Search results for: data security
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26839

Search results for: data security

22849 Controller Design and Experimental Evaluation of a Motorized Assistance for a Patient Transfer Floor Lift

Authors: Donatien Callon, Ian Lalonde, Mathieu Nadeau, Alexandre Girard

Abstract:

Patient transfer is a challenging, critical task because it exposes caregivers to injury risks. Available transfer devices, like floor lifts, lead to improvements but are far from perfect. They do not eliminate the caregivers’ risk of musculoskeletal disorders, and they can be burdensome to use due to their poor maneuverability. This paper presents a new motorized floor lift with a single central motorized wheel connected to an instrumented handle. Admittance controllers are designed to 1) improve the device maneuverability, 2) reduce the required caregiver effort, and 3) ensure the security and comfort of patients. Two controller designs, one with a linear admittance law and a non-linear admittance law with variable damping, were developed and implemented on a prototype. Tests were performed on seven participants to evaluate the performance of the assistance system and the controllers. The experimental results show that 1) the motorized assistance with the variable damping controller improves maneuverability by 28%, 2) reduces the amount of effort required to push the lift by 66%, and 3) provides the same level of patient comfort compared to a standard unassisted floor lift.

Keywords: floor lift, human robot interaction, admittance controller, variable admittance

Procedia PDF Downloads 111
22848 Capturing Public Voices: The Role of Social Media in Heritage Management

Authors: Mahda Foroughi, Bruno de Anderade, Ana Pereira Roders

Abstract:

Social media platforms have been increasingly used by locals and tourists to express their opinions about buildings, cities, and built heritage in particular. Most recently, scholars have been using social media to conduct innovative research on built heritage and heritage management. Still, the application of artificial intelligence (AI) methods to analyze social media data for heritage management is seldom explored. This paper investigates the potential of short texts (sentences and hashtags) shared through social media as a data source and artificial intelligence methods for data analysis for revealing the cultural significance (values and attributes) of built heritage. The city of Yazd, Iran, was taken as a case study, with a particular focus on windcatchers, key attributes conveying outstanding universal values, as inscribed on the UNESCO World Heritage List. This paper has three subsequent phases: 1) state of the art on the intersection of public participation in heritage management and social media research; 2) methodology of data collection and data analysis related to coding people's voices from Instagram and Twitter into values of windcatchers over the last ten-years; 3) preliminary findings on the comparison between opinions of locals and tourists, sentiment analysis, and its association with the values and attributes of windcatchers. Results indicate that the age value is recognized as the most important value by all interest groups, while the political value is the least acknowledged. Besides, the negative sentiments are scarcely reflected (e.g., critiques) in social media. Results confirm the potential of social media for heritage management in terms of (de)coding and measuring the cultural significance of built heritage for windcatchers in Yazd. The methodology developed in this paper can be applied to other attributes in Yazd and also to other case studies.

Keywords: social media, artificial intelligence, public participation, cultural significance, heritage, sentiment analysis

Procedia PDF Downloads 115
22847 Hybrid Knowledge Approach for Determining Health Care Provider Specialty from Patient Diagnoses

Authors: Erin Lynne Plettenberg, Jeremy Vickery

Abstract:

In an access-control situation, the role of a user determines whether a data request is appropriate. This paper combines vetted web mining and logic modeling to build a lightweight system for determining the role of a health care provider based only on their prior authorized requests. The model identifies provider roles with 100% recall from very little data. This shows the value of vetted web mining in AI systems, and suggests the impact of the ICD classification on medical practice.

Keywords: electronic medical records, information extraction, logic modeling, ontology, vetted web mining

Procedia PDF Downloads 172
22846 An Informed Application of Emotionally Focused Therapy with Immigrant Couples

Authors: Reihaneh Mahdavishahri

Abstract:

This paper provides a brief introduction to emotionally focused therapy (EFT) and its culturally sensitive and informed application when working with immigrant couples. EFT's grounding in humanistic psychology prioritizes a non-pathologizing and empathic understanding of individuals' experiences, creating a safe space for couples to explore and create new experiences without imposing judgment or prescribing the couple "the right way of interacting" with one another. EFT's emphasis on attachment, bonding, emotions, and corrective emotional experiences makes it a fitting approach to work with multicultural couples, allowing for the corrective emotional experience to be shaped and informed by the couples' unique cultural background. This paper highlights the challenges faced by immigrant couples and explores how immigration adds a complex layer to each partner’s sense of self, their attachment bond, and their sense of safety and security within their relationships. Navigating a new culture, creating a shared sense of purpose, and re-establishing emotional bonds can be daunting for immigrant couples, often leading to a deep sense of disconnection and vulnerability. Reestablishing and fostering secure attachment between the partners in the safety of the therapeutic space can be a protective factor for these couples.

Keywords: attachment, culturally informed care, emotionally focused therapy, immigration

Procedia PDF Downloads 73
22845 Relationship between Gender and Performance with Respect to a Basic Math Skills Quiz in Statistics Courses in Lebanon

Authors: Hiba Naccache

Abstract:

The present research investigated whether gender differences affect performance in a simple math quiz in statistics course. Participants of this study comprised a sample of 567 statistics students in two different universities in Lebanon. Data were collected through a simple math quiz. Analysis of quantitative data indicated that there wasn’t a significant difference in math performance between males and females. The results suggest that improvements in student performance may depend on improved mastery of basic algebra especially for females. The implications of these findings and further recommendations were discussed.

Keywords: gender, education, math, statistics

Procedia PDF Downloads 377
22844 INCIPIT-CRIS: A Research Information System Combining Linked Data Ontologies and Persistent Identifiers

Authors: David Nogueiras Blanco, Amir Alwash, Arnaud Gaudinat, René Schneider

Abstract:

At a time when the access to and the sharing of information are crucial in the world of research, the use of technologies such as persistent identifiers (PIDs), Current Research Information Systems (CRIS), and ontologies may create platforms for information sharing if they respond to the need of disambiguation of their data by assuring interoperability inside and between other systems. INCIPIT-CRIS is a continuation of the former INCIPIT project, whose goal was to set up an infrastructure for a low-cost attribution of PIDs with high granularity based on Archival Resource Keys (ARKs). INCIPIT-CRIS can be interpreted as a logical consequence and propose a research information management system developed from scratch. The system has been created on and around the Schema.org ontology with a further articulation of the use of ARKs. It is thus built upon the infrastructure previously implemented (i.e., INCIPIT) in order to enhance the persistence of URIs. As a consequence, INCIPIT-CRIS aims to be the hinge between previously separated aspects such as CRIS, ontologies and PIDs in order to produce a powerful system allowing the resolution of disambiguation problems using a combination of an ontology such as Schema.org and unique persistent identifiers such as ARK, allowing the sharing of information through a dedicated platform, but also the interoperability of the system by representing the entirety of the data as RDF triplets. This paper aims to present the implemented solution as well as its simulation in real life. We will describe the underlying ideas and inspirations while going through the logic and the different functionalities implemented and their links with ARKs and Schema.org. Finally, we will discuss the tests performed with our project partner, the Swiss Institute of Bioinformatics (SIB), by the use of large and real-world data sets.

Keywords: current research information systems, linked data, ontologies, persistent identifier, schema.org, semantic web

Procedia PDF Downloads 135
22843 MIMIC: A Multi Input Micro-Influencers Classifier

Authors: Simone Leonardi, Luca Ardito

Abstract:

Micro-influencers are effective elements in the marketing strategies of companies and institutions because of their capability to create an hyper-engaged audience around a specific topic of interest. In recent years, many scientific approaches and commercial tools have handled the task of detecting this type of social media users. These strategies adopt solutions ranging from rule based machine learning models to deep neural networks and graph analysis on text, images, and account information. This work compares the existing solutions and proposes an ensemble method to generalize them with different input data and social media platforms. The deployed solution combines deep learning models on unstructured data with statistical machine learning models on structured data. We retrieve both social media accounts information and multimedia posts on Twitter and Instagram. These data are mapped into feature vectors for an eXtreme Gradient Boosting (XGBoost) classifier. Sixty different topics have been analyzed to build a rule based gold standard dataset and to compare the performances of our approach against baseline classifiers. We prove the effectiveness of our work by comparing the accuracy, precision, recall, and f1 score of our model with different configurations and architectures. We obtained an accuracy of 0.91 with our best performing model.

Keywords: deep learning, gradient boosting, image processing, micro-influencers, NLP, social media

Procedia PDF Downloads 183
22842 UNHCR and the International Refugee Protection: An Analysis of Its Actions in Protecting Mozambican Refugees in Malawi

Authors: Marcia Teresa Gildo

Abstract:

The United Nations High Commissioner for Refugees (UNHCR) is responsible to provide international protection and humanitarian assistance to refugees and to seek permanent solutions to their situation. To fulfil this mandate, the agency works in collaboration with its partners and governments. This paper aims to analyse the agency's actions to protect and provide assistance to Mozambican refugees in Malawi. Since July 2015, approximately 12.000 people have fled Mozambique to neighbouring Malawi due to the political-military conflict between the government of Mozambique and RENAMO (the country’s largest opposition party). This led to a series of military clashes between the two parties and the consequent flight of some Mozambicans to Malawi, in search of asylum. Most arrived from the province of Tete, in the central region of Mozambique, and, to a lesser extent, from the province of Zambezia. The asylum seekers arrived in small groups and settled in the village of Kapise in the Mwanza district of Thambani, as well as in Chikwawa and Nsanje districts in Malawi. UNHCR led an interinstitutional response action to manage the flow of Mozambican asylum seekers to Malawi. In view of these aspects and the ongoing challenge of protecting refugees and finding permanent solutions to their situation, UNHCR remains an indispensable international organization. However, there are significant gaps in the international refugee protection regime, and there have been many occasions when UNHCR has failed to fulfill its mandate. The analysis was carried out through qualitative research methods and techniques based essentially on consultation of books, newspapers and scientific articles, television and journalistic reports and interviews with the people who were involved in the process. From the data obtained, it was concluded that UNHCR worked in coordination with its partners and the government of Malawi to provide protection and emergency assistance to the refugees. However, existing funds covered only the immediate needs of refugees, more funds had to be allocated. That was made through an interinstitutional appeal. Although the funds allocated were not sufficient, they allowed the agency to protect and assist the refugees until a permanent solution was found. UNHCR also worked in coordination with the governments of Malawi and Mozambique so that a tripartite agreement was signed between the parties for the voluntary repatriation of Mozambican refugees, since security conditions were guaranteed and the refugees had expressed their willingness to return to their country of origin. UNHCR's actions to protect Mozambican refugees in Malawi have enabled humanitarian conditions to be respected and the rights of refugees to be guaranteed. Cooperation with the different actors involved in the response has allowed UNHCR to fulfil its mandate.

Keywords: assistance , cooperation, international protection, refugees

Procedia PDF Downloads 110
22841 Prediction of PM₂.₅ Concentration in Ulaanbaatar with Deep Learning Models

Authors: Suriya

Abstract:

Rapid socio-economic development and urbanization have led to an increasingly serious air pollution problem in Ulaanbaatar (UB), the capital of Mongolia. PM₂.₅ pollution has become the most pressing aspect of UB air pollution. Therefore, monitoring and predicting PM₂.₅ concentration in UB is of great significance for the health of the local people and environmental management. As of yet, very few studies have used models to predict PM₂.₅ concentrations in UB. Using data from 0:00 on June 1, 2018, to 23:00 on April 30, 2020, we proposed two deep learning models based on Bayesian-optimized LSTM (Bayes-LSTM) and CNN-LSTM. We utilized hourly observed data, including Himawari8 (H8) aerosol optical depth (AOD), meteorology, and PM₂.₅ concentration, as input for the prediction of PM₂.₅ concentrations. The correlation strengths between meteorology, AOD, and PM₂.₅ were analyzed using the gray correlation analysis method; the comparison of the performance improvement of the model by using the AOD input value was tested, and the performance of these models was evaluated using mean absolute error (MAE) and root mean square error (RMSE). The prediction accuracies of Bayes-LSTM and CNN-LSTM deep learning models were both improved when AOD was included as an input parameter. Improvement of the prediction accuracy of the CNN-LSTM model was particularly enhanced in the non-heating season; in the heating season, the prediction accuracy of the Bayes-LSTM model slightly improved, while the prediction accuracy of the CNN-LSTM model slightly decreased. We propose two novel deep learning models for PM₂.₅ concentration prediction in UB, Bayes-LSTM, and CNN-LSTM deep learning models. Pioneering the use of AOD data from H8 and demonstrating the inclusion of AOD input data improves the performance of our two proposed deep learning models.

Keywords: deep learning, AOD, PM2.5, prediction, Ulaanbaatar

Procedia PDF Downloads 48
22840 Difficulties in Teaching and Learning English Pronunciation in Sindh Province, Pakistan

Authors: Majno Ajbani

Abstract:

Difficulties in teaching and learning English pronunciation in Sindh province, Pakistan Abstract Sindhi language is widely spoken in Sindh province, and it is one of the difficult languages of the world. Sindhi language has fifty-two alphabets which have caused a serious issue in learning and teaching of English pronunciation for teachers and students of Colleges and Universities. This study focuses on teachers’ and students’ need for extensive training in the pronunciation that articulates the real pronunciation of actual words. The study is set to contribute in the sociolinguistic studies of English learning communities in this region. Data from 200 English teachers and students was collected by already tested structured questionnaire. The data was analysed using SPSS 20 software. The data analysis clearly demonstrates the higher range of inappropriate pronunciations towards English learning and teaching. The anthropogenic responses indicate 87 percentages teachers and students had an improper pronunciation. This indicates the substantial negative effects on academic and sociolinguistic aspects. It is suggested an improper speaking of English, based on rapid changes in geopolitical and sociocultural surroundings.

Keywords: alphabets, pronunciation, sociolinguistic, anthropogenic, imprudent, malapropos

Procedia PDF Downloads 396
22839 Multi-scale Spatial and Unified Temporal Feature-fusion Network for Multivariate Time Series Anomaly Detection

Authors: Hang Yang, Jichao Li, Kewei Yang, Tianyang Lei

Abstract:

Multivariate time series anomaly detection is a significant research topic in the field of data mining, encompassing a wide range of applications across various industrial sectors such as traffic roads, financial logistics, and corporate production. The inherent spatial dependencies and temporal characteristics present in multivariate time series introduce challenges to the anomaly detection task. Previous studies have typically been based on the assumption that all variables belong to the same spatial hierarchy, neglecting the multi-level spatial relationships. To address this challenge, this paper proposes a multi-scale spatial and unified temporal feature fusion network, denoted as MSUT-Net, for multivariate time series anomaly detection. The proposed model employs a multi-level modeling approach, incorporating both temporal and spatial modules. The spatial module is designed to capture the spatial characteristics of multivariate time series data, utilizing an adaptive graph structure learning model to identify the multi-level spatial relationships between data variables and their attributes. The temporal module consists of a unified temporal processing module, which is tasked with capturing the temporal features of multivariate time series. This module is capable of simultaneously identifying temporal dependencies among different variables. Extensive testing on multiple publicly available datasets confirms that MSUT-Net achieves superior performance on the majority of datasets. Our method is able to model and accurately detect systems data with multi-level spatial relationships from a spatial-temporal perspective, providing a novel perspective for anomaly detection analysis.

Keywords: data mining, industrial system, multivariate time series, anomaly detection

Procedia PDF Downloads 15
22838 Impact Location From Instrumented Mouthguard Kinematic Data In Rugby

Authors: Jazim Sohail, Filipe Teixeira-Dias

Abstract:

Mild traumatic brain injury (mTBI) within non-helmeted contact sports is a growing concern due to the serious risk of potential injury. Extensive research is being conducted looking into head kinematics in non-helmeted contact sports utilizing instrumented mouthguards that allow researchers to record accelerations and velocities of the head during and after an impact. This does not, however, allow the location of the impact on the head, and its magnitude and orientation, to be determined. This research proposes and validates two methods to quantify impact locations from instrumented mouthguard kinematic data, one using rigid body dynamics, the other utilizing machine learning. The rigid body dynamics technique focuses on establishing and matching moments from Euler’s and torque equations in order to find the impact location on the head. The methodology is validated with impact data collected from a lab test with the dummy head fitted with an instrumented mouthguard. Additionally, a Hybrid III Dummy head finite element model was utilized to create synthetic kinematic data sets for impacts from varying locations to validate the impact location algorithm. The algorithm calculates accurate impact locations; however, it will require preprocessing of live data, which is currently being done by cross-referencing data timestamps to video footage. The machine learning technique focuses on eliminating the preprocessing aspect by establishing trends within time-series signals from instrumented mouthguards to determine the impact location on the head. An unsupervised learning technique is used to cluster together impacts within similar regions from an entire time-series signal. The kinematic signals established from mouthguards are converted to the frequency domain before using a clustering algorithm to cluster together similar signals within a time series that may span the length of a game. Impacts are clustered within predetermined location bins. The same Hybrid III Dummy finite element model is used to create impacts that closely replicate on-field impacts in order to create synthetic time-series datasets consisting of impacts in varying locations. These time-series data sets are used to validate the machine learning technique. The rigid body dynamics technique provides a good method to establish accurate impact location of impact signals that have already been labeled as true impacts and filtered out of the entire time series. However, the machine learning technique provides a method that can be implemented with long time series signal data but will provide impact location within predetermined regions on the head. Additionally, the machine learning technique can be used to eliminate false impacts captured by sensors saving additional time for data scientists using instrumented mouthguard kinematic data as validating true impacts with video footage would not be required.

Keywords: head impacts, impact location, instrumented mouthguard, machine learning, mTBI

Procedia PDF Downloads 217
22837 Using Mixed Methods in Studying Classroom Social Network Dynamics

Authors: Nashrawan Naser Taha, Andrew M. Cox

Abstract:

In a multi-cultural learning context, where ties are weak and dynamic, combining qualitative with quantitative research methods may be more effective. Such a combination may also allow us to answer different types of question, such as about people’s perception of the network. In this study the use of observation, interviews and photos were explored as ways of enhancing data from social network questionnaires. Integrating all of these methods was found to enhance the quality of data collected and its accuracy, also providing a richer story of the network dynamics and the factors that shaped these changes over time.

Keywords: mixed methods, social network analysis, multi-cultural learning, social network dynamics

Procedia PDF Downloads 510
22836 Enhancing Institutional Roles and Managerial Instruments for Irrigation Modernization in Sudan: The Case of Gezira Scheme

Authors: Mohamed Ahmed Abdelmawla

Abstract:

Calling to achieve Millennium Development Goals (MDGs) engaged with agriculture, i.e. poverty alleviation targets, human resources involved in agricultural sectors with special emphasis on irrigation must receive wealth of practical experience and training. Increased food production, including staple food, is needed to overcome the present and future threats to food security. This should happen within a framework of sustainable management of natural resources, elimination of unsustainable methods of production and poverty reduction (i.e. axes of modernization). A didactic tool to confirm the task of wise and maximum utility is the best management and accurate measurement, as major requisites for modernization process. The key component to modernization as a warranted goal is adhering great attention to management and measurement issues via capacity building. As such, this paper stressed the issues of discharge management and measurement by Field Outlet Pipes (FOP) for selected ones within the Gezira Scheme, where randomly nine FOPs were selected as representative locations. These FOPs extended along the Gezira Main Canal at Kilo 57 areas in the South up to Kilo 194 in the North. The following steps were followed during the field data collection and measurements: For each selected FOP, a 90 v- notch thin plate weir was placed in such away that the water was directed to pass only through the notch. An optical survey level was used to measure the water head of the notch and FOP. Both calculated discharge rates as measured by the v – notch, denoted as [Qc], and the adopted discharges given by (MOIWR), denoted as [Qa], are tackled for the average of three replicated readings undertaken at each location. The study revealed that the FOP overestimates and sometimes underestimates the discharges. This is attributed to the fact that the original design specifications were not fulfilled or met at present conditions where water is allowed to flow day and night with high head fluctuation, knowing that the FOP is non modular structure, i.e. the flow depends on both levels upstream and downstream and confirmed by the results of this study. It is convenient and formative to quantify the discharge in FOP with weirs or Parshall flumes. Cropping calendar should be clearly determined and agreed upon before the beginning of the season in accordance and consistency with the Sudan Gezira Board (SGB) and Ministry of Irrigation and Water Resources. As such, the water indenting should be based on actual Crop Water Requirements (CWRs), not on rules of thumb (420 m3/feddan, irrespective of crop or time of season).

Keywords: management, measurement, MDGs, modernization

Procedia PDF Downloads 251
22835 Methodology for Temporary Analysis of Production and Logistic Systems on the Basis of Distance Data

Authors: M. Mueller, M. Kuehn, M. Voelker

Abstract:

In small and medium-sized enterprises (SMEs), the challenge is to create a well-grounded and reliable basis for process analysis, optimization and planning due to a lack of data. SMEs have limited access to methods with which they can effectively and efficiently analyse processes and identify cause-and-effect relationships in order to generate the necessary database and derive optimization potential from it. The implementation of digitalization within the framework of Industry 4.0 thus becomes a particular necessity for SMEs. For these reasons, the abstract presents an analysis methodology that is subject to the objective of developing an SME-appropriate methodology for efficient, temporarily feasible data collection and evaluation in flexible production and logistics systems as a basis for process analysis and optimization. The overall methodology focuses on retrospective, event-based tracing and analysis of material flow objects. The technological basis consists of Bluetooth low energy (BLE)-based transmitters, so-called beacons, and smart mobile devices (SMD), e.g. smartphones as receivers, between which distance data can be measured and derived motion profiles. The distance is determined using the Received Signal Strength Indicator (RSSI), which is a measure of signal field strength between transmitter and receiver. The focus is the development of a software-based methodology for interpretation of relative movements of transmitters and receivers based on distance data. The main research is on selection and implementation of pattern recognition methods for automatic process recognition as well as methods for the visualization of relative distance data. Due to an existing categorization of the database regarding process types, classification methods (e.g. Support Vector Machine) from the field of supervised learning are used. The necessary data quality requires selection of suitable methods as well as filters for smoothing occurring signal variations of the RSSI, the integration of methods for determination of correction factors depending on possible signal interference sources (columns, pallets) as well as the configuration of the used technology. The parameter settings on which respective algorithms are based have a further significant influence on result quality of the classification methods, correction models and methods for visualizing the position profiles used. The accuracy of classification algorithms can be improved up to 30% by selected parameter variation; this has already been proven in studies. Similar potentials can be observed with parameter variation of methods and filters for signal smoothing. Thus, there is increased interest in obtaining detailed results on the influence of parameter and factor combinations on data quality in this area. The overall methodology is realized with a modular software architecture consisting of independently modules for data acquisition, data preparation and data storage. The demonstrator for initialization and data acquisition is available as mobile Java-based application. The data preparation, including methods for signal smoothing, are Python-based with the possibility to vary parameter settings and to store them in the database (SQLite). The evaluation is divided into two separate software modules with database connection: the achievement of an automated assignment of defined process classes to distance data using selected classification algorithms and the visualization as well as reporting in terms of a graphical user interface (GUI).

Keywords: event-based tracing, machine learning, process classification, parameter settings, RSSI, signal smoothing

Procedia PDF Downloads 131
22834 Destination Decision Model for Cruising Taxis Based on Embedding Model

Authors: Kazuki Kamada, Haruka Yamashita

Abstract:

In Japan, taxi is one of the popular transportations and taxi industry is one of the big businesses. However, in recent years, there has been a difficult problem of reducing the number of taxi drivers. In the taxi business, mainly three passenger catching methods are applied. One style is "cruising" that drivers catches passengers while driving on a road. Second is "waiting" that waits passengers near by the places with many requirements for taxies such as entrances of hospitals, train stations. The third one is "dispatching" that is allocated based on the contact from the taxi company. Above all, the cruising taxi drivers need the experience and intuition for finding passengers, and it is difficult to decide "the destination for cruising". The strong recommendation system for the cruising taxies supports the new drivers to find passengers, and it can be the solution for the decreasing the number of drivers in the taxi industry. In this research, we propose a method of recommending a destination for cruising taxi drivers. On the other hand, as a machine learning technique, the embedding models that embed the high dimensional data to a low dimensional space is widely used for the data analysis, in order to represent the relationship of the meaning between the data clearly. Taxi drivers have their favorite courses based on their experiences, and the courses are different for each driver. We assume that the course of cruising taxies has meaning such as the course for finding business man passengers (go around the business area of the city of go to main stations) and course for finding traveler passengers (go around the sightseeing places or big hotels), and extract the meaning of their destinations. We analyze the cruising history data of taxis based on the embedding model and propose the recommendation system for passengers. Finally, we demonstrate the recommendation of destinations for cruising taxi drivers based on the real-world data analysis using proposing method.

Keywords: taxi industry, decision making, recommendation system, embedding model

Procedia PDF Downloads 138
22833 The Predictive Value of Serum Bilirubin in the Post-Transplant De Novo Malignancy: A Data Mining Approach

Authors: Nasim Nosoudi, Amir Zadeh, Hunter White, Joshua Conrad, Joon W. Shim

Abstract:

De novo Malignancy has become one of the major causes of death after transplantation, so early cancer diagnosis and detection can drastically improve survival rates post-transplantation. Most previous work focuses on using artificial intelligence (AI) to predict transplant success or failure outcomes. In this work, we focused on predicting de novo malignancy after liver transplantation using AI. We chose the patients that had malignancy after liver transplantation with no history of malignancy pre-transplant. Their donors were cancer-free as well. We analyzed 254,200 patient profiles with post-transplant malignancy from the US Organ Procurement and Transplantation Network (OPTN). Several popular data mining methods were applied to the resultant dataset to build predictive models to characterize de novo malignancy after liver transplantation. Recipient's bilirubin, creatinine, weight, gender, number of days recipient was on the transplant waiting list, Epstein Barr Virus (EBV), International normalized ratio (INR), and ascites are among the most important factors affecting de novo malignancy after liver transplantation

Keywords: De novo malignancy, bilirubin, data mining, transplantation

Procedia PDF Downloads 105
22832 Supply Chains Resilience within Machine-Made Rug Producers in Iran

Authors: Malihe Shahidan, Azin Madhi, Meisam Shahbaz

Abstract:

In recent decades, the role of supply chains in sustaining businesses and establishing their superiority in the market has been under focus. The realization of the goals and strategies of a business enterprise is largely dependent on the cooperation of the chain, including suppliers, distributors, retailers, etc. Supply chains can potentially be disrupted by both internal and external factors. In this paper, resilience strategies have been identified and analyzed in three levels: sourcing, producing, and distributing by considering economic depression as a current risk factor for the machine-made rugs industry. In this study, semi-structured interviews for data gathering and thematic analysis for data analysis are applied. Supply chain data has been gathered from seven rug factories before and after the economic depression through semi-structured interviews. The identified strategies were derived from literature review and validated by collecting data from a group of eighteen industry and university experts, and the results were analyzed using statistical tests. Finally, the outsourcing of new products and products in the new market, the development and completion of the product portfolio, the flexibility in the composition and volume of products, the expansion of the market to price-sensitive, direct sales, and disintermediation have been determined as strategies affecting supply chain resilience of machine-made rugs' industry during an economic depression.

Keywords: distribution, economic depression, machine-made rug, outsourcing, production, sourcing, supply chain, supply chain resilience

Procedia PDF Downloads 162
22831 Women Empowerment, Joint Income Ownership and Planning for Building Household Resilience on Climate Change: The Case of Kilimanjaro Region, Tanzania

Authors: S. I. Mwasha, Z. Robinson, M. Musgrave

Abstract:

Communities, especially in the global south, have been reported to have low adaptive capacity to cope with climate change impacts. As an attempt to improve adaptive capacity, most studies have focused on understanding the access of the household resources which can contribute to resilience against changes. However, little attention has been shown in uncovering how the household resources could be used and their implications to resilience against weather related shocks. By using a case study qualitative study, this project analyzed the trends in livelihoods practices and their implication to social equity. The study was done in three different villages within Kilimanjaro region. Each in different agro ecological zone. Two focus group discussions in two agro-ecological zones were done, one for women and another one for men except in the third zone where focus group participant were combined together (due to unforeseen circumstances). In the focus group discussion, several participatory rural appraisal tools were used to understand trend in crops and animal production and the use in which it is made: climate trends, soil fertility, trees and other livelihoods resources. Data were analyzed using thematic network analysis. Using an amalgam of magnitude (to note weather comments made were positive or negative) and descriptive coding (to note the topic), six basic themes were identified under social equity: individual ownership, family ownership, love and respect, women no education, women access to education as well as women access to loans. The results implied that despite mum and dad in the family providing labor in the agro pastoral activities, there were separations on who own what, as well as individual obligations in the family. Dad owned mostly income creating crops and mum, food crops. therefore, men controlled the economy which made some of them become arrogant and spend money to meet their interests sometimes not taking care of the family. Separation in ownership was reported to contribute to conflicts in the household as well as causing controversy on the use income is spent. Men were reported to use income to promote matriarchy system. However, as women were capacitated through access to education and loans they become closer to their husband and get access to own and plan the income together for the interest of the family. Joint ownership and planning on the household resources were reported to be important if families have to better adapt to climate change. The aim of this study is not to show women empowerment and joint ownership and planning as only remedy for low adaptive capacity. There is the need to understand other practices that either directly or indirectly impacts environmental integrity, food security and economic development for household resilience against changing climate.

Keywords: adaptive capacity, climate change, resilience, women empowerment

Procedia PDF Downloads 166
22830 Programming Language Extension Using Structured Query Language for Database Access

Authors: Chapman Eze Nnadozie

Abstract:

Relational databases constitute a very vital tool for the effective management and administration of both personal and organizational data. Data access ranges from a single user database management software to a more complex distributed server system. This paper intends to appraise the use a programming language extension like structured query language (SQL) to establish links to a relational database (Microsoft Access 2013) using Visual C++ 9 programming language environment. The methodology used involves the creation of tables to form a database using Microsoft Access 2013, which is Object Linking and Embedding (OLE) database compliant. The SQL command is used to query the tables in the database for easy extraction of expected records inside the visual C++ environment. The findings of this paper reveal that records can easily be accessed and manipulated to filter exactly what the user wants, such as retrieval of records with specified criteria, updating of records, and deletion of part or the whole records in a table.

Keywords: data access, database, database management system, OLE, programming language, records, relational database, software, SQL, table

Procedia PDF Downloads 187
22829 Impact of Climate Variation on Natural Vegetations and Human Lives in Thar Desert, Pakistan

Authors: Sujo Meghwar, Zulfqar Ali laghari, Kanji Harijan, Muhib Ali Lagari, G. M. Mastoi, Ali Mohammad Rind

Abstract:

Thar Desert is the most populous Desert of the world. Climate variation in Thar Desert has induced an increase in the magnitude of drought. The variation in climate variation has caused a decrease in natural vegetations. Some plant species are eliminated forever. We have applied the SPI (standardized precipitation index) climate model to investigate the drought induced by climate change. We have gathered the anthropogenic response through a developed questionnaire. The data was analyzed in SPSS version 18. The met-data of two meteorological station elaborated by the time series has suggested an increase in temperature from 1-2.5 centigrade, the decrease in rain fall rainfall from 5-25% and reduction in humidity from 5-12 mm in the 20th century. The anthropogenic responses indicate high impact of climate change on human life and vegetations. Triangle data, we have collected, gives a new insight into the understanding of an association between climate change, drought and human activities.

Keywords: Thar desert, human impact, vegetations, temperature, rainfall, humidity

Procedia PDF Downloads 404
22828 Measures of Phylogenetic Support for Phylogenomic and the Whole Genomes of Two Lungfish Restate Lungfish and Origin of Land Vertebrates

Authors: Yunfeng Shan, Xiaoliang Wang, Youjun Zhou

Abstract:

Whole-genome data from two lungfish species, along with other species, present a valuable opportunity to reassess the longstanding debate regarding the evolutionary relationships among tetrapods, lungfishes, and coelacanths. However, the use of bootstrap support has become outdated for large-scale phylogenomic data. Without robust phylogenetic support, the phylogenetic trees become meaningless. Therefore, it is necessary to re-evaluate the phylogenies of tetrapods, lungfishes, and coelacanths using novel measures of phylogenetic support specifically designed for phylogenomic data, as the previous phylogenies were based on 100% bootstrap support. Our findings consistently provide strong evidence favoring lungfish as the closest living relative of tetrapods. This conclusion is based on high gene support confidence with confidence intervals exceeding 95%, high internode certainty, and high gene concordance factor. The evidence stems from two datasets containing recently deciphered whole genomes of two lungfish species, as well as five previous datasets derived from lungfish transcriptomes. These results yield fresh insights into the three hypotheses regarding the phylogenies of tetrapods, lungfishes, and coelacanths. Importantly, these hypotheses are not mere conjectures but are substantiated by a significant number of genes. Analyzing real biological data further demonstrates that the inclusion of additional taxa diminishes the number of orthologues and leads to more diverse tree topologies. Consequently, gene trees and species trees may not be identical even when whole-genome sequencing data is utilized. However, it is worth noting that many gene trees can accurately reflect the species tree if an appropriate number of taxa, typically ranging from six to ten, are sampled. Therefore, it is crucial to carefully select the number of taxa and an appropriate outgroup while excluding fast-evolving taxa as outgroups to mitigate the adverse effects of long-branch attraction (LBA) and achieve an accurate reconstruction of the species tree. This is particularly important as more whole-genome sequencing data becomes available.

Keywords: gene support confidence (GSC), origin of land vertebrates, coelacanth, two whole genomes of lungfishes, confidence intervals

Procedia PDF Downloads 87
22827 Water Management of Polish Agriculture and Adaptation to Climate Change

Authors: Dorota M. Michalak

Abstract:

The agricultural sector, due to the growing demand for food and over-exploitation of the natural environment, contributes to the deepening of climate change, on the one hand, and on the other hand, shrinking freshwater resources, as a negative effect of climate change, threaten the food security of each country. Therefore, adaptation measures to climate change should take into account effective water management and seek solutions ensuring food production at an unchanged or higher level, while not burdening the environment and not contributing to the worsening of the negative consequences of climate change. The problems of Poland's water management result not only from relatively small, natural water resources but to a large extent on the low efficiency of their use. Appropriate agricultural practices and state solutions in this field can contribute to achieving significant benefits in terms of economical water management in agriculture, providing a greater amount of water that could also be used for other purposes, including for purposes related to environmental protection. The aim of the article is to determine the level of use of water resources in Polish agriculture and the advancement of measures aimed at adapting Polish agriculture in the field of water management to climate change. The study provides knowledge about Polish legal regulations and water management tools, the shaping of water policy of Polish agriculture against the background of EU countries and other sources of energy, and measures supporting Polish agricultural holdings in the effective management of water resources run by state budget institutions. In order to achieve the above-mentioned goals, the author used research tools such as the analysis of existing sources and a survey conducted among five groups of entities, i.e. agricultural advisory centers and departments, agricultural, rural and environmental protection departments, regional water management boards, provincial agricultural chambers and restructuring and modernization of agriculture. The main conclusion of the analyses carried out is the low use of water in Polish agriculture in relation to other EU countries, other sources of intake in Poland, as well as irrigation. The analysis allows us to observe another problem, which is the lack of reporting and data collection, which is extremely important from the point of view of the effectiveness of adaptation measures to climate change. The results obtained from the survey indicate a very low level of support for government institutions in the implementation of adaptation measures to climate change and the water management of Polish farms. Some of the basic problems of the adaptation policy to change climate with regard to water management in Polish agriculture include a lack of knowledge regarding climate change, the possibilities of adapting, the available tools or ways to rationalize the use of water resources. It also refers to the lack of ordering procedures and the separation of responsibility with a proper territorial unit, non-functioning channels of information flow and practically low effects.

Keywords: water management, adaptation policy, agriculture, climate change

Procedia PDF Downloads 142
22826 Migration-Related Challenges during the Covid-19 Pandemic in South Africa. A Case of Alexandra Township

Authors: Edwin Mwasakidzeni Mutyenyoka

Abstract:

Without ignoring migration-related challenges in transit zones and places of origin, this inquiry focuses on arrived international immigrants’ exacerbated vulnerability during crises. The aim is to underline longstanding inequalities and demonstrate that crises merely amplify and exacerbate challenges that low-income migrants already face during ‘non-crises’ periods. Social protection, as an agenda for reducing vulnerability, poverty, and risk for low-income households, with regard to basic consumption and services, has been foregrounded in the post-apartheid development discourse in South Africa. Evidently, however, the state, through the South African Social Security Agency (SASSA), systemically excludes the majority of non-citizens from state-sponsored social assistance programs - often leaving them heavily dependent on sporadic non-state options and erosive coping mechanisms. In this paper, migration itself should not only be understood as a social protection strategy against poverty and risk but also as a source of vulnerability that often requires social protection. For quasi-ethnographic, it use one migrant destination, Alex Park Township, as a “contact zone” and space of negotiation during the pandemic.

Keywords: south-south migration, crises, social protection, Covid-19 pandemic

Procedia PDF Downloads 91
22825 Big Data for Local Decision-Making: Indicators Identified at International Conference on Urban Health 2017

Authors: Dana R. Thomson, Catherine Linard, Sabine Vanhuysse, Jessica E. Steele, Michal Shimoni, Jose Siri, Waleska Caiaffa, Megumi Rosenberg, Eleonore Wolff, Tais Grippa, Stefanos Georganos, Helen Elsey

Abstract:

The Sustainable Development Goals (SDGs) and Urban Health Equity Assessment and Response Tool (Urban HEART) identify dozens of key indicators to help local decision-makers prioritize and track inequalities in health outcomes. However, presentations and discussions at the International Conference on Urban Health (ICUH) 2017 suggested that additional indicators are needed to make decisions and policies. A local decision-maker may realize that malaria or road accidents are a top priority. However, s/he needs additional health determinant indicators, for example about standing water or traffic, to address the priority and reduce inequalities. Health determinants reflect the physical and social environments that influence health outcomes often at community- and societal-levels and include such indicators as access to quality health facilities, access to safe parks, traffic density, location of slum areas, air pollution, social exclusion, and social networks. Indicator identification and disaggregation are necessarily constrained by available datasets – typically collected about households and individuals in surveys, censuses, and administrative records. Continued advancements in earth observation, data storage, computing and mobile technologies mean that new sources of health determinants indicators derived from 'big data' are becoming available at fine geographic scale. Big data includes high-resolution satellite imagery and aggregated, anonymized mobile phone data. While big data are themselves not representative of the population (e.g., satellite images depict the physical environment), they can provide information about population density, wealth, mobility, and social environments with tremendous detail and accuracy when combined with population-representative survey, census, administrative and health system data. The aim of this paper is to (1) flag to data scientists important indicators needed by health decision-makers at the city and sub-city scale - ideally free and publicly available, and (2) summarize for local decision-makers new datasets that can be generated from big data, with layperson descriptions of difficulties in generating them. We include SDGs and Urban HEART indicators, as well as indicators mentioned by decision-makers attending ICUH 2017.

Keywords: health determinant, health outcome, mobile phone, remote sensing, satellite imagery, SDG, urban HEART

Procedia PDF Downloads 209
22824 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis

Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan

Abstract:

Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of Big Data Technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centers or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through Vader and Roberta model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and TFIDF Vectorization, and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.

Keywords: counter vectorization, convolutional neural network, crawler, data technology, long short-term memory, web scraping, sentiment analysis

Procedia PDF Downloads 88
22823 Working in Multidisciplinary Care Teams: Perspectives from Health Care and Social Service Providers

Authors: Lindy Van Vliet, Saloni Phadke, Anthea Nelson, Ann Gallant

Abstract:

Holistic and patient-centred palliative care and support require an integrated system of care that includes health and social service providers working together to ensure that patients and families have access to the care they need. The objective of this study is to further explore and understand the benefits and challenges of mobilizing multidisciplinary care teams for health care professionals and social service providers. Drawing on an interpretivist, exploratory, qualitative design, our multidisciplinary research team (medicine, nursing and social work) conducted interviews with 15 health care and social service providers in the Ottawa region. Interview data was audio-recorded, transcribed, and analyzed using a reflexive thematic analysis approach. The data deepens our understandings of the facilitators and barriers posed by multidisciplinary care teams. Three main findings emerged: First, the data highlighted the benefits of multidisciplinary care teams for both patient outcomes and quality of life and provider mental health; second, the data showed that the lack of a system-wide integrated communication system reduces the quality of patient care and increases provider stress while working in multidisciplinary care teams; finally, the data demonstrated the existence of implicit hierarchies between disciplines, this coupled with different disciplinary perspectives of palliative care provision can lead to friction and challenges within care teams. These findings will have important implications for the future of palliative care as they will help to facilitate and build stronger person-centred/relationship-centred palliative care practices by naming the challenges faced by multidisciplinary palliative care teams and providing examples of best practices.

Keywords: public health palliative care, palliative care nursing, care networks, integrated health care, palliative care approach, public health, multidisciplinary work, care teams

Procedia PDF Downloads 82
22822 Cybercrimes in Nigeria: Its Causes, Effects and Solutions

Authors: Uzoma Igboji

Abstract:

Cybercrimes involves crimes committed on the internet using the computer as a tool or targeted victim. In Nigeria today, there are many varieties of crimes that are committed on the internet daily, some are directed to the computers while the others are directed to the computer users. Cyber terrorism, identity theft, internet chat room, piracy and hacking are identified as types of cyber crimes. Usually, these crimes are perpetrated in forms of like sending of fraudulent and bogus financial proposals from cyber crimes to innocent internet users. The increasing rates of cyber crimes have become strong threats to the society, organizations and country’s reputation, E-commerce growth, denial of innocent Nigerian opportunity abroad and reduced productivity. This study identified some of the causes of cybercrimes to include urbanization, high rate of unemployment, corruption, easy accessibility to internet and weak implementation of cyber crimes in Nigeria. Therefore, internet users should inculcate the habit of continuously updating their knowledge about the ever changing ICTs through this, they can be well informed about the current trends in cybercrimes and how the cybercrimes carryout their dubious activities. Thus, how they can devise means of protecting their information from cyber criminals. Internet users should be security conscious at all times .Recommendations were proposed on how these crimes can be minimized if not completely eradicated.

Keywords: cyber-crimes, cyber-terrorism, cyber-criminals, Nigeria

Procedia PDF Downloads 538
22821 Evaluation of Vehicle Classification Categories: Florida Case Study

Authors: Ren Moses, Jaqueline Masaki

Abstract:

This paper addresses the need for accurate and updated vehicle classification system through a thorough evaluation of vehicle class categories to identify errors arising from the existing system and proposing modifications. The data collected from two permanent traffic monitoring sites in Florida were used to evaluate the performance of the existing vehicle classification table. The vehicle data were collected and classified by the automatic vehicle classifier (AVC), and a video camera was used to obtain ground truth data. The Federal Highway Administration (FHWA) vehicle classification definitions were used to define vehicle classes from the video and compare them to the data generated by AVC in order to identify the sources of misclassification. Six types of errors were identified. Modifications were made in the classification table to improve the classification accuracy. The results of this study include the development of updated vehicle classification table with a reduction in total error by 5.1%, a step by step procedure to use for evaluation of vehicle classification studies and recommendations to improve FHWA 13-category rule set. The recommendations for the FHWA 13-category rule set indicate the need for the vehicle classification definitions in this scheme to be updated to reflect the distribution of current traffic. The presented results will be of interest to States’ transportation departments and consultants, researchers, engineers, designers, and planners who require accurate vehicle classification information for planning, designing and maintenance of transportation infrastructures.

Keywords: vehicle classification, traffic monitoring, pavement design, highway traffic

Procedia PDF Downloads 181
22820 The Significant of Effective Leadership on Management Growth and Survival: A Case Study of Bunato Limited Company, Ring Road Ibadan

Authors: A. S. Adegoke, O. N. Popoola

Abstract:

The central purpose of management in any organization is that of coordinating the efforts of people towards the achievement of its goal. Effective and productive management is the function of leadership. Leadership plays a critical role in helping groups, organizations and societies to achieve their goals. Factors considered to make leadership to be effective are intelligence, social maturity, inner motivation and achievement drives and lastly, human relations attitudes. The factors affecting leadership style and effectiveness were examined. Also, the study examined which of the various leadership style best befits an organization and discussed the ways in which the style was determined. In order to meet the objectives of this study, different types of methods of data gathering were carried out. The methods include data from primary and secondary sources. The primary sources include personal interview, personal observation, and questionnaire while data from secondary sources were derived from various books, journal write up and other documentary records. Data were collected from respondents through questionnaire, and the field research carried out through oral interview to test each of the related hypotheses. From the data analysed it was determined that 45% strongly agreed that leadership traits are inborn not acquired and 28.3% agreed that leadership traits are inborn, while 11.7% and 10% strongly disagreed and disagreed respectively and 5% were undecided. 48.4% strongly agreed, and 43.3% agreed that environmental factors determined the appropriate style of leadership to be employed while 3.3% strongly disagreed, 1.7% disagreed and 3.3% were undecided. From the study, no single style of leadership is appropriate in any situation instead of concentrating on single leadership style; leader can vary approaches depending on forces in the leaders, characteristic of the subordinates, situational forces of the organization, lastly the expectations and behaviour of superior.

Keywords: hypothesis, leadership, management, organization

Procedia PDF Downloads 144