, including biotite, from the contact-metamorphosed rocks of the Dizi series three exocontact zones with corresponding mineral assemblages were identified. It was established that contact metamorphism in the aureole of the Dizi series intrusions is going on at a significantly higher temperature and lower pressure than the regional metamorphism preceding the contact metamorphism.

Keywords: biotite, contact metamorphism, Dizi series, the Greater Caucasus

Procedia PDF Downloads 133
90 Predicting Provider Service Time in Outpatient Clinics Using Artificial Intelligence-Based Models

Authors: Haya Salah, Srinivas Sharan

Abstract:

Healthcare facilities use appointment systems to schedule their appointments and to manage access to their medical services. With the growing demand for outpatient care, it is now imperative to manage physician's time effectively. However, high variation in consultation duration affects the clinical scheduler's ability to estimate the appointment duration and allocate provider time appropriately. Underestimating consultation times can lead to physician's burnout, misdiagnosis, and patient dissatisfaction. On the other hand, appointment durations that are longer than required lead to doctor idle time and fewer patient visits. Therefore, a good estimation of consultation duration has the potential to improve timely access to care, resource utilization, quality of care, and patient satisfaction. Although the literature on factors influencing consultation length abound, little work has done to predict it using based data-driven approaches. Therefore, this study aims to predict consultation duration using supervised machine learning algorithms (ML), which predicts an outcome variable (e.g., consultation) based on potential features that influence the outcome. In particular, ML algorithms learn from a historical dataset without explicitly being programmed and uncover the relationship between the features and outcome variable. A subset of the data used in this study has been obtained from the electronic medical records (EMR) of four different outpatient clinics located in central Pennsylvania, USA. Also, publicly available information on doctor's characteristics such as gender and experience has been extracted from online sources. This research develops three popular ML algorithms (deep learning, random forest, gradient boosting machine) to predict the treatment time required for a patient and conducts a comparative analysis of these algorithms with respect to predictive performance. The findings of this study indicate that ML algorithms have the potential to predict the provider service time with superior accuracy. While the current approach of experience-based appointment duration estimation adopted by the clinic resulted in a mean absolute percentage error of 25.8%, the Deep learning algorithm developed in this study yielded the best performance with a MAPE of 12.24%, followed by gradient boosting machine (13.26%) and random forests (14.71%). Besides, this research also identified the critical variables affecting consultation duration to be patient type (new vs. established), doctor's experience, zip code, appointment day, and doctor's specialty. Moreover, several practical insights are obtained based on the comparative analysis of the ML algorithms. The machine learning approach presented in this study can serve as a decision support tool and could be integrated into the appointment system for effectively managing patient scheduling.

Keywords: clinical decision support system, machine learning algorithms, patient scheduling, prediction models, provider service time

Procedia PDF Downloads 121
89 Geometric Optimisation of Piezoelectric Fan Arrays for Low Energy Cooling

Authors: Alastair Hales, Xi Jiang

Abstract:

Numerical methods are used to evaluate the operation of confined face-to-face piezoelectric fan arrays as pitch, P, between the blades is varied. Both in-phase and counter-phase oscillation are considered. A piezoelectric fan consists of a fan blade, which is clamped at one end, and an extremely low powered actuator. This drives the blade tip’s oscillation at its first natural frequency. Sufficient blade tip speed, created by the high oscillation frequency and amplitude, is required to induce vortices and downstream volume flow in the surrounding air. A single piezoelectric fan may provide the ideal solution for low powered hot spot cooling in an electronic device, but is unable to induce sufficient downstream airflow to replace a conventional air mover, such as a convection fan, in power electronics. Piezoelectric fan arrays, which are assemblies including multiple fan blades usually in face-to-face orientation, must be developed to widen the field of feasible applications for the technology. The potential energy saving is significant, with a 50% power demand reduction compared to convection fans even in an unoptimised state. A numerical model of a typical piezoelectric fan blade is derived and validated against experimental data. Numerical error is found to be 5.4% and 9.8% using two data comparison methods. The model is used to explore the variation of pitch as a function of amplitude, A, for a confined two-blade piezoelectric fan array in face-to-face orientation, with the blades oscillating both in-phase and counter-phase. It has been reported that in-phase oscillation is optimal for generating maximum downstream velocity and flow rate in unconfined conditions, due at least in part to the beneficial coupling between the adjacent blades that leads to an increased oscillation amplitude. The present model demonstrates that confinement has a significant detrimental effect on in-phase oscillation. Even at low pitch, counter-phase oscillation produces enhanced downstream air velocities and flow rates. Downstream air velocity from counter-phase oscillation can be maximally enhanced, relative to that generated from a single blade, by 17.7% at P = 8A. Flow rate enhancement at the same pitch is found to be 18.6%. By comparison, in-phase oscillation at the same pitch outputs 23.9% and 24.8% reductions in peak downstream air velocity and flow rate, relative to that generated from a single blade. This optimal pitch, equivalent to those reported in the literature, suggests that counter-phase oscillation is less affected by confinement. The optimal pitch for generating bulk airflow from counter-phase oscillation is large, P > 16A, due to the small but significant downstream velocity across the span between adjacent blades. However, by considering design in a confined space, counterphase pitch should be minimised to maximise the bulk airflow generated from a certain cross-sectional area within a channel flow application. Quantitative values are found to deviate to a small degree as other geometric and operational parameters are varied, but the established relationships are maintained.

Keywords: piezoelectric fans, low energy cooling, power electronics, computational fluid dynamics

Procedia PDF Downloads 221
88 Correlation of Clinical and Sonographic Findings with Cytohistology for Diagnosis of Ovarian Tumours

Authors: Meenakshi Barsaul Chauhan, Aastha Chauhan, Shilpa Hurmade, Rajeev Sen, Jyotsna Sen, Monika Dalal

Abstract:

Introduction: Ovarian masses are common forms of neoplasm in women and represent 2/3rd of gynaecological malignancies. A pre-operative suggestion of malignancy can guide the gynecologist to refer women with suspected pelvic mass to a gynecological oncologist for appropriate therapy and optimized treatment, which can improve survival. In the younger age group preoperative differentiation into benign or malignant pathology can decide for conservative or radical surgery. Imaging modalities have a definite role in establishing the diagnosis. By using International Ovarian Tumor Analysis (IOTA) classification with sonography, costly radiological methods like Magnetic Resonance Imaging (MRI) / computed tomography (CT) scan can be reduced, especially in developing countries like India. Thus, this study is being undertaken to evaluate the role of clinical methods and sonography for diagnosis of the nature of the ovarian tumor. Material And Methods: This prospective observational study was conducted on 40 patients presenting with ovarian masses, in the Department of Obstetrics and Gynaecology, at a tertiary care center in northern India. Functional cysts were excluded. Ultrasonography and color Doppler were performed on all the cases.IOTA rules were applied, which take into account locularity, size, presence of solid components, acoustic shadow, dopper flow etc . Magnetic Resonance Imaging (MRI) / computed tomography (CT) scans abdomen and pelvis were done in cases where sonography was inconclusive. In inoperable cases, Fine needle aspiration cytology (FNAC) was done. The histopathology report after surgery and cytology report after FNAC was correlated statistically with the pre-operative diagnosis made clinically and sonographically using IOTA rules. Statistical Analysis: Descriptive measures were analyzed by using mean and standard deviation and the Student t-test was applied and the proportion was analyzed by applying the chi-square test. Inferential measures were analyzed by sensitivity, specificity, negative predictive value, and positive predictive value. Results: Provisional diagnosis of the benign tumor was made in 16(42.5%) and of the malignant tumor was made in 24(57.5%) patients on the basis of clinical findings. With IOTA simple rules on sonography, 15(37.5%) were found to be benign, while 23 (57.5%) were found to be malignant and findings were inconclusive in 2 patients (5%). FNAC/Histopathology reported that benign ovarian tumors were 14 (35%) and 26(65%) were malignant, which was taken as the gold standard. The clinical finding alone was found to have a sensitivity of 66.6% and a specificity of 90.9%. USG alone had a sensitivity of 86% and a specificity of 80%. When clinical findings and IOTA simple rules of sonography were combined (excluding inconclusive masses), the sensitivity and specificity were 83.3% and 92.3%, respectively. While including inconclusive masses, sensitivity came out to be 91.6% and specificity was 89.2. Conclusion: IOTA's simple sonography rules are highly sensitive and specific in the prediction of ovarian malignancy and also easy to use and easily reproducible. Thus, combining clinical examination with USG will help in the better management of patients in terms of time, cost and better prognosis. This will also avoid the need for costlier modalities like CT, and MRI.

Keywords: benign, international ovarian tumor analysis classification, malignant, ovarian tumours, sonography

Procedia PDF Downloads 80
87 Social Economic Factors Associated with the Nutritional Status of Children In Western Uganda

Authors: Baguma Daniel Kajura

Abstract:

The study explores socio-economic factors, health related and individual factors that influence the breastfeeding habits of mothers and their effect on the nutritional status of their infants in the Rwenzori region of Western Uganda. A cross-sectional research design was adopted, and it involved the use of self-administered questionnaires, interview guides, and focused group discussion guides to assess the extent to which socio-demographic factors associated with breastfeeding practices influence child malnutrition. Using this design, data was collected from 276 mother-paired infants out of the selected 318 mother-paired infants over a period of ten days. Using a sample size formula by Kish Leslie for cross-sectional studies N= Zα2 P (1- P) / δ2, where N= sample size estimate of paired mother paired infants. P= assumed true population prevalence of mother–paired infants with malnutrition cases, P = 29.3%. 1-P = the probability of mother-paired infants not having malnutrition, so 1-P = 70.7% Zα = Standard normal deviation at 95% confidence interval corresponding to 1.96.δ = Absolute error between the estimated and true population prevalence of malnutrition of 5%. The calculated sample size N = 1.96 × 1.96 (0.293 × 0.707) /0,052= 318 mother paired infants. Demographic and socio-economic data for all mothers were entered into Microsoft Excel software and then exported to STATA 14 (StataCorp, 2015). Anthropometric measurements were taken for all children by the researcher and the trained assistants who physically weighed the children. The use of immunization card was used to attain the age of the child. The bivariate logistic regression analysis was used to assess the relationship between socio-demographic factors associated with breastfeeding practices and child malnutrition. The multivariable regression analysis was used to draw a conclusion on whether or not there are any true relationships between the socio-demographic factors associated with breastfeeding practices as independent variables and child stunting and underweight as dependent variables in relation to breastfeeding practices. Descriptive statistics on background characteristics of the mothers were generated and presented in frequency distribution tables. Frequencies and means were computed, and the results were presented using tables, then, we determined the distribution of stunting and underweight among infants by the socioeconomic and demographic factors. Findings reveal that children of mothers who used milk substitutes besides breastfeeding are over two times more likely to be stunted compared to those whose mothers exclusively breastfed them. Feeding children with milk substitutes instead of breastmilk predisposes them to both stunting and underweight. Children of mothers between 18 and 34 years of age are less likely to be underweight, as were those who were breastfed over ten times a day. The study further reveals that 55% of the children were underweight, and 49% were stunted. Of the underweight children, an equal number (58/151) were either mildly or moderately underweight (38%), and 23% (35/151) were severely underweight. Empowering community outreach programs by increasing knowledge and increased access to services on integrated management of child malnutrition is crucial to curbing child malnutrition in rural areas.

Keywords: infant and young child feeding, breastfeeding, child malnutrition, maternal health

Procedia PDF Downloads 22
86 Event-Related Potentials and Behavioral Reactions during Native and Foreign Languages Comprehension in Bilingual Inhabitants of Siberia

Authors: Tatiana N. Astakhova, Alexander E. Saprygin, Tatyana A. Golovko, Alexander N. Savostyanov, Mikhail S. Vlasov, Natalia V. Borisova, Alexandera G. Karpova, Urana N. Kavai-ool, Elena D. Mokur-ool, Nikolay A. Kolchanov, Lubomir I. Aftanas

Abstract:

The study is dedicated to the research of brain activity in bilingual inhabitants of Siberia. We compared behavioral reactions and event-related potentials in Turkic-speaking inhabitants of Siberia (Tuvinians and Yakuts) and Russians. 63 healthy aboriginals of the Tyva Republic, 29 inhabitants of the Sakha (Yakutia) Republic, and 55 Russians from Novosibirsk participated in the study. All the healthy and right-handed participants, matched on age and sex, were students of different universities. EEG’s were recorded during the solving of linguistic tasks. In these tasks, participants had to find a syntax error in the written sentences. There were four groups of sentences: Russian, English, Tuvinian, and Yakut. All participants completed the tasks in Russian and English. Additionally, Tuvinians and Yakuts completed the tasks in Tuvinian or Yakut respectively. For Russians, EEG's were recorded using 128-channels according to the extended International 10-10 system, and the signals were amplified using “Neuroscan (USA)” amplifiers. For Tuvinians and Yakuts, EEG's were recorded using 64-channels and amplifiers Brain Products, Germany. In all groups, 0.3-100 Hz analog filtering and sampling rate 1000 Hz were used. As parameters of behavioral reactions, response speed and the accuracy of recognition were used. Event-related potentials (ERP) responses P300 and P600 were used as indicators of brain activity. The behavioral reactions showed that in Russians, the response speed for Russian was faster than for English. Also, the accuracy of solving tasks was higher for Russian than for English. The peak P300 in Russians were higher for English, the peak P600 in the left temporal cortex were higher for the Russian language. Both Tuvinians and Yakuts have no difference in accuracy of solving tasks in Russian and in their respective national languages. However, the response speed was faster for tasks in Russian than for tasks in their national language. Tuvinians and Yakuts showed bad accuracy in English, but the response speed was higher for English than for Russian and the national languages. This can be explained by the fact that they did not think carefully and gave a random answer for English. In Tuvinians, The P300 and P600 amplitudes and cortical topology were the same for Russian and Tuvinian and different for English. In Yakuts, the P300 and P600 amplitudes and topology of ERP for Russian were the same as what Russians had for Russian. In Yakuts, brain reactions during Yakut and English comprehension had no difference, and were reflected to foreign language comprehension - while the Russian language comprehension was reflected to native language comprehension. We found out that the Tuvinians recognized both Russian and Tuvinian as native languages, and English as a foreign language. The Yakuts recognized both English and Yakut as a foreign language, and only Russian as a native language. According to the inquirer, both Tuvinians and Yakuts use the national language as a spoken language, whereas they don’t use it for writing. It can well be a reason that Yakuts perceive the Yakut writing language as a foreign language while writing Russian as their native.

Keywords: EEG, ERP, native and foreign languages comprehension, Siberian inhabitants

Procedia PDF Downloads 561
85 On the Influence of Sleep Habits for Predicting Preterm Births: A Machine Learning Approach

Authors: C. Fernandez-Plaza, I. Abad, E. Diaz, I. Diaz

Abstract:

Births occurring before the 37th week of gestation are considered preterm births. A threat of preterm is defined as the beginning of regular uterine contractions, dilation and cervical effacement between 23 and 36 gestation weeks. To author's best knowledge, the factors that determine the beginning of the birth are not completely defined yet. In particular, the incidence of sleep habits on preterm births is weekly studied. The aim of this study is to develop a model to predict the factors affecting premature delivery on pregnancy, based on the above potential risk factors, including those derived from sleep habits and light exposure at night (introduced as 12 variables obtained by a telephone survey using two questionnaires previously used by other authors). Thus, three groups of variables were included in the study (maternal, fetal and sleep habits). The study was approved by Research Ethics Committee of the Principado of Asturias (Spain). An observational, retrospective and descriptive study was performed with 481 births between January 1, 2015 and May 10, 2016 in the University Central Hospital of Asturias (Spain). A statistical analysis using SPSS was carried out to compare qualitative and quantitative variables between preterm and term delivery. Chi-square test qualitative variable and t-test for quantitative variables were applied. Statistically significant differences (p < 0.05) between preterm vs. term births were found for primiparity, multi-parity, kind of conception, place of residence or premature rupture of membranes and interruption during nights. In addition to the statistical analysis, machine learning methods to look for a prediction model were tested. In particular, tree based models were applied as the trade-off between performance and interpretability is especially suitable for this study. C5.0, recursive partitioning, random forest and tree bag models were analysed using caret R-package. Cross validation with 10-folds and parameter tuning to optimize the methods were applied. In addition, different noise reduction methods were applied to the initial data using NoiseFiltersR package. The best performance was obtained by C5.0 method with Accuracy 0.91, Sensitivity 0.93, Specificity 0.89 and Precision 0.91. Some well known preterm birth factors were identified: Cervix Dilation, maternal BMI, Premature rupture of membranes or nuchal translucency analysis in the first trimester. The model also identifies other new factors related to sleep habits such as light through window, bedtime on working days, usage of electronic devices before sleeping from Mondays to Fridays or change of sleeping habits reflected in the number of hours, in the depth of sleep or in the lighting of the room. IF dilation < = 2.95 AND usage of electronic devices before sleeping from Mondays to Friday = YES and change of sleeping habits = YES, then preterm is one of the predicting rules obtained by C5.0. In this work a model for predicting preterm births is developed. It is based on machine learning together with noise reduction techniques. The method maximizing the performance is the one selected. This model shows the influence of variables related to sleep habits in preterm prediction.

Keywords: machine learning, noise reduction, preterm birth, sleep habit

Procedia PDF Downloads 149
84 Interactive Virtual Patient Simulation Enhances Pharmacology Education and Clinical Practice

Authors: Lyndsee Baumann-Birkbeck, Sohil A. Khan, Shailendra Anoopkumar-Dukie, Gary D. Grant

Abstract:

Technology-enhanced education tools are being rapidly integrated into health programs globally. These tools provide an interactive platform for students and can be used to deliver topics in various modes including games and simulations. Simulations are of particular interest to healthcare education, where they are employed to enhance clinical knowledge and help to bridge the gap between theory and practice. Simulations will often assess competencies for practical tasks, yet limited research examines the effects of simulation on student perceptions of their learning. The aim of this study was to determine the effects of an interactive virtual patient simulation for pharmacology education and clinical practice on student knowledge, skills and confidence. Ethics approval for the study was obtained from Griffith University Research Ethics Committee (PHM/11/14/HREC). The simulation was intended to replicate the pharmacy environment and patient interaction. The content was designed to enhance knowledge of proton-pump inhibitor pharmacology, role in therapeutics and safe supply to patients. The tool was deployed into a third-year clinical pharmacology and therapeutics course. A number of core practice areas were examined including the competency domains of questioning, counselling, referral and product provision. Baseline measures of student self-reported knowledge, skills and confidence were taken prior to the simulation using a specifically designed questionnaire. A more extensive questionnaire was deployed following the virtual patient simulation, which also included measures of student engagement with the activity. A quiz assessing student factual and conceptual knowledge of proton-pump inhibitor pharmacology and related counselling information was also included in both questionnaires. Sixty-one students (response rate >95%) from two cohorts (2014 and 2015) participated in the study. Chi-square analyses were performed and data analysed using Fishers exact test. Results demonstrate that student knowledge, skills and confidence within the competency domains of questioning, counselling, referral and product provision, show improvement following the implementation of the virtual patient simulation. Statistically significant (p<0.05) improvement occurred in ten of the possible twelve self-reported measurement areas. Greatest magnitude of improvement occurred in the area of counselling (student confidence p<0.0001). Student confidence in all domains (questioning, counselling, referral and product provision) showed a marked increase. Student performance in the quiz also improved, demonstrating a 10% improvement overall for pharmacology knowledge and clinical practice following the simulation. Overall, 85% of students reported the simulation to be engaging and 93% of students felt the virtual patient simulation enhanced learning. The data suggests that the interactive virtual patient simulation developed for clinical pharmacology and therapeutics education enhanced students knowledge, skill and confidence, with respect to the competency domains of questioning, counselling, referral and product provision. These self-reported measures appear to translate to learning outcomes, as demonstrated by the improved student performance in the quiz assessment item. Future research of education using virtual simulation should seek to incorporate modern quantitative measures of student learning and engagement, such as eye tracking.

Keywords: clinical simulation, education, pharmacology, simulation, virtual learning

Procedia PDF Downloads 339
83 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 48
82 A Comparison of Two and Three Dimensional Motion Capture Methodologies in the Analysis of Underwater Fly Kicking Kinematics

Authors: Isobel M. Thompson, Dorian Audot, Dominic Hudson, Martin Warner, Joseph Banks

Abstract:

Underwater fly kick is an essential skill in swimming, which can have a considerable impact upon overall race performance in competition, especially in sprint events. Reduced wave drags acting upon the body under the surface means that the underwater fly kick will potentially be the fastest the swimmer is travelling throughout the race. It is therefore critical to understand fly kicking techniques and determining biomechanical factors involved in the performance. Most previous studies assessing fly kick kinematics have focused on two-dimensional analysis; therefore, the three-dimensional elements of the underwater fly kick techniques are not well understood. Those studies that have investigated fly kicking techniques using three-dimensional methodologies have not reported full three-dimensional kinematics for the techniques observed, choosing to focus on one or two joints. There has not been a direct comparison completed on the results obtained using two-dimensional and three-dimensional analysis, and how these different approaches might affect the interpretation of subsequent results. The aim of this research is to quantify the differences in kinematics observed in underwater fly kicks obtained from both two and three-dimensional analyses of the same test conditions. In order to achieve this, a six-camera underwater Qualisys system was used to develop an experimental methodology suitable for assessing the kinematics of swimmer’s starts and turns. The cameras, capturing at a frequency of 100Hz, were arranged along the side of the pool spaced equally up to 20m creating a capture volume of 7m x 2m x 1.5m. Within the measurement volume, error levels were estimated at 0.8%. Prior to pool trials, participants completed a landside calibration in order to define joint center locations, as certain markers became occluded once the swimmer assumed the underwater fly kick position in the pool. Thirty-four reflective markers were placed on key anatomical landmarks, 9 of which were then removed for the pool-based trials. The fly-kick swimming conditions included in the analysis are as follows: maximum effort prone, 100m pace prone, 200m pace prone, 400m pace prone, and maximum pace supine. All trials were completed from a push start to 15m to ensure consistent kick cycles were captured. Both two-dimensional and three-dimensional kinematics are calculated from joint locations, and the results are compared. Key variables reported include kick frequency and kick amplitude, as well as full angular kinematics of the lower body. Key differences in these variables obtained from two-dimensional and three-dimensional analysis are identified. Internal rotation (up to 15º) and external rotation (up to -28º) were observed using three-dimensional methods. Abduction (5º) and adduction (15º) were also reported. These motions are not observed in the two-dimensional analysis. Results also give an indication of different techniques adopted by swimmers at various paces and orientations. The results of this research provide evidence of the strengths of both two dimensional and three dimensional motion capture methods in underwater fly kick, highlighting limitations which could affect the interpretation of results from both methods.

Keywords: swimming, underwater fly kick, performance, motion capture

Procedia PDF Downloads 134
81 An Adaptable Semi-Numerical Anisotropic Hyperelastic Model for the Simulation of High Pressure Forming

Authors: Daniel Tscharnuter, Eliza Truszkiewicz, Gerald Pinter

Abstract:

High-quality surfaces of plastic parts can be achieved in a very cost-effective manner using in-mold processes, where e.g. scratch resistant or high gloss polymer films are pre-formed and subsequently receive their support structure by injection molding. The pre-forming may be done by high-pressure forming. In this process, a polymer sheet is heated and subsequently formed into the mold by pressurized air. Due to the heat transfer to the cooled mold the polymer temperature drops below its glass transition temperature. This ensures that the deformed microstructure is retained after depressurizing, giving the sheet its final formed shape. The development of a forming process relies heavily on the experience of engineers and trial-and-error procedures. Repeated mold design and testing cycles are however both time- and cost-intensive. It is, therefore, desirable to study the process using reliable computer simulations. Through simulations, the construction of the mold and the effect of various process parameters, e.g. temperature levels, non-uniform heating or timing and magnitude of pressure, on the deformation of the polymer sheet can be analyzed. Detailed knowledge of the deformation is particularly important in the forming of polymer films with integrated electro-optical functions. Care must be taken in the placement of devices, sensors and electrical and optical paths, which are far more sensitive to deformation than the polymers. Reliable numerical prediction of the deformation of the polymer sheets requires sophisticated material models. Polymer films are often either transversely isotropic or orthotropic due to molecular orientations induced during manufacturing. The anisotropic behavior affects the resulting strain field in the deformed film. For example, parts of the same shape but different strain fields may be created by varying the orientation of the film with respect to the mold. The numerical simulation of the high-pressure forming of such films thus requires material models that can capture the nonlinear anisotropic mechanical behavior. There are numerous commercial polymer grades for the engineers to choose from when developing a new part. The effort required for comprehensive material characterization may be prohibitive, especially when several materials are candidates for a specific application. We, therefore, propose a class of models for compressible hyperelasticity, which may be determined from basic experimental data and which can capture key features of the mechanical response. Invariant-based hyperelastic models with a reduced number of invariants are formulated in a semi-numerical way, such that the models are determined from a single uniaxial tensile tests for isotropic materials, or two tensile tests in the principal directions for transversely isotropic or orthotropic materials. The simulation of the high pressure forming of an orthotropic polymer film is finally done using an orthotropic formulation of the hyperelastic model.

Keywords: hyperelastic, anisotropic, polymer film, thermoforming

Procedia PDF Downloads 618
80 Inflation and Deflation of Aircraft's Tire with Intelligent Tire Pressure Regulation System

Authors: Masoud Mirzaee, Ghobad Behzadi Pour

Abstract:

An aircraft tire is designed to tolerate extremely heavy loads for a short duration. The number of tires increases with the weight of the aircraft, as it is needed to be distributed more evenly. Generally, aircraft tires work at high pressure, up to 200 psi (14 bar; 1,400 kPa) for airliners and higher for business jets. Tire assemblies for most aircraft categories provide a recommendation of compressed nitrogen that supports the aircraft’s weight on the ground, including a mechanism for controlling the aircraft during taxi, takeoff; landing; and traction for braking. Accurate tire pressure is a key factor that enables tire assemblies to perform reliably under high static and dynamic loads. Concerning ambient temperature change, considering the condition in which the temperature between the origin and destination airport was different, tire pressure should be adjusted and inflated to the specified operating pressure at the colder airport. This adjustment superseding the normal tire over an inflation limit of 5 percent at constant ambient temperature is required because the inflation pressure remains constant to support the load of a specified aircraft configuration. On the other hand, without this adjustment, a tire assembly would be significantly under/over-inflated at the destination. Due to an increase of human errors in the aviation industry, exorbitant costs are imposed on the airlines for providing consumable parts such as aircraft tires. The existence of an intelligent system to adjust the aircraft tire pressure based on weight, load, temperature, and weather conditions of origin and destination airports, could have a significant effect on reducing the aircraft maintenance costs, aircraft fuel and further improving the environmental issues related to the air pollution. An intelligent tire pressure regulation system (ITPRS) contains a processing computer, a nitrogen bottle with 1800 psi, and distribution lines. Nitrogen bottle’s inlet and outlet valves are installed in the main wheel landing gear’s area and are connected through nitrogen lines to main wheels and nose wheels assy. Controlling and monitoring of nitrogen will be performed by a computer, which is adjusted according to the calculations of received parameters, including the temperature of origin and destination airport, the weight of cargo loads and passengers, fuel quantity, and wind direction. Correct tire inflation and deflation are essential in assuring that tires can withstand the centrifugal forces and heat of normal operations, with an adequate margin of safety for unusual operating conditions such as rejected takeoff and hard landings. ITPRS will increase the performance of the aircraft in all phases of takeoff, landing, and taxi. Moreover, this system will reduce human errors, consumption materials, and stresses imposed on the aircraft body.

Keywords: avionic system, improve efficiency, ITPRS, human error, reduced cost, tire pressure

Procedia PDF Downloads 249
79 Efficient Computer-Aided Design-Based Multilevel Optimization of the LS89

Authors: A. Chatel, I. S. Torreguitart, T. Verstraete

Abstract:

The paper deals with a single point optimization of the LS89 turbine using an adjoint optimization and defining the design variables within a CAD system. The advantage of including the CAD model in the design system is that higher level constraints can be imposed on the shape, allowing the optimized model or component to be manufactured. However, CAD-based approaches restrict the design space compared to node-based approaches where every node is free to move. In order to preserve a rich design space, we develop a methodology to refine the CAD model during the optimization and to create the best parameterization to use at each time. This study presents a methodology to progressively refine the design space, which combines parametric effectiveness with a differential evolutionary algorithm in order to create an optimal parameterization. In this manuscript, we show that by doing the parameterization at the CAD level, we can impose higher level constraints on the shape, such as the axial chord length, the trailing edge radius and G2 geometric continuity between the suction side and pressure side at the leading edge. Additionally, the adjoint sensitivities are filtered out and only smooth shapes are produced during the optimization process. The use of algorithmic differentiation for the CAD kernel and grid generator allows computing the grid sensitivities to machine accuracy and avoid the limited arithmetic precision and the truncation error of finite differences. Then, the parametric effectiveness is computed to rate the ability of a set of CAD design parameters to produce the design shape change dictated by the adjoint sensitivities. During the optimization process, the design space is progressively enlarged using the knot insertion algorithm which allows introducing new control points whilst preserving the initial shape. The position of the inserted knots is generally assumed. However, this assumption can hinder the creation of better parameterizations that would allow producing more localized shape changes where the adjoint sensitivities dictate. To address this, we propose using a differential evolutionary algorithm to maximize the parametric effectiveness by optimizing the location of the inserted knots. This allows the optimizer to gradually explore larger design spaces and to use an optimal CAD-based parameterization during the course of the optimization. The method is tested on the LS89 turbine cascade and large aerodynamic improvements in the entropy generation are achieved whilst keeping the exit flow angle fixed. The trailing edge and axial chord length, which are kept fixed as manufacturing constraints. The optimization results show that the multilevel optimizations were more efficient than the single level optimization, even though they used the same number of design variables at the end of the multilevel optimizations. Furthermore, the multilevel optimization where the parameterization is created using the optimal knot positions results in a more efficient strategy to reach a better optimum than the multilevel optimization where the position of the knots is arbitrarily assumed.

Keywords: adjoint, CAD, knots, multilevel, optimization, parametric effectiveness

Procedia PDF Downloads 110