Search results for: industrial structure optimization
9388 From Wave-Powered Propulsion to Flight with Membrane Wings: Insights Powered by High-Fidelity Immersed Boundary Methods based FSI Simulations
Authors: Rajat Mittal, Jung Hee Seo, Jacob Turner, Harshal Raut
Abstract:
The perpetual advancement in computational capabilities, coupled with the continuous evolution of software tools and numerical algorithms, is creating novel avenues for research, exploration, and application at the nexus of computational fluid and structural mechanics. Fish leverage their remarkably flexible bodies and fins to harness energy from vortices, propelling themselves with an elegance and efficiency that captivates engineers. Bats fly with unparalleled agility and speed by using their flexible membrane wings. Wave-assisted propulsion (WAP) systems, utilizing elastically mounted hydrofoils, convert wave energy into thrust. Each of these problems involves a complex and elegant interplay between fluid dynamics and structural mechanics. Historically, investigations into such phenomena were constrained by available tools, but modern computational advancements now facilitate exploration of these multi-physics challenges with an unprecedented level of fidelity, precision, and realism. In this work, the author will discuss projects that harness the capabilities of high-fidelity sharp-interface immersed boundary methods to address a spectrum of engineering and biological challenges involving fluid-structure interaction.Keywords: immersed boundary methods, CFD, bioflight, fluid structure interaction
Procedia PDF Downloads 689387 The Role of Paraphrase in Interpreting Students’ Writing
Authors: Maya Lisa Aryanti, S. S. M. Hum
Abstract:
To improve students’ skill, writing is the most challenging skill to be developed. The reason is that besides helping the students to develop their skill, this activity also helps them to express themselves. This paper depicts how paraphrasing is very helpful to interpret students’ writing. Syntactic units, used tenses and meanings will indeed change once the writings were paraphrased. The objectives of this research are to reveal the inappropriate structure of syntactic units, to show what types of sentences the students often make, and to show how paraphrasing can help to infer the message. The methodology of this research is descriptive qualitative research. In addition, theories of linguistics are also included. This includes theory of Syntax to describe syntactic units and tenses and theory of Semantics to describe theories of meaning and how paraphrasing works. The theories of general linguistics, grammar and writing are also provided to support the theories of Syntax and Semantics. The results of this research are concerned with how the message is received in the end. The message written in the students’ essay is not clear because of the improper structure of syntactic units and use of incorrect of tenses. The students tend to use simple sentences, compound sentences and complex sentences with a few mistakes in their writing. In addition, they tend to create unnecessary phrases. The last point is that this research shows how paraphrase works to attain complete meaning of a sentence.Keywords: meanings, syntactic units, tenses, syntax and semantics
Procedia PDF Downloads 1949386 Sense of the Place and Human Multisensory Perceptions: The Case of Kerman Old Bazaar Scents
Authors: Sabra Saeidi
Abstract:
When we talk about tangible heritage, the first thing that comes to mind is historic places: what they look like, who made them, and what materials they are made of. But each monument is not limited to its physical constituents and is a complex and related set of human perceptions, memories, narratives, and the structure that shapes its character. In this article, based on the ideology of two great architects, Juhani Pallasmaa and Christian Norberg-Schulz, we discussed the sense of the place and how the human presence in a place with all its senses (visual, auditory, tactile, olfactory, taste) gives life and value to it. This value is all about feeling and definitions and is recorded in the form of our memoirs. An attempt has been made to conclude that our perception of the environment, by our sensory tools, is an intangible and thematic heritage itself, whose existence depends on our existence and has no less value than monuments' physical form and structure. The sense of smell is one of the most powerful, personal and inexplicable, unrecorded, and unexpressed senses and has a solid connection with our memories. by reviewing the case of Kerman Bazaar and its change of use in recent years, we define that one of the ways to protect the olfactory heritage of this valuable complex is to draw a Smellscape: a way to record the moment of present and past memories. Smellscapes are tools for transferring the sense of smell to a visual form to record scents and understand them in a more comprehensive, common, and artistic form.Keywords: sence of the place, spirit of the place, smellscape, multisensory perception
Procedia PDF Downloads 1119385 Determination of Mechanical Properties of Tomato Fruits: Experimental and Finite Element Analysis
Authors: Mallikarjunachari G., Venkata Ravi M.
Abstract:
The objective of this research work is to evaluate the mechanical properties such as elastic modulus and critical rupture load of tomato fruits. Determination of mechanical properties of tomato fruits is essential in various material handling applications, especially as related to robot harvesting, packaging, and transportation. However, extracting meaningful mechanical properties of tomato fruits are extremely challenging due to its layered structure, i.e., the combination of exocarp, mesocarp, and locular gel tissues. Apart from this layered structure, other physical parameters such as diameter, sphericity, locule number, and, the surface to volume ratio also influence the mechanical properties. In this research work, tomato fruits are cultivated in two different ways, namely organic and inorganic farming. Static compression tests are performed to extract the mechanical properties of tomato fruits. Finite element simulations are done to complement the experimental results. It is observed that the effective modulus decreases as the compression depth increase from 0.5 mm to 10 mm and also a critical load of fracture decreases as the locule number increases from 3 to 5. Significant differences in mechanical properties are observed between organically and inorganically cultivated tomato fruits. The current study significantly helps in the design of material handling systems to avoid damage of tomato fruits.Keywords: elastic modulus, critical load of fracture, locule number, finite element analysis
Procedia PDF Downloads 1209384 Development of Competitive Advantage for the Apparel Manufacturing Industry of South Africa
Authors: Sipho Mbatha, Anne Mastament-Mason
Abstract:
The Multi-Fibre Arrangement (MFA) which regulated all trade in the Apparel Manufacturing Industries (AMI) for four decades was dissolved in 2005. Since 2005, the Apparel Manufacturing Industry of South Africa (AMISA) has been battling to adjust to an environment of liberalised trade, mainly due to strategic, infrastructural and skills factors. In developing competitive advantage strategy for the AMISA, the study aimed to do the following (1) to apply Porter’s diamond model’s determinant “Factor Condition” as framework to develop competitive advantage strategies. (2) Examine the effectiveness of government policy Industrial Policy Action Plan (IPAP 2007) in supporting AMISA. (3) Examine chance events that could be used as bases for competitive advantage strategies for the AMISA. This study found that the lack of advanced skills and poor infrastructure are affecting the competitive advantage of AMISA. The then Clothing, Textiles, Leather and Footwear Sector Education and Training Authority (CTLF-SETA) has also fallen short of addressing the skills gap within the apparel manufacturing industries. The only time that AMISA have shown signs of competitive advantage was when they made use of government grants and incentives available to only compliant AMISA. The findings have shown that the apparel retail groups have shown support for the AMISA by shouldering raw material costs, making it easier to manufacture the required apparel at acceptable lead times. AMISA can compete in low end apparel, provided quick response is intensified, the development of local textiles and raw materials is expedited.Keywords: compliance rule, apparel manufacturing idustry, factor conditions, advance skills, industrial policy action plan of South Africa
Procedia PDF Downloads 6049383 Ecotoxicity Evaluation Methodology for Metallurgical and Steel Wastes
Authors: G. Pelozo, N. Quaranta
Abstract:
The assessment of environmental hazard and ecotoxicological potential of industrial wastes has become an issue of concern in many countries. Therefore, the aim of this work is to develop a methodology, adapting an Argentinian standard, which allows analyze the ecotoxicological effect of various metallurgical and steel wastes. Foundry sand, white mud, red mud, electric arc furnace dust, converter slag, among others, are the studied wastes. The species used to analyze the ecotoxicological effects of wastes is rye grass (Lolium Perenne). The choice of this kind lies, among other things, in its easy and rapid germination making it possible to develop the test in a few days. Moreover, since the processes involved are general for most seeds, the obtained results with this kind are representative, in general, of the effects on seeds or seedlings. Since the studied residues are solids, prior to performing the assay, an eluate is obtained by stirring for 2 hours and subsequent filtration of a solution of waste in water in a relationship of 1:4. This represents 100% of eluate from which two dilutions in water (25% and 50%) are prepared. A sample with untreated solid waste and water is also performed. The test is performed by placing two filter papers in a Petri dish that are saturated with 3.5ml of the prepared dilutions. After that 20 rye grass seeds are placed, and the Petri dishes are covered and the seeds are incubated for 120 hours at 24 °C. Reference controls are carried out by distilled water. Three replicates are performed for each concentration. Once the exposure period is finished, inhibiting elongation of the root is measured (IR). The results of this test show that all the studied wastes produce an unfavorable effect on the development of the seedlings, being the electric arc furnace dust which more affects the germination.Keywords: ecotoxicity, industrial wastes, environmental hazard, seeds
Procedia PDF Downloads 4029382 Ragging and Sludging Measurement in Membrane Bioreactors
Authors: Pompilia Buzatu, Hazim Qiblawey, Albert Odai, Jana Jamaleddin, Mustafa Nasser, Simon J. Judd
Abstract:
Membrane bioreactor (MBR) technology is challenged by the tendency for the membrane permeability to decrease due to ‘clogging’. Clogging includes ‘sludging’, the filling of the membrane channels with sludge solids, and ‘ragging’, the aggregation of short filaments to form long rag-like particles. Both sludging and ragging demand manual intervention to clear out the solids, which is time-consuming, labour-intensive and potentially damaging to the membranes. These factors impact on costs more significantly than membrane surface fouling which, unlike clogging, is largely mitigated by the chemical clean. However, practical evaluation of MBR clogging has thus far been limited. This paper presents the results of recent work attempting to quantify sludging and clogging based on simple bench-scale tests. Results from a novel ragging simulation trial indicated that rags can be formed within 24-36 hours from dispersed < 5 mm-long filaments at concentrations of 5-10 mg/L under gently agitated conditions. Rag formation occurred for both a cotton wool standard and samples taken from an operating municipal MBR, with between 15% and 75% of the added fibrous material forming a single rag. The extent of rag formation depended both on the material type or origin – lint from laundering operations forming zero rags – and the filament length. Sludging rates were quantified using a bespoke parallel-channel test cell representing the membrane channels of an immersed flat sheet MBR. Sludge samples were provided from two local MBRs, one treating municipal and the other industrial effluent. Bulk sludge properties measured comprised mixed liquor suspended solids (MLSS) concentration, capillary suction time (CST), particle size, soluble COD (sCOD) and rheology (apparent viscosity μₐ vs shear rate γ). The fouling and sludging propensity of the sludge was determined using the test cell, ‘fouling’ being quantified as the pressure incline rate against flux via the flux step test (for which clogging was absent) and sludging by photographing the channel and processing the image to determine the ratio of the clogged to unclogged regions. A substantial difference in rheological and fouling behaviour was evident between the two sludge sources, the industrial sludge having a higher viscosity but less shear-thinning than the municipal. Fouling, as manifested by the pressure increase Δp/Δt, as a function of flux from classic flux-step experiments (where no clogging was evident), was more rapid for the industrial sludge. Across all samples of both sludge origins the expected trend of increased fouling propensity with increased CST and sCOD was demonstrated, whereas no correlation was observed between clogging rate and these parameters. The relative contribution of fouling and clogging was appraised by adjusting the clogging propensity via increasing the MLSS both with and without a commensurate increase in the COD. Results indicated that whereas for the municipal sludge the fouling propensity was affected by the increased sCOD, there was no associated increased in the sludging propensity (or cake formation). The clogging rate actually decreased on increasing the MLSS. Against this, for the industrial sludge the clogging rate dramatically increased with solids concentration despite a decrease in the soluble COD. From this was surmised that sludging did not relate to fouling.Keywords: clogging, membrane bioreactors, ragging, sludge
Procedia PDF Downloads 1779381 Demographic Factor in Ensuring Sustainable Development of the Western Region of the Republic of Kazakhstan
Authors: Nyussupova Gulnara, Kenespayeva Laura, Kelinbayeva Roza, Aubakirova Gaukhar, Zhumagulov Chingiz, Aidarkhanova Gaukhar
Abstract:
The article analyzes the development of demographic processes in four regions of the Western region of the Republic of Kazakhstan (Aktobe, Atyrau, West Kazakhstan, and Mangystau) for the period from 2000 to 2022. This study uses theoretical and methodological analysis of scientific literature, methods of comparative, statistical analysis, GIS methods, grouping and systematization, index method and structural analysis. The research identified regional characteristics, development trends, and disproportions in the population of the studied areas within the framework of sustainable demographic development. The population dynamics, the age-sex structure of the population, life expectancy, natural movement of the population, including maternal and infant mortality, are considered as important indicators of the region’s sustainability. The features of migration processes in the Western region of Kazakhstan and the factors that determine them are identified. Conclusions are drawn about the level of sustainable development of the population of the studied region based on demographic processes. The results obtained will provide scientific, methodological and information support in the sectors of economics and science, including the preparation of socio-economic development programs and the development of scientific research using GIS.Keywords: sustainable development, demographic processes, Western Region, Republic of Kazakhstan, population structure, natural population movement, migration
Procedia PDF Downloads 649380 Confidence Intervals for Process Capability Indices for Autocorrelated Data
Authors: Jane A. Luke
Abstract:
Persistent pressure passed on to manufacturers from escalating consumer expectations and the ever growing global competitiveness have produced a rapidly increasing interest in the development of various manufacturing strategy models. Academic and industrial circles are taking keen interest in the field of manufacturing strategy. Many manufacturing strategies are currently centered on the traditional concepts of focused manufacturing capabilities such as quality, cost, dependability and innovation. Process capability indices was conducted assuming that the process under study is in statistical control and independent observations are generated over time. However, in practice, it is very common to come across processes which, due to their inherent natures, generate autocorrelated observations. The degree of autocorrelation affects the behavior of patterns on control charts. Even, small levels of autocorrelation between successive observations can have considerable effects on the statistical properties of conventional control charts. When observations are autocorrelated the classical control charts exhibit nonrandom patterns and lack of control. Many authors have considered the effect of autocorrelation on the performance of statistical process control charts. In this paper, the effect of autocorrelation on confidence intervals for different PCIs was included. Stationary Gaussian processes is explained. Effect of autocorrelation on PCIs is described in detail. Confidence intervals for Cp and Cpk are constructed for PCIs when data are both independent and autocorrelated. Confidence intervals for Cp and Cpk are computed. Approximate lower confidence limits for various Cpk are computed assuming AR(1) model for the data. Simulation studies and industrial examples are considered to demonstrate the results.Keywords: autocorrelation, AR(1) model, Bissell’s approximation, confidence intervals, statistical process control, specification limits, stationary Gaussian processes
Procedia PDF Downloads 3879379 Photocatalytic Removal of Methylene Blue Dye: Fabrication and Optimization of Adsorbant Material and a Photocatlyst in Unilayer and Bilayer System
Authors: M. Z. Mahmood, S. Ismail
Abstract:
A reusable immobilized unilayer thin coating of adsorbent material bentonite and photocatalyst (TiO₂) was fabricated on the glass beaker to remove aqueous methylene blue solution. The dye removal efficiency of photocatalyst was much lower with pure titanium dioxide. In the preliminary experiments, different compositions of TiO₂ – bentonite were tested on unilayer and bilayer system, and it was observed that 0.50:0.50 ratios are best for maximum photocatalytic degradation of methylene blue in aqueous medium when applied on unilayer coating system.Keywords: adsorption, photocatalyst, bentonite, TiO₂
Procedia PDF Downloads 1039378 Effective Doping Engineering of Na₃V₂(PO₄)₂F₃ as a High-Performance Cathode Material for Sodium-Ion Batteries
Authors: Ramon Alberto Paredes Camacho, Li Lu
Abstract:
Sustainable batteries are possible through the development of cheaper and greener alternatives whose most feasible option is epitomized by Sodium-Ion Batteries (SIB). Na₃V₂(PO₄)₂F₃ (NVPF) an important member of the Na-superionic-conductor (NASICON) materials, has recently been in the spotlight due to its interesting electrochemical properties when used as cathode namely, high specific capacity of 128 mA h g-¹, high energy density of 507 W h Kg-¹, increased working potential at which vanadium redox couples can be activated (with an average value around 3.9 V), and small volume variation of less than 2%. These traits grant NVPF an excellent perspective as a cathode material for the next generation of sodium batteries. Unfortunately, because of its low inherent electrical conductivity and a high energy barrier that impedes the mobilization of all the available Na ions per formula, the overall electrochemical performance suffers substantial degradation, finally obstructing its industrial use. Many approaches have been developed to remediate these issues where nanostructural design, carbon coating, and ion doping are the most effective ones. This investigation is focused on enhancing the electrochemical response of NVPF by doping metal ions in the crystal lattice, substituting vanadium atoms. A facile sol-gel process is employed, with citric acid as the chelator and the carbon source. The optimized conditions circumvent fluorine sublimation, ratifying the material’s purity. One of the reasons behind the large ionic improvement is the attraction of extra Na ions into the crystalline structure due to a charge imbalance produced by the valence of the doped ions (+2), which is lower than the one of vanadium (+3). Superior stability (higher than 90% at a current density of 20C) and capacity retention at an extremely high current density of 50C are demonstrated by our doped NVPF. This material continues to retain high capacity values at low and high temperatures. In addition, full cell NVPF//Hard Carbon shows capacity values and high stability at -20 and 60ºC. Our doping strategy proves to significantly increase the ionic and electronic conductivity of NVPF even at extreme conditions, delivering outstanding electrochemical performance and paving the way for advanced high-potential cathode materials.Keywords: sodium-ion batteries, cathode materials, NASICON, Na3V2(PO4)2F3, Ion doping
Procedia PDF Downloads 559377 Designing, Processing and Isothermal Transformation of Al-Si High Carbon Ultrafine High Strength Bainitic Steel
Authors: Mohamed K. El-Fawkhry, Ahmed Shash, Ahmed Ismail Zaki Farahat, Sherif Ali Abd El Rahman, Taha Mattar
Abstract:
High-carbon, silicon-rich steels are commonly suggested to obtain very fine bainitic microstructure at low temperature ranged from 200 to 300°C. Thereby, the resulted microstructure consists of slender of bainitic-ferritic plates interwoven with retained austenite. The advanced strength and ductility package of this steel is much dependent on the fineness of bainitic ferrite, as well as the retained austenite phase. In this article, Aluminum to Silicon ratio, and the isothermal transformation temperature have been adopted to obtain ultra high strength high carbon steel. Optical and SEM investigation of the produced steels have been performed. XRD has been used to track the retained austenite development as a result of the change in the chemical composition of developed steels and heat treatment process. Mechanical properties in terms of hardness and microhardness of obtained phases and structure were investigated. It was observed that the increment of aluminum to silicon ratio has a great effect in promoting the bainitic transformation, in tandem with improving the stability and the fineness of retained austenite. Such advanced structure leads to enhancement in the whole mechanical properties of the high carbon steel.Keywords: high-carbon steel, silicon-rich steels, fine bainitic microstructure, retained austenite, isothermal transformation
Procedia PDF Downloads 3449376 A Snapshot of Agricultural Waste in the European Union
Authors: Margarida Soares, Zlatina Genisheva, Lucas Nascimento, André Ribeiro, Tiago Miranda, Eduardo Pereira, Joana Carvalho
Abstract:
In the current global context, we face a significant challenge: the rapid population increase combined with the pressing need for sustainable management of agro-industrial waste. Beyond understanding how population growth impacts waste generation, it is essential to first identify the primary types of waste produced and the countries responsible to guide targeted actions. This study presents key statistical data on waste production from the agriculture, forestry, and fishing sectors across the European Union, alongside information on the agricultural areas dedicated to crop production in each European Union country. These insights will form the basis for future research into waste production by crop type and country to improve waste management practices and promote recovery methods that are vital for environmental sustainability. The agricultural sector must stay at the forefront of scientific and technological advancements to meet climate change challenges, protect the environment, and ensure food and health security. The study's findings indicate that population growth significantly increases pressure on natural resources, leading to a rise in agro-industrial waste production. EUROSTAT data shows that, in 2020, the agriculture, forestry, and fishing sectors produced over 21 million tons of waste. Spain emerged as the largest producer, contributing nearly 30% of the EU's total waste in these sectors. Furthermore, five countries—Spain, the Netherlands, France, Sweden, and Germany—were responsible for producing more than two-thirds of the waste from these sectors. Regarding agricultural land use, the data for 2020 revealed that around two-thirds of the total agricultural area was concentrated in six countries: France, Spain, Germany, Poland, Romania, and Italy. Regarding waste production per capita, the Netherlands had the highest figures in the EU for 2020. The data presented in this study highlights the urgent need for action in managing agricultural waste in the EU. As population growth continues to drive up demand for agricultural products, waste generation will inevitably rise unless significant changes are made in managing of agro-industrial waste. The countries must lead the way in adopting technological waste management strategies that focus on reducing, reusing, and recycling waste to benefit both the environment and society. Equally important is the need to promote collaborative efforts between governments, industries, and research institutions to develop and implement technologies that transform waste into valuable resources. The insights from this study are critical for informing future strategies to improve the management and valorization of waste from the agro-industrial sector. One of the most promising approaches is adopting circular economy principles to create closed-loop systems that minimize environmental impacts. By rethinking waste as a valuable resource rather than a by-product, agricultural industries can contribute to more sustainable practices that support both environmental health and economic growth.Keywords: agricultural area, agricultural waste, circular economy, environmental challenges, population growth
Procedia PDF Downloads 139375 Examining the Role of Soil pH on the Composition and Abundance of Nitrite Oxidising Bacteria
Authors: Mansur Abdulrasheed, Hussein I. Ibrahim, Ahmed F. Umar
Abstract:
Nitrification, the microbial oxidation of ammonia to nitrate (NO3-) via nitrite (NO2-) is a vital process in the biogeochemical nitrogen cycle and is performed by two distinct functional groups; ammonia oxidisers (comprised of ammonia oxidising bacteria (AOB) and ammonia oxidising archaea (AOA)) and nitrite oxidising bacteria. Autotrophic nitrification is said to occur in acidic soils, even though most laboratory cultures of isolated ammonia and nitrite oxidising bacteria fail to grow below neutral pH. Published studies revealed that soil pH is a major driver for determining the distribution and abundance of AOB and AOA. To determine whether distinct populations of nitrite oxidising bacteria within the lineages of Nitrospira and Nitrobacter are adapted to a particular range of pH as observed in ammonia oxidising organisms, the community structure of Nitrospira-like and Nitrobacter-like NOB were examined across a pH gradient (4.5–7.5) by amplifying nitrite oxido-reductase (nxrA) and 16S rRNA genes followed by denaturing gradient gel electrophoresis (DGGE). The community structure of both Nitrospira and Nitrobacter changed with soil pH, with distinct populations observed in acidic and neutral soils. The abundance of Nitrospira-like 16S rRNA and Nitrobacter-like nxrA gene copies contrasted across the pH gradient. Nitrobacter-like nxrA gene abundance decreased with increasing soil pH, whereas Nitrospira-like 16S rRNA gene abundance increased with increasing pH. Findings indicated that abundance and distributions of soil NOB is influence by soil pH.Keywords: nitrospira, nitrobacter, nitrite-oxidizing bacteria, nitrification, pH, soil
Procedia PDF Downloads 3009374 Numerical Homogenization of Nacre
Authors: M. Arunachalam, M. Pandey
Abstract:
Nacre, a biological material that forms the inner-layer of sea shells can achieve high toughness and strength by way of staggered arrangement of strong tablets with soft and weak organic interface. Under applied loads the tablets slide over the adjacent tablets, thus generating inelastic deformation and toughness on macroscopic scale. A two dimensional finite element based homogenization methodology is adopted for obtaining the effective material properties of Nacre using a representative volume element (RVE) at finite deformations. In this work, the material behaviour for tablet and interface are assumed to be Isotropic elastic and Isotropic elastic-perfectly plastic with strain softening respectively. Numerical experiments such as uniaxial tension test along X, Y directions and simple shear test are performed on the RVE with uniform displacement and periodic constraints applied at the RVE boundaries to obtain the anisotropic homogenized response and maximum local stresses within each constituents of Nacre. Homogenized material model is then tested for macroscopic structure under three point bending condition and the results obtained are comparable with the results obtained for detailed microstructure based structure, thus homogenization provides a bridge between macroscopic scale and microscopic scale and homogenized material properties obtained from microstructural (RVE) analysis could be used in large scale structural analysis.Keywords: finite element, homogenization, inelastic deformation, staggered arrangement
Procedia PDF Downloads 3179373 Nutraceuticals of Chemical Synthesis: Special Glycans as Prebiotics for the Holobiont
Authors: M. Menapace
Abstract:
Introduction: Herbal remedies express the idea of natural products used as pharmacotherapy or supplementation in case of need. Whether they are obtained directly by plants or synthesised chemically, prebiotics are considered nutraceuticals of natural origin, i.e., products made available for health reasons and self-medication. Methods: A literature review has been performed by screening manuscripts with prebiotics as herbal nutraceuticals (including chemically synthesized compounds, such as human milk oligosaccharides [HMO]) and evaluating the chemical structure of fibers in diverse food sources (principally herbals). Results: An examination of recent literature led to the fundamental concept of the holobiont as key in understanding the importance of prebiotics for the nonhost part of the metaorganism (microbiota) called a human being. This multispecies entity requires prebiotic fibers to avoid a state of disequilibrium (dysbiosis) that fosters diseases. Conclusions: Numerous human-derived glycans (special oligosaccharides that mimic in structure and function not only blood type antigens but also herbal fibers) have been identified as essential for the maintenance of the equilibrium (eubiosis) within the human holobiont in the modern age. These products are planned to be used not just as additions to baby milk formulas but as food supplements for the health of adults. In the context of alternative medicine, human-derived glycan-based supplements may represent the next step on the road to complete well-being.Keywords: glycans, herbal remedy, prebiotics, food supplement
Procedia PDF Downloads 1319372 Seismic Integrity Determination of Dams in Urban Areas
Authors: J. M. Mayoral, M. Anaya
Abstract:
The urban and economic development of cities demands the construction of water use and flood control infrastructure. Likewise, it is necessary to determine the safety level of the structures built with the current standards and if it is necessary to define the reinforcement actions. The foregoing is even more important in structures of great importance, such as dams, since they imply a greater risk for the population in case of failure or undesirable operating conditions (e.g., seepage, cracks, subsidence). This article presents a methodology for determining the seismic integrity of dams in urban areas. From direct measurements of the dynamic properties using geophysical exploration and ambient seismic noise measurements, the seismic integrity of the concrete-faced rockfill dam selected as a case of study is evaluated. To validate the results, two accelerometer stations were installed (e.g., free field and crest of the dam). Once the dynamic properties were determined, three-dimensional finite difference models were developed to evaluate the dam seismic performance for different intensities of movement, considering the site response and soil-structure interaction effects. The seismic environment was determined from the uniform hazard spectra for several return periods. Based on the results obtained, the safety level of the dam against different seismic actions was determined, and the effectiveness of ambient seismic noise measurements in dynamic characterization and subsequent evaluation of the seismic integrity of urban dams was evaluated.Keywords: risk, seismic, soil-structure interaction, urban dams
Procedia PDF Downloads 1169371 Designing Bird-Friendly Kolkata city
Authors: Madhumita Roy
Abstract:
Kolkata, the city of joy, is an organic city with 45 lakhs of people till date. The increasing population stress is creating a constant pressure on the ground surface which in turn reducing the possible area for plantation. Humans, plants, and birds have a mutualistic relationship, and all are dependent on each other for their survival. Vegetation structure is very important for a bird life because it can be used as a residence, foraging, life cycle, and shelter from predators. On the other hand, in urban areas, buildings and structures also plays a major role for birds habitat w.r.t, nesting, resting, etc. City birds are constantly upgrading their adaptative mechanism with changing urban pattern with modern architectural designs. Urbanisation and unplanned development lead to environmental degradation and bird habitat fragmentation, which have impacts on the degradation of the quality and quantity of bird habitat. Declining green cover and habitat loss affects the diversity and population structure of birds. Their reducing number is an increasing threat not only to the bird community but also to the city as birds are considered as one of the most important environmental indicator. This study aims to check the present avian status like species richness, relative abundance, and diversity of bird species in the context of changing urban pattern in Kolkata city. Nesting strategy in the urban habitat of the avian community is another avenue of interest.Keywords: urbanisation, avian species, kolkata metropolis, planning
Procedia PDF Downloads 989370 Secondary Metabolites Identified from a Pseudoalteromonas rubra Bacterial Strain Isolated from a Fijian Marine Alga
Authors: James Sinclair, Katy Soapi, Brad Carte
Abstract:
The marine environment has continuously demonstrated to be a rich source of secondary metabolites and bioactive compounds that can address the many pharmaceutical problems facing mankind. The emergence of multidrug resistant pathogens has caused scientists to explore contemporary ways of combating these super bugs. A red-pigmented bacterial strain isolated from a marine alga collected in Fiji was identified to be Pseudoalteromonas rubra from 16s rRNA sequencing. This bacterial strain was cultured using a yeast-peptone media and incubated for five days. The ethyl acetate extract of this bacterium was subjected to chromatographic separation techniques such as vacuum liquid chromatography, flash chromatography, size exclusion chromatography and high-pressure liquid chromatography to yield the pure compound and a number of semi-pure fractions. The crude extract and subsequent purified fractions were analyzed by ultraviolet/visible spectroscopy and mass spectroscopy and was found to contain the compounds ivermectin, stenothricin, cyclo-L-pro-L-val, prodigiosin, mycophenolic acid, phenazine-1-carboxylic acid, eplerenone, staurosporine and pseudoalteromone A. The structure of the pure compound, pseudoalteromone A, was elucidated using NMR 1H, 13C, 1H-1H COSY, HSQC and HMBC spectroscopic data.Keywords: Pseudoalteromonas rubra, Pseudoalteromone A, secondary metabolites, structure elucidation
Procedia PDF Downloads 2109369 Parameter Study for TPU Nanofibers Fabricated via Centrifugal Spinning
Authors: Yasin Akgül, Yusuf Polat, Emine Canbay, Ali Kılıç
Abstract:
Electrospinning is the most common method to produce nanofibers. However, low production rate is still a big challenge for industrial applications of this method. In this study, morphology of nanofibers obtained from namely centrifugal spinning was investigated. Dominant process parameters acting on the fiber diameter and fiber orientation were discussed.Keywords: centrifugal spinning, electrospinning, nanofiber, TPU nanofibers
Procedia PDF Downloads 4479368 Synthesis of Beetosan's Hydrogels with Yellow Tea
Authors: Jolanta Jaskowska, Anna Drabczyk, Sonia Kudlacik, Agnieszka Sobczak-Kupiec, Bozena Tyliszczak
Abstract:
The aim of the study was to select the best conditions for the synthesis of Beetosan's hydrogels with yellow tea. The study determined recipe hydrogel matrix by selecting the appropriate ratio of substrates and to investigate the effect of yellow tea, on the structure and properties of the hydrogel materials. The scope of the research included both to obtain of raw materials required for the synthesis of hydrogel materials, as well as an assessment of their properties. In the first stage of research Beetosan (chitosan derived from bees), and extract the yellow tea China Kekecha was obtained. The second stage was synthesis hydrogels modified by yellow tea. The synthesis of polymeric matrix was preparation under UV radiation. Obtained hydrogel materials were investigated extensively using incubation investigations, absorption capacity, and spectroscopic (FT-IR) and X-ray diffraction (XRD) methods. Moreover, there was also performed the surface wettability test and a photomicrograph of the structure using scanning electron microscope. Analysis of the obtained results confirms that presence of yellow tea does not significantly affect the behavior of the hydrogels in the incubation fluids. The results show that hydrogel materials exhibit compatibility with the incubatory solutions and they also retain the stability in the tested liquids. Hydrogels obtained in this method might be applied in the cosmetics industry and in the field of medicine. This is possible due to the many interesting properties of tea and biocompatibility and non-toxicity hydrogel materials. The authors would like to thank the The National Centre for Research and Development (Grant no: LIDER/033/697/L-5/13/NCBR/2014) for providing financial support to this project.Keywords: Beetosan, hygrogels, materials, yellow tea
Procedia PDF Downloads 2749367 Ionic Liquids as Substrates for Metal-Organic Framework Synthesis
Authors: Julian Mehler, Marcus Fischer, Martin Hartmann, Peter S. Schulz
Abstract:
During the last two decades, the synthesis of metal-organic frameworks (MOFs) has gained ever increasing attention. Based on their pore size and shape as well as host-guest interactions, they are of interest for numerous fields related to porous materials, like catalysis and gas separation. Usually, MOF-synthesis takes place in an organic solvent between room temperature and approximately 220 °C, with mixtures of polyfunctional organic linker molecules and metal precursors as substrates. Reaction temperatures above the boiling point of the solvent, i.e. solvothermal reactions, are run in autoclaves or sealed glass vessels under autogenous pressures. A relatively new approach for the synthesis of MOFs is the so-called ionothermal synthesis route. It applies an ionic liquid as a solvent, which can serve as a structure-directing template and/or a charge-compensating agent in the final coordination polymer structure. Furthermore, this method often allows for less harsh reaction conditions than the solvothermal route. Here a variation of the ionothermal approach is reported, where the ionic liquid also serves as an organic linker source. By using 1-ethyl-3-methylimidazolium terephthalates ([EMIM][Hbdc] and [EMIM]₂[bdc]), the one-step synthesis of MIL-53(Al)/Boehemite composites with interesting features is possible. The resulting material is already formed at moderate temperatures (90-130 °C) and is stabilized in the usually unfavored ht-phase. Additionally, in contrast to already published procedures for MIL-53(Al) synthesis, no further activation at high temperatures is mandatory. A full characterization of this novel composite material is provided, including XRD, SS-NMR, El-Al., SEM as well as sorption measurements and its interesting features are compared to MIL-53(Al) samples produced by the classical solvothermal route. Furthermore, the syntheses of the applied ionic liquids and salts is discussed. The influence of the degree of ionicity of the linker source [EMIM]x[H(2-x)bdc] on the crystal structure and the achievable synthesis temperature are investigated and give insight into the role of the IL during synthesis. Aside from the synthesis of MIL-53 from EMIM terephthalates, the use of the phosphonium cation in this approach is discussed as well. Additionally, the employment of ILs in the preparation of other MOFs is presented briefly. This includes the ZIF-4 framework from the respective imidazolate ILs and chiral camphorate based frameworks from their imidazolium precursors.Keywords: ionic liquids, ionothermal synthesis, material synthesis, MIL-53, MOFs
Procedia PDF Downloads 2069366 Lightweight Sheet Molding Compound Composites by Coating Glass Fiber with Cellulose Nanocrystals
Authors: Amir Asadi, Karim Habib, Robert J. Moon, Kyriaki Kalaitzidou
Abstract:
There has been considerable interest in cellulose nanomaterials (CN) as polymer and polymer composites reinforcement due to their high specific modulus and strength, low density and toxicity, and accessible hydroxyl side groups that can be readily chemically modified. The focus of this study is making lightweight composites for better fuel efficiency and lower CO2 emission in auto industries with no compromise on mechanical performance using a scalable technique that can be easily integrated in sheet molding compound (SMC) manufacturing lines. Light weighting will be achieved by replacing part of the heavier components, i.e. glass fibers (GF), with a small amount of cellulose nanocrystals (CNC) in short GF/epoxy composites made using SMC. CNC will be introduced as coating of the GF rovings prior to their use in the SMC line. The employed coating method is similar to the fiber sizing technique commonly used and thus it can be easily scaled and integrated to industrial SMC lines. This will be an alternative route to the most techniques that involve dispersing CN in polymer matrix, in which the nanomaterials agglomeration limits the capability for scaling up in an industrial production. We have demonstrated that incorporating CNC as a coating on GF surface by immersing the GF in CNC aqueous suspensions, a simple and scalable technique, increases the interfacial shear strength (IFSS) by ~69% compared to the composites produced by uncoated GF, suggesting an enhancement of stress transfer across the GF/matrix interface. As a result of IFSS enhancement, incorporation of 0.17 wt% CNC in the composite results in increases of ~10% in both elastic modulus and tensile strength, and 40 % and 43 % in flexural modulus and strength respectively. We have also determined that dispersing 1.4 and 2 wt% CNC in the epoxy matrix of short GF/epoxy SMC composites by sonication allows removing 10 wt% GF with no penalty on tensile and flexural properties leading to 7.5% lighter composites. Although sonication is a scalable technique, it is not quite as simple and inexpensive as coating the GF by passing through an aqueous suspension of CNC. In this study, the above findings are integrated to 1) investigate the effect of CNC content on mechanical properties by passing the GF rovings through CNC aqueous suspension with various concentrations (0-5%) and 2) determine the optimum ratio of the added CNC to the removed GF to achieve the maximum possible weight reduction with no cost on mechanical performance of the SMC composites. The results of this study are of industrial relevance, providing a path toward producing high volume lightweight and mechanically enhanced SMC composites using cellulose nanomaterials.Keywords: cellulose nanocrystals, light weight polymer-matrix composites, mechanical properties, sheet molding compound (SMC)
Procedia PDF Downloads 2249365 Development of Partial Discharge Defect Recognition and Status Diagnosis System with Adaptive Deep Learning
Authors: Chien-kuo Chang, Bo-wei Wu, Yi-yun Tang, Min-chiu Wu
Abstract:
This paper proposes a power equipment diagnosis system based on partial discharge (PD), which is characterized by increasing the readability of experimental data and the convenience of operation. This system integrates a variety of analysis programs of different data formats and different programming languages and then establishes a set of interfaces that can follow and expand the structure, which is also helpful for subsequent maintenance and innovation. This study shows a case of using the developed Convolutional Neural Networks (CNN) to integrate with this system, using the designed model architecture to simplify the complex training process. It is expected that the simplified training process can be used to establish an adaptive deep learning experimental structure. By selecting different test data for repeated training, the accuracy of the identification system can be enhanced. On this platform, the measurement status and partial discharge pattern of each equipment can be checked in real time, and the function of real-time identification can be set, and various training models can be used to carry out real-time partial discharge insulation defect identification and insulation state diagnosis. When the electric power equipment entering the dangerous period, replace equipment early to avoid unexpected electrical accidents.Keywords: partial discharge, convolutional neural network, partial discharge analysis platform, adaptive deep learning
Procedia PDF Downloads 779364 Utilization of Logging Residue to Reduce Soil Disturbance of Timber Harvesting
Authors: Juang R. Matangaran, Qi Adlan
Abstract:
Industrial plantation forest in Indonesia was developed in 1983, and since then, several companies have been successfully planted a total area of concessionaire approximately 10 million hectares. Currently, these plantation forests have their annual harvesting period. In the timber harvesting process, amount part of the trees generally become logging residue. Tree parts such as branches, twigs, defected stem and leaves are unused section of tree on the ground after timber harvesting. The use of heavy machines in timber harvesting area has caused damage to the forest soil. The negative impact of such machines includes loss of topsoil, soil erosion, and soil compaction. Forest soil compaction caused reduction of forest water infiltration, increase runoff and causes difficulty for root penetration. In this study, we used logging residue as soil covers on the passages passed by skidding machines in order to observe the reduction soil compaction. Bulk density of soil was measured and analyzed after several times of skidding machines passage on skid trail. The objective of the research was to analyze the effect of logging residue on reducing soil compaction. The research was taken place at one of the industrial plantation forest area of South Sumatra Indonesia. The result of the study showed that percentage increase of soil compaction bare soil was larger than soil surface covered by logging residue. The maximum soil compaction occurred after 4 to 5 passes on soil without logging residue or bare soil and after 7 to 8 passes on soil cover by logging residue. The use of logging residue coverings could reduce soil compaction from 45% to 60%. The logging residue was effective in decreasing soil disturbance of timber harvesting at the plantation forest area.Keywords: bulk density, logging residue, plantation forest, soil compaction, timber harvesting
Procedia PDF Downloads 4049363 Effect of Heat Treatment on Columnar Grain Growth and Goss Texture on Surface in Grain-Oriented Electrical Steels
Authors: Jungkyun Na, Jaesang Lee, Yang Mo Koo
Abstract:
In this study to find a replacement for expensive secondary recrystallization in GO electrical steel production, effect of heat treatment on the formation of columnar grain and Goss texture is investigated. The composition of the sample is Fe-2.0Si-0.2C. This process involves repeating of cold rolling and decarburization as a replacement for secondary recrystallization. By cold-rolling shear band is made and Goss grain grows from shear band by decarburization. By doing another cold rolling, some Goss texture is newly formed from the shear band, and some Goss texture is retained in microbands. To determine whether additional heat treatment with H2 atmosphere is needed on decarburization process for growth of Goss texture, comparing between decarburization and heat treatment with H2 atmosphere is performed. Also, to find optimum condition for heat treatment, heat treatment with various time and temperature is performed. It was found that increase in the number of cold rolling and heat treatment increases Goss texture. Both high Goss texture and good columnar structure is achieved at 900℃, and this temperature is within a+r phase region. Heat treatment at a temperature higher than a+r phase region caused carbon diffusion and this made layer with Goss grain decrease.Keywords: electrical steel, Goss texture, columnar structure, normal grain growth
Procedia PDF Downloads 2179362 Preparation of Activated Carbon Fibers (ACF) Impregnated with Ionic Silver Particles from Cotton Woven Waste and Its Performance as Antibacterial Agent
Authors: Jonathan Andres Pullas Navarrete, Ernesto Hale de la Torre Chauvin
Abstract:
In this work, the antibacterial effect of activated carbon fibers (ACF) impregnated with ionic silver particles was studied. ACF were prepared from samples of cotton woven wastes (cotton based fabrics 5x10 cm) by applying a chemical activation procedure with H3PO4. This treatment was performed using several H3PO4: Cotton based fabrics weight ratios (1:2–2:1), temperatures (600–900 ºC) and activation times (0.5–2 h). The ACF obtained under the best activation conditions showed BET surface area of 1103 m2/g; this result along with iodine index demonstrated the microporous nature of the fibers herein obtained. Then, the obtained fibers were impregnated with ionic silver particles by immersion in 0.1 and 0.5 M AgNO3 solutions followed by drying and thermal decomposition in order to fix the silver particles in the structure of ACF. It was determined that the presence of Ag ions lowered the BET surface area of the ACF in approximately 17 % due to the obstruction of the porosities along the carbonized structure. Finally, the antibacterial effect of the ACF impregnated with silver was studied through direct counting method for coliforms. The antibacterial activity of the impregnated fibers was demonstrated, and it was attributed to the strongly inhibition of bacteria growth because of chemical properties of the particles of silver inside the ACF. This behavior was demonstrated at concentrations of silver as low as 0.035 % w/w.Keywords: activated carbon, adsorption, antibacterial activity, coliforms, surface area
Procedia PDF Downloads 2829361 Characterizing Multivariate Thresholds in Industrial Engineering
Authors: Ali E. Abbas
Abstract:
This paper highlights some of the normative issues that might result by setting independent thresholds in risk analyses and particularly with safety regions. A second objective is to explain how such regions can be specified appropriately in a meaningful way. We start with a review of the importance of setting deterministic trade-offs among target requirements. We then show how to determine safety regions for risk analysis appropriately using utility functions.Keywords: decision analysis, thresholds, risk, reliability
Procedia PDF Downloads 3109360 Evaluating the Small-Strain Mechanical Properties of Cement-Treated Clayey Soils Based on the Confining Pressure
Authors: Muhammad Akmal Putera, Noriyuki Yasufuku, Adel Alowaisy, Ahmad Rifai
Abstract:
Indonesia’s government has planned a project for a high-speed railway connecting the capital cities, Jakarta and Surabaya, about 700 km. Based on that location, it has been planning construction above the lowland soil region. The lowland soil region comprises cohesive soil with high water content and high compressibility index, which in fact, led to a settlement problem. Among the variety of railway track structures, the adoption of the ballastless track was used effectively to reduce the settlement; it provided a lightweight structure and minimized workspace. Contradictorily, deploying this thin layer structure above the lowland area was compensated with several problems, such as lack of bearing capacity and deflection behavior during traffic loading. It is necessary to combine with ground improvement to assure a settlement behavior on the clayey soil. Reflecting on the assurance of strength increment and working period, those were convinced by adopting methods such as cement-treated soil as the substructure of railway track. Particularly, evaluating mechanical properties in the field has been well known by using the plate load test and cone penetration test. However, observing an increment of mechanical properties has uncertainty, especially for evaluating cement-treated soil on the substructure. The current quality control of cement-treated soils was established by laboratory tests. Moreover, using small strain devices measurement in the laboratory can predict more reliable results that are identical to field measurement tests. Aims of this research are to show an intercorrelation of confining pressure with the initial condition of the Young modulus (E_o), Poisson ratio (υ_o) and Shear modulus (G_o) within small strain ranges. Furthermore, discrepancies between those parameters were also investigated. Based on the experimental result confirmed the intercorrelation between cement content and confining pressure with a power function. In addition, higher cement ratios have discrepancies, conversely with low mixing ratios.Keywords: amount of cement, elastic zone, high-speed railway, lightweight structure
Procedia PDF Downloads 1399359 Gold-Mediated Modification of Apoferritin Surface with Targeting Antibodies
Authors: Simona Dostalova, Pavel Kopel, Marketa Vaculovicova, Vojtech Adam, Rene Kizek
Abstract:
Protein apoferritin seems to be a very promising structure for use as a nanocarrier. It is prepared from intracellular ferritin protein naturally found in most organisms. The role of ferritin proteins is to store and transport ferrous ions. Apoferritin is a hollow protein cage without ferrous ions that can be prepared from ferritin by reduction with thioglycolic acid or dithionite. The structure of apoferritin is composed of 24 protein subunits, creating a sphere with 12 nm in diameter. The inner cavity has a diameter of 8 nm. The drug encapsulation process is based on the response of apoferritin structure to the pH changes of surrounding solution. In low pH, apoferritin is disassembled into individual subunits and its structure is “opened”. It can then be mixed with any desired cytotoxic drug and after adjustment of pH back to neutral the subunits are reconnected again and the drug is encapsulated within the apoferritin particles. Excess drug molecules can be removed by dialysis. The receptors for apoferritin, SCARA5 and TfR1 can be found in the membrane of both healthy and cancer cells. To enhance the specific targeting of apoferritin nanocarrier, it is possible to modify its surface with targeting moieties, such as antibodies. To ensure sterically correct complex, we used a a peptide linker based on a protein G with N-terminus affinity towards Fc region of antibodies. To connect the peptide to the surface of apoferritin, the C-terminus of peptide was made of cysteine with affinity to gold. The surface of apoferritin with encapsulated doxorubicin (ApoDox) was coated either with gold nanoparticles (ApoDox-Nano) or gold (III) chloride hydrate reduced with sodium borohydride (ApoDox-HAu). The applied amount of gold in form of gold (III) chloride hydrate was 10 times higher than in the case of gold nanoparticles. However, after removal of the excess unbound ions by electrophoretic separation, the concentration of gold on the surface of apoferritin was only 6 times higher for ApoDox-HAu in comparison with ApoDox-Nano. Moreover, the reduction with sodium borohydride caused a loss of doxorubicin fluorescent properties (excitation maximum at 480 nm with emission maximum at 600 nm) and thus its biological activity. Fluorescent properties of ApoDox-Nano were similar to the unmodified ApoDox, therefore it was more suited for the intended use. To evaluate the specificity of apoferritin modified with antibodies, we used ELISA-like method with the surface of microtitration plate wells coated by the antigen (goat anti-human IgG antibodies). To these wells, we applied ApoDox without targeting antibodies and ApoDox-Nano modified with targeting antibodies (human IgG antibodies). The amount of unmodified ApoDox on antigen after incubation and subsequent rinsing with water was 5 times lower than in the case of ApoDox-Nano modified with targeting antibodies. The modification of non-gold ApoDox with antibodies caused no change in its targeting properties. It can therefore be concluded that the demonstrated procedure allows us to create nanocarrier with enhanced targeting properties, suitable for nanomedicine.Keywords: apoferritin, doxorubicin, nanocarrier, targeting antibodies
Procedia PDF Downloads 388