Search results for: computational materials
4795 Bis-Azlactone Based Biodegradable Poly(Ester Amide)s: Design, Synthesis and Study
Authors: Kobauri Sophio, Kantaria Tengiz, Tugushi David, Puiggali Jordi, Katsarava Ramaz
Abstract:
Biodegradable biomaterials (BB) are of high interest for numerous applications in modern medicine as resorbable surgical materials and drug delivery systems. This kind of materials can be cleared from the body after the fulfillment of their function that excludes a surgical intervention for their removal. One of the most promising BBare amino acids based biodegradable poly(ester amide)s (PEAs) which are composed of naturally occurring (α-amino acids) and non-toxic building blocks such as fatty diols and dicarboxylic acids. Key bis-nucleophilic monomers for synthesizing the PEAs are diamine-diesters-di-p-toluenesulfonic acid salts of bis-(α-amino acid)-alkylenediesters (TAADs) which form the PEAs after step-growth polymerization (polycondensation) with bis-electrophilic counter-partners - activated diesters of dicarboxylic acids. The PEAs combine all advantages of the 'parent polymers' – polyesters (PEs) and polyamides (PAs): Ability of biodegradation (PEs), a high affinity with tissues and a wide range of desired mechanical properties (PAs). The scopes of applications of thePEAs can substantially be expanded by their functionalization, e.g. through the incorporation of hydrophobic fragments into the polymeric backbones. Hydrophobically modified PEAs can form non-covalent adducts with various compounds that make them attractive as drug carriers. For hydrophobic modification of the PEAs, we selected so-called 'Azlactone Method' based on the application of p-phenylene-bis-oxazolinons (bis-azlactones, BALs) as active bis-electrophilic monomers in step-growth polymerization with TAADs. Interaction of BALs with TAADs resulted in the PEAs with low MWs (Mw2,800-19,600 Da) and poor material properties. The high-molecular-weight PEAs (Mw up to 100,000) with desirable material properties were synthesized after replacement of a part of BALs with activated diester - di-p-nitrophenylsebacate, or a part of TAAD with alkylenediamine – 1,6-hexamethylenediamine. The new hydrophobically modified PEAs were characterized by FTIR, NMR, GPC, and DSC. It was shown that after the hydrophobic modification the PEAs retain the biodegradability (in vitro study catalyzed by α-chymptrypsin and lipase), and are of interest for constructing resorbable surgical and pharmaceutical devices including drug delivering containers such as microspheres. The new PEAs are insoluble in hydrophobic organic solvents such as chloroform or dichloromethane (swell only) that allowed elaborating a new technology of fabricating microspheres.Keywords: amino acids, biodegradable polymers, bis-azlactones, microspheres
Procedia PDF Downloads 1754794 Biophysical Consideration in the Interaction of Biological Cell Membranes with Virus Nanofilaments
Authors: Samaneh Farokhirad, Fatemeh Ahmadpoor
Abstract:
Biological membranes are constantly in contact with various filamentous soft nanostructures that either reside on their surface or are being transported between the cell and its environment. In particular, viral infections are determined by the interaction of viruses (such as filovirus) with cell membranes, membrane protein organization (such as cytoskeletal proteins and actin filament bundles) has been proposed to influence the mechanical properties of lipid membranes, and the adhesion of filamentous nanoparticles influence their delivery yield into target cells or tissues. The goal of this research is to integrate the rapidly increasing but still fragmented experimental observations on the adhesion and self-assembly of nanofilaments (including filoviruses, actin filaments, as well as natural and synthetic nanofilaments) on cell membranes into a general, rigorous, and unified knowledge framework. The global outbreak of the coronavirus disease in 2020, which has persisted for over three years, highlights the crucial role that nanofilamentbased delivery systems play in human health. This work will unravel the role of a unique property of all cell membranes, namely flexoelectricity, and the significance of nanofilaments’ flexibility in the adhesion and self-assembly of nanofilaments on cell membranes. This will be achieved utilizing a set of continuum mechanics, statistical mechanics, and molecular dynamics and Monte Carlo simulations. The findings will help address the societal needs to understand biophysical principles that govern the attachment of filoviruses and flexible nanofilaments onto the living cells and provide guidance on the development of nanofilament-based vaccines for a range of diseases, including infectious diseases and cancer.Keywords: virus nanofilaments, cell mechanics, computational biophysics, statistical mechanics
Procedia PDF Downloads 944793 Molecular Electron Density Theory Study on the Mechanism and Selectivity of the 1,3 Dipolar Cycloaddition Reaction of N-Methyl-C-(2-Furyl) Nitrone with Activated Alkenes
Authors: Moulay Driss Mellaoui, Abdallah Imjjad, Rachid Boutiddar, Haydar Mohammad-Salim, Nivedita Acharjee, Hassan Bourzi, Souad El Issami, Khalid Abbiche, Hanane Zejli
Abstract:
We have investigated the underlying molecular processes involved in the [3+2] cycloaddition (32CA) reactions between N-methyl-C-(2-furyl) nitrone and three acetylene derivatives: 4b, 5b, and 6b. For this investigation, we utilized molecular electron density theory (MEDT) and density functional theory (DFT) methods at the B3LYP-D3/6 31G (d) computational level. These 32CA reactions, which exhibit a zwitterionic (zw-type) nature, proceed through a one-step mechanism with activation enthalpies ranging from 8.80 to 14.37 kcal mol−1 in acetonitrile and ethanol solvents. When the nitrone reacts with phenyl methyl propiolate (4b), two regioisomeric pathways lead to the formation of two products: P1,5-4b and P1,4-4b. On the other hand, when the nitrone reacts with dimethyl acetylene dicarboxylate (5b) and acetylene dicarboxylic acid (but-2-ynedioic acid) (6b), it results in the formation of a single product. Through topological analysis, we can categorize the nitrone as a zwitterionic three-atom component (TAC). Furthermore, the analysis of conceptual density functional theory (CDFT) indices classifies the 32CA reactions of the nitrone with 4b, 5b, and 6b as forward electron density flux (FEDF) reactions. The study of bond evolution theory (BET) reveals that the formation of new C-C and C-O covalent bonds does not initiate in the transition states, as the intermediate stages of these reactions display pseudoradical centers of the atoms already involved in bonding.Keywords: 4-isoxazoline, DFT/B3LYP-D3, regioselectivity, cycloaddition reaction, MEDT, ELF
Procedia PDF Downloads 1834792 Simplified Stress Gradient Method for Stress-Intensity Factor Determination
Authors: Jeries J. Abou-Hanna
Abstract:
Several techniques exist for determining stress-intensity factors in linear elastic fracture mechanics analysis. These techniques are based on analytical, numerical, and empirical approaches that have been well documented in literature and engineering handbooks. However, not all techniques share the same merit. In addition to overly-conservative results, the numerical methods that require extensive computational effort, and those requiring copious user parameters hinder practicing engineers from efficiently evaluating stress-intensity factors. This paper investigates the prospects of reducing the complexity and required variables to determine stress-intensity factors through the utilization of the stress gradient and a weighting function. The heart of this work resides in the understanding that fracture emanating from stress concentration locations cannot be explained by a single maximum stress value approach, but requires use of a critical volume in which the crack exists. In order to understand the effectiveness of this technique, this study investigated components of different notch geometry and varying levels of stress gradients. Two forms of weighting functions were employed to determine stress-intensity factors and results were compared to analytical exact methods. The results indicated that the “exponential” weighting function was superior to the “absolute” weighting function. An error band +/- 10% was met for cases ranging from a steep stress gradient in a sharp v-notch to the less severe stress transitions of a large circular notch. The incorporation of the proposed method has shown to be a worthwhile consideration.Keywords: fracture mechanics, finite element method, stress intensity factor, stress gradient
Procedia PDF Downloads 1354791 Damping Optimal Design of Sandwich Beams Partially Covered with Damping Patches
Authors: Guerich Mohamed, Assaf Samir
Abstract:
The application of viscoelastic materials in the form of constrained layers in mechanical structures is an efficient and cost-effective technique for solving noise and vibration problems. This technique requires a design tool to select the best location, type, and thickness of the damping treatment. This paper presents a finite element model for the vibration of beams partially or fully covered with a constrained viscoelastic damping material. The model is based on Bernoulli-Euler theory for the faces and Timoshenko beam theory for the core. It uses four variables: the through-thickness constant deflection, the axial displacements of the faces, and the bending rotation of the beam. The sandwich beam finite element is compatible with the conventional C1 finite element for homogenous beams. To validate the proposed model, several free vibration analyses of fully or partially covered beams, with different locations of the damping patches and different percent coverage, are studied. The results show that the proposed approach can be used as an effective tool to study the influence of the location and treatment size on the natural frequencies and the associated modal loss factors. Then, a parametric study regarding the variation in the damping characteristics of partially covered beams has been conducted. In these studies, the effect of core shear modulus value, the effect of patch size variation, the thickness of constraining layer, and the core and the locations of the patches are considered. In partial coverage, the spatial distribution of additive damping by using viscoelastic material is as important as the thickness and material properties of the viscoelastic layer and the constraining layer. Indeed, to limit added mass and to attain maximum damping, the damping patches should be placed at optimum locations. These locations are often selected using the modal strain energy indicator. Following this approach, the damping patches are applied over regions of the base structure with the highest modal strain energy to target specific modes of vibration. In the present study, a more efficient indicator is proposed, which consists of placing the damping patches over regions of high energy dissipation through the viscoelastic layer of the fully covered sandwich beam. The presented approach is used in an optimization method to select the best location for the damping patches as well as the material thicknesses and material properties of the layers that will yield optimal damping with the minimum area of coverage.Keywords: finite element model, damping treatment, viscoelastic materials, sandwich beam
Procedia PDF Downloads 1474790 Using “Debate” in Enhancing Advanced Chinese Language Classrooms and Learning
Authors: ShuPei Wang, Yina Patterson
Abstract:
This article outlines strategies for improving oral expression to advance proficiency in speaking and listening skills through structured argumentation. The objective is to empower students to effectively use the target language to express opinions and construct compelling arguments. This empowerment is achieved by honing learners' debating and questioning skills, which involves increasing their familiarity with vocabulary and phrases relevant to debates and deepening their understanding of the cultural context surrounding pertinent issues. Through this approach, students can enhance their ability to articulate complex concepts and discern critical points, surpassing superficial comprehension and enabling them to engage in the target language actively and competently.Keywords: debate, teaching and materials design, spoken expression, listening proficiency, critical thinking
Procedia PDF Downloads 694789 Mechanical Properties of Kenaf Reinforced Composite with Different Fiber Orientation
Authors: Y. C. Ching, K. H. Chong
Abstract:
The increasing of environmental awareness has led to grow interest in the expansion of materials with eco-friendly attributes. In this study, a 3 ply sandwich layer of kenaf fiber reinforced unsaturated polyester with various fiber orientations was developed. The effect of the fiber orientation on mechanical and thermal stability properties of polyester was studied. Unsaturated polyester as a face sheets and kenaf fibers as a core was fabricated with combination of hand lay-up process and cold compression method. Tested result parameters like tensile, flexural, impact strength, melting point, and crystallization point were compared and recorded based on different fiber orientation. The failure mechanism and property changes associated with directional change of fiber to polyester composite were discussed.Keywords: kenaf fiber, polyester, tensile, thermal stability
Procedia PDF Downloads 3594788 Experimental and Finite Element Forming Limit Diagrams for Interstitial Free Steels
Authors: Basavaraj Vadavadagi, Satishkumar Shekhawat
Abstract:
Interstitial free steels posses better formability and have many applications in automotive industries. Forming limit diagrams (FLDs) indicate the formability of materials which can be determined by experimental and finite element (FE) simulations. FLDs were determined experimentally by LDH test, utilizing optical strain measurement system for measuring the strains in different width specimens and by FE simulations in Interstitial Free (IF) and Interstitial Free High Strength (IFHS) steels. In this study, the experimental and FE simulated FLDs are compared and also the stress based FLDs were investigated.Keywords: forming limit diagram, limiting dome height, optical strain measurement, interstitial
Procedia PDF Downloads 2324787 [Keynote Talk]: Applying p-Balanced Energy Technique to Solve Liouville-Type Problems in Calculus
Authors: Lina Wu, Ye Li, Jia Liu
Abstract:
We are interested in solving Liouville-type problems to explore constancy properties for maps or differential forms on Riemannian manifolds. Geometric structures on manifolds, the existence of constancy properties for maps or differential forms, and energy growth for maps or differential forms are intertwined. In this article, we concentrate on discovery of solutions to Liouville-type problems where manifolds are Euclidean spaces (i.e. flat Riemannian manifolds) and maps become real-valued functions. Liouville-type results of vanishing properties for functions are obtained. The original work in our research findings is to extend the q-energy for a function from finite in Lq space to infinite in non-Lq space by applying p-balanced technique where q = p = 2. Calculation skills such as Hölder's Inequality and Tests for Series have been used to evaluate limits and integrations for function energy. Calculation ideas and computational techniques for solving Liouville-type problems shown in this article, which are utilized in Euclidean spaces, can be universalized as a successful algorithm, which works for both maps and differential forms on Riemannian manifolds. This innovative algorithm has a far-reaching impact on research work of solving Liouville-type problems in the general settings involved with infinite energy. The p-balanced technique in this algorithm provides a clue to success on the road of q-energy extension from finite to infinite.Keywords: differential forms, holder inequality, Liouville-type problems, p-balanced growth, p-harmonic maps, q-energy growth, tests for series
Procedia PDF Downloads 2354786 3D-Printing of Waveguide Terminations: Effect of Material Shape and Structuring on Their Characteristics
Authors: Lana Damaj, Vincent Laur, Azar Maalouf, Alexis Chevalier
Abstract:
Matched termination is an important part of the passive waveguide components. It is typically used at the end of a waveguide transmission line to prevent reflections and improve signal quality. Waveguide terminations (loads) are commonly used in microwave and RF applications. In traditional microwave architectures, usually, waveguide termination consists of a standard rectangular waveguide made by a lossy resistive material, and ended by shorting metallic plate. These types of terminations are used, to dissipate the energy as heat. However, these terminations may increase the size and the weight of the overall system. New alternative solution consists in developing terminations based on 3D-printing of materials. Designing such terminations is very challenging since it should meet the requirements imposed by the system. These requirements include many parameters such as the absorption, the power handling capability in addition to the cost, the size and the weight that have to be minimized. 3D-printing is a shaping process that enables the production of complex geometries. It allows to find best compromise between requirements. In this paper, a comparison study has been made between different existing and new shapes of waveguide terminations. Indeed, 3D printing of absorbers makes it possible to study not only standard shapes (wedge, pyramid, tongue) but also more complex topologies such as exponential ones. These shapes have been designed and simulated using CST MWS®. The loads have been printed using the carbon-filled PolyLactic Acid, conductive PLA from ProtoPasta. Since the terminations has been characterized in the X-band (from 8GHz to 12GHz), the rectangular waveguide standard WR-90 has been selected. The classical wedge shape has been used as a reference. First, all loads have been simulated with the same length and two parameters have been compared: the absorption level (level of |S11|) and the dissipated power density. This study shows that the concave exponential pyramidal shape has the better absorption level and the convex exponential pyramidal shape has the better dissipated power density level. These two loads have been printed in order to measure their properties. A good agreement between the simulated and measured reflection coefficient has been obtained. Furthermore, a study of material structuring based on the honeycomb hexagonal structure has been investigated in order to vary the effective properties. In the final paper, the detailed methodology and the simulated and measured results will be presented in order to show how 3D-printing can allow controlling mass, weight, absorption level and power behaviour.Keywords: additive manufacturing, electromagnetic composite materials, microwave measurements, passive components, power handling capacity (PHC), 3D-printing
Procedia PDF Downloads 214785 Multidimensional Modeling of Solidification Process of Multi-Crystalline Silicon under Magnetic Field for Solar Cell Technology
Authors: Mouhamadou Diop, Mohamed I. Hassan
Abstract:
Molten metallic flow in metallurgical plant is highly turbulent and presents a complex coupling with heat transfer, phase transfer, chemical reaction, momentum transport, etc. Molten silicon flow has significant effect in directional solidification of multicrystalline silicon by affecting the temperature field and the emerging crystallization interface as well as the transport of species and impurities during casting process. Owing to the complexity and limits of reliable measuring techniques, computational models of fluid flow are useful tools to study and quantify these problems. The overall objective of this study is to investigate the potential of a traveling magnetic field for an efficient operating control of the molten metal flow. A multidimensional numerical model will be developed for the calculations of Lorentz force, molten metal flow, and the related phenomenon. The numerical model is implemented in a laboratory-scale silicon crystallization furnace. This study presents the potential of traveling magnetic field approach for an efficient operating control of the molten flow. A numerical model will be used to study the effects of magnetic force applied on the molten flow, and their interdependencies. In this paper, coupled and decoupled, steady and unsteady models of molten flow and crystallization interface will be compared. This study will allow us to retrieve the optimal traveling magnetic field parameter range for crystallization furnaces and the optimal numerical simulations strategy for industrial application.Keywords: multidimensional, numerical simulation, solidification, multicrystalline, traveling magnetic field
Procedia PDF Downloads 2454784 Continuous Manufacturing of Ultra Fine Grained Materials by Severe Plastic Deformation Methods
Authors: Aslı Günay Bulutsuz, Mehmet Emin Yurci
Abstract:
Severe plastic deformation techniques are top-down deformation methods which enable superior mechanical properties by decreasing grain size. Different kind severe plastic deformation methods have been widely being used at various process temperature and geometries. Besides manufacturing advantages of severe plastic deformation technique, most of the types are being used only at the laboratory level. They cannot be adapted to industrial usage due to their continuous manufacturability and manufacturing costs. In order to enhance these manufacturing difficulties and enable widespread usage, different kinds of methods have been developed. In this review, a comprehensive literature research was fulfilled in order to highlight continuous severe plastic deformation methods.Keywords: continuous manufacturing, severe plastic deformation, ultrafine grains, grain size refinement
Procedia PDF Downloads 2364783 A Finite Element/Finite Volume Method for Dam-Break Flows over Deformable Beds
Authors: Alia Alghosoun, Ashraf Osman, Mohammed Seaid
Abstract:
A coupled two-layer finite volume/finite element method was proposed for solving dam-break flow problem over deformable beds. The governing equations consist of the well-balanced two-layer shallow water equations for the water flow and a linear elastic model for the bed deformations. Deformations in the topography can be caused by a brutal localized force or simply by a class of sliding displacements on the bathymetry. This deformation in the bed is a source of perturbations, on the water surface generating water waves which propagate with different amplitudes and frequencies. Coupling conditions at the interface are also investigated in the current study and two mesh procedure is proposed for the transfer of information through the interface. In the present work a new procedure is implemented at the soil-water interface using the finite element and two-layer finite volume meshes with a conservative distribution of the forces at their intersections. The finite element method employs quadratic elements in an unstructured triangular mesh and the finite volume method uses the Rusanove to reconstruct the numerical fluxes. The numerical coupled method is highly efficient, accurate, well balanced, and it can handle complex geometries as well as rapidly varying flows. Numerical results are presented for several test examples of dam-break flows over deformable beds. Mesh convergence study is performed for both methods, the overall model provides new insight into the problems at minimal computational cost.Keywords: dam-break flows, deformable beds, finite element method, finite volume method, hybrid techniques, linear elasticity, shallow water equations
Procedia PDF Downloads 1814782 Eco-Friendly Polymeric Corrosion Inhibitor for Sour Oilfield Environment
Authors: Alireza Rahimi, Abdolreza Farhadian, Arash Tajik, Elaheh Sadeh, Avni Berisha, Esmaeil Akbari Nezhad
Abstract:
Although natural polymers have been shown to have some inhibitory properties on sour corrosion, they are not considered very effective green corrosion inhibitors. Accordingly, effective corrosion inhibitors should be developed based on natural resources to mitigate sour corrosion in the oil and gas industry. Here, Arabic gum was employed as an eco-friendly precursor for the synthesis of innovative polyurethanes designed as highly efficient corrosion inhibitors for sour oilfield solutions. A comprehensive assessment, combining experimental and computational analyses, was conducted to evaluate the inhibitory performance of the inhibitor. Electrochemical measurements demonstrated that a concentration of 200 mM of the inhibitor offered substantial protection to mild steel against sour corrosion, yielding inhibition efficiencies of 98% and 95% at 25 ºC and 60 ºC, respectively. Additionally, the presence of the inhibitor led to a smoother steel surface, indicating the adsorption of polyurethane molecules onto the metal surface. X-ray photoelectron spectroscopy results further validated the chemical adsorption of the inhibitor on mild steel surfaces. Scanning Kelvin probe microscopy revealed a shift in the potential distribution of the steel surface towards negative values, indicating inhibitor adsorption and corrosion process inhibition. Molecular dynamic simulation indicated high adsorption energy values for the inhibitor, suggesting its spontaneous adsorption onto the Fe (110) surface. These findings underscore the potential of Arabic gum as a viable resource for the development of polyurethanes under mild conditions, serving as effective corrosion inhibitors for sour solutions.Keywords: environmental effect, Arabic gum, corrosion inhibitor, sour corrosion, molecular dynamics simulation
Procedia PDF Downloads 624781 The Advancement of Smart Cushion Product and System Design Enhancing Public Health and Well-Being at Workplace
Authors: Dosun Shin, Assegid Kidane, Pavan Turaga
Abstract:
According to the National Institute of Health, living a sedentary lifestyle leads to a number of health issues, including increased risk of cardiovascular dis-ease, type 2 diabetes, obesity, and certain types of cancers. This project brings together experts in multiple disciplines to bring product design, sensor design, algorithms, and health intervention studies to develop a product and system that helps reduce the amount of time sitting at the workplace. This paper illustrates ongoing improvements to prototypes the research team developed in initial research; including working prototypes with a software application, which were developed and demonstrated for users. Additional modifications were made to improve functionality, aesthetics, and ease of use, which will be discussed in this paper. Extending on the foundations created in the initial phase, our approach sought to further improve the product by conducting additional human factor research, studying deficiencies in competitive products, testing various materials/forms, developing working prototypes, and obtaining feedback from additional potential users. The solution consisted of an aesthetically pleasing seat cover cushion that easily attaches to common office chairs found in most workplaces, ensuring a wide variety of people can use the product. The product discreetly contains sensors that track when the user sits on their chair, sending information to a phone app that triggers reminders for users to stand up and move around after sitting for a set amount of time. This paper also presents the analyzed typical office aesthetics and selected materials, colors, and forms that complimented the working environment. Comfort and ease of use remained a high priority as the design team sought to provide a product and system that integrated into the workplace. As the research team continues to test, improve, and implement this solution for the sedentary workplace, the team seeks to create a viable product that acts as an impetus for a more active workday and lifestyle, further decreasing the proliferation of chronic disease and health issues for sedentary working people. This paper illustrates in detail the processes of engineering, product design, methodology, and testing results.Keywords: anti-sedentary work behavior, new product development, sensor design, health intervention studies
Procedia PDF Downloads 1584780 Efficient Implementation of Finite Volume Multi-Resolution Weno Scheme on Adaptive Cartesian Grids
Authors: Yuchen Yang, Zhenming Wang, Jun Zhu, Ning Zhao
Abstract:
An easy-to-implement and robust finite volume multi-resolution Weighted Essentially Non-Oscillatory (WENO) scheme is proposed on adaptive cartesian grids in this paper. Such a multi-resolution WENO scheme is combined with the ghost cell immersed boundary method (IBM) and wall-function technique to solve Navier-Stokes equations. Unlike the k-exact finite volume WENO schemes which involve large amounts of extra storage, repeatedly solving the matrix generated in a least-square method or the process of calculating optimal linear weights on adaptive cartesian grids, the present methodology only adds very small overhead and can be easily implemented in existing edge-based computational fluid dynamics (CFD) codes with minor modifications. Also, the linear weights of this adaptive finite volume multi-resolution WENO scheme can be any positive numbers on condition that their sum is one. It is a way of bypassing the calculation of the optimal linear weights and such a multi-resolution WENO scheme avoids dealing with the negative linear weights on adaptive cartesian grids. Some benchmark viscous problems are numerical solved to show the efficiency and good performance of this adaptive multi-resolution WENO scheme. Compared with a second-order edge-based method, the presented method can be implemented into an adaptive cartesian grid with slight modification for big Reynolds number problems.Keywords: adaptive mesh refinement method, finite volume multi-resolution WENO scheme, immersed boundary method, wall-function technique.
Procedia PDF Downloads 1494779 Analysis Thermal of Composite Material in Cold Systems
Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale, Rubens Maribondo do Nascimento, José Ubiragi de Lima Mendes
Abstract:
Given the unquestionable need of environmental preservation of discarded industrial residues, The scrape of tires have been seen as a salutary alternative for addictive in concrete, asphalt production and of other composites materials. In this work, grew a composite the base of scrape of tire as reinforcement and latex as matrix, to be used as insulating thermal in "cold" systems (0º). Analyzed the acting of the material was what plays the thermal conservation when submitted the flow of heat. Verified the temperature profiles in the internal surfaces and it expresses of the composite as well as the temperature gradient in the same. As a consequence, in function of the answers of the system, conclusions were reached.Keywords: cold system, latex, flow of heat, asphalt production
Procedia PDF Downloads 4624778 Fire Resistance Capacity of Reinforced Concrete Member Strengthened by Fiber Reinforced Polymer
Authors: Soo-Yeon Seo, Jong-Wook Lim, Se-Ki Song
Abstract:
Currently, FRP (Fiber Reinforced Polymer) materials have been widely used for reinforcement of building structural members. However, since the FRP and the epoxy material for attaching it have very low resistance to heat, there is a problem in application where high temperature is an issue. In this paper, the resistance performance of FRP member made of carbon fiber at high temperature was investigated through experiment under temperature change. As a result, epoxy encapsulating FRP is damaged at not high temperatures, and the fibers are degraded. Therefore, when reinforcing a structure using FRP, a separate refractory heat treatment is necessary. The use of a 30 mm thick calcium silicate board as a fireproofing method can protect FRP up to 600ᵒC outside temperature.Keywords: FRP (Fiber Reinforced Polymer), high temperature, experiment under temperature change, calcium silicate board
Procedia PDF Downloads 3964777 Study on the Effects of Geometrical Parameters of Helical Fins on Heat Transfer Enhancement of Finned Tube Heat Exchangers
Authors: H. Asadi, H. Naderan Tahan
Abstract:
The aim of this paper is to investigate the effect of geometrical properties of helical fins in double pipe heat exchangers. On the other hand, the purpose of this project is to derive the hydraulic and thermal design tables and equations of double heat exchangers with helical fins. The numerical modeling is implemented to calculate the considered parameters. Design tables and correlated equations are generated by repeating the parametric numerical procedure for different fin geometries. Friction factor coefficient and Nusselt number are calculated for different amounts of Reynolds, fluid Prantle and fin twist angles for the range of laminar fluid flow in annular tube with helical fins. Results showed that friction factor coefficient and Nusselt number will be increased for higher Reynolds numbers and fins’ twist angles in general. These two parameters follow different patterns in response to Reynolds number increment. Thermal performance factor is defined to analyze these different patterns. Temperature and velocity contours are plotted against twist angle and number of fins to describe the changes in flow patterns in different geometries of twisted finned annulus. Finally twisted finned annulus friction factor coefficient, Nusselt Number and thermal performance factor are correlated by simulating the model in different design points.Keywords: double pipe heat exchangers, heat exchanger performance, twisted fins, computational fluid dynamics
Procedia PDF Downloads 2894776 Biocompatibilities of Various Calcium Silicate Cements
Authors: Seok Woo Chang, Kee Yeon Kum, Kwang Shik Bae, WooCheol Lee
Abstract:
Aim: The objective of this study was to compare the biocompatibilities and mineralization potential of ProRoot MTA and newly developed calcium phosphate based cement, Capseal. Materials and Methods: The biocompatibilities and mineralization-related gene expressions (Bone sialoprotein (BSP) and osteocalcin (OCN)) of ProRoot MTA and Capseal were also compared by a methylthiazol tetrazolium (MTT) assay and reverse transcription-polymerization chain reaction (RT-PCR) analysis on 1, 3, and 7 days, respectively. Empty rings were used as control group. The results were statistically analyzed by Kruskal-Wallis test with a Bonferroni correction. P-value of < 0.05 was considered significant. Results: The biocompatibilities of ProRoot MTA and Capseal were equally favorable. ProRoot MTA and Capseal affected the messenger RNA expression of osteocalcin and osteonectin. Conclusions: Based on the results, both ProRoot MTA and Capseal could be a useful biomaterial in clinical endodontics.Keywords: biocompatibility, calcium silicate cement, MTT, RT-PCR
Procedia PDF Downloads 3914775 Microwave Synthesis and Molecular Docking Studies of Azetidinone Analogous Bearing Diphenyl Ether Nucleus as a Potent Antimycobacterial and Antiprotozoal Agent
Authors: Vatsal M. Patel, Navin B. Patel
Abstract:
The present studies deal with the developing a series bearing a diphenyl ethers nucleus using structure-based drug design concept. A newer series of diphenyl ether based azetidinone namely N-(3-chloro-2-oxo-4-(3-phenoxyphenyl)azetidin-1-yl)-2-(substituted amino)acetamide (2a-j) have been synthesized by condensation of m-phenoxybenzaldehyde with 2-(substituted-phenylamino)acetohydrazide followed by the cyclisation of resulting Schiff base (1a-j) by conventional method as well as microwave heating approach as a part of an environmentally benign synthetic protocol. All the synthesized compounds were characterized by spectral analysis and were screened for in vitro antimicrobial, antitubercular and antiprotozoal activity. The compound 2f was found to be most active M. tuberculosis (6.25 µM) MIC value in the primary screening as well as this same derivative has been found potency against L. mexicana and T. cruzi with MIC value 2.09 and 6.69 µM comparable to the reference drug Miltefosina and Nifurtimox. To provide understandable evidence to predict binding mode and approximate binding energy of a compound to a target in the terms of ligand-protein interaction, all synthesized compounds were docked against an enoyl-[acyl-carrier-protein] reductase of M. tuberculosis (PDB ID: 4u0j). The computational studies revealed that azetidinone derivatives have a high affinity for the active site of enzyme which provides a strong platform for new structure-based design efforts. The Lipinski’s parameters showed good drug-like properties and can be developed as an oral drug candidate.Keywords: antimycobacterial, antiprotozoal, azetidinone, diphenylether, docking, microwave
Procedia PDF Downloads 1614774 A Strategic Sustainability Analysis of Electric Vehicles in EU Today and Towards 2050
Authors: Sven Borén, Henrik Ny
Abstract:
Ambitions within the EU for moving towards sustainable transport include major emission reductions for fossil fuel road vehicles, especially for buses, trucks, and cars. The electric driveline seems to be an attractive solution for such development. This study first applied the Framework for Strategic Sustainable Development to compare sustainability effects of today’s fossil fuel vehicles with electric vehicles that have batteries or hydrogen fuel cells. The study then addressed a scenario were electric vehicles might be in majority in Europe by 2050. The methodology called Strategic Lifecycle Assessment was first used, were each life cycle phase was assessed for violations against sustainability principles. This indicates where further analysis could be done in order to quantify the magnitude of each violation, and later to create alternative strategies and actions that lead towards sustainability. A Life Cycle Assessment of combustion engine cars, plug-in hybrid cars, battery electric cars and hydrogen fuel cell cars was then conducted to compare and quantify environmental impacts. The authors found major violations of sustainability principles like use of fossil fuels, which contribute to the increase of emission related impacts such as climate change, acidification, eutrophication, ozone depletion, and particulate matters. Other violations were found, such as use of scarce materials for batteries and fuel cells, and also for most life cycle phases for all vehicles when using fossil fuel vehicles for mining, production and transport. Still, the studied current battery and hydrogen fuel cell cars have less severe violations than fossil fuel cars. The life cycle assessment revealed that fossil fuel cars have overall considerably higher environmental impacts compared to electric cars as long as the latter are powered by renewable electricity. By 2050, there will likely be even more sustainable alternatives than the studied electric vehicles when the EU electricity mix mainly should stem from renewable sources, batteries should be recycled, fuel cells should be a mature technology for use in vehicles (containing no scarce materials), and electric drivelines should have replaced combustion engines in other sectors. An uncertainty for fuel cells in 2050 is whether the production of hydrogen will have had time to switch to renewable resources. If so, that would contribute even more to a sustainable development. Except for being adopted in the GreenCharge roadmap, the authors suggest that the results can contribute to planning in the upcoming decades for a sustainable increase of EVs in Europe, and potentially serve as an inspiration for other smaller or larger regions. Further studies could map the environmental effects in LCA further, and include other road vehicles to get a more precise perception of how much they could affect sustainable development.Keywords: strategic, electric vehicles, sustainability, LCA
Procedia PDF Downloads 3864773 Miniaturization of Germanium Photo-Detectors by Using Micro-Disk Resonator
Authors: Haifeng Zhou, Tsungyang Liow, Xiaoguang Tu, Eujin Lim, Chao Li, Junfeng Song, Xianshu Luo, Ying Huang, Lianxi Jia, Lianwee Luo, Kim Dowon, Qing Fang, Mingbin Yu, Guoqiang Lo
Abstract:
Several Germanium photodetectors (PD) built on silicon micro-disks are fabricated on the standard Si photonics multiple project wafers (MPW) and demonstrated to exhibit very low dark current, satisfactory operation bandwidth and moderate responsivity. Among them, a vertical p-i-n Ge PD based on a 2.0 µm-radius micro-disk has a dark current of as low as 35 nA, compared to a conventional PD current of 1 µA with an area of 100 µm2. The operation bandwidth is around 15 GHz at a reverse bias of 1V. The responsivity is about 0.6 A/W. Microdisk is a striking planar structure in integrated optics to enhance light-matter interaction and construct various photonics devices. The disk geometries feature in strongly and circularly confining light into an ultra-small volume in the form of whispering gallery modes. A laser may benefit from a microdisk in which a single mode overlaps the gain materials both spatially and spectrally. Compared to microrings, micro-disk removes the inner boundaries to enable even better compactness, which also makes it very suitable for some scenarios that electrical connections are needed. For example, an ultra-low power (≈ fJ) athermal Si modulator has been demonstrated with a bit rate of 25Gbit/s by confining both photons and electrically-driven carriers into a microscale volume.In this work, we study Si-based PDs with Ge selectively grown on a microdisk with the radius of a few microns. The unique feature of using microdisk for Ge photodetector is that mode selection is not important. In the applications of laser or other passive optical components, microdisk must be designed very carefully to excite the fundamental mode in a microdisk in that essentially the microdisk usually supports many higher order modes in the radial directions. However, for detector applications, this is not an issue because the local light absorption is mode insensitive. Light power carried by all modes are expected to be converted into photo-current. Another benefit of using microdisk is that the power circulation inside avoids any introduction of the reflector. A complete simulation model with all involved materials taken into account is established to study the promise of microdisk structures for photodetector by using finite difference time domain (FDTD) method. By viewing from the current preliminary data, the directions to further improve the device performance are also discussed.Keywords: integrated optical devices, silicon photonics, micro-resonator, photodetectors
Procedia PDF Downloads 4074772 Enhancing Knowledge and Teaching Skills of Grade Two Teachers who Work with Children at Risk of Dyslexia
Authors: Rangika Perera, Shyamani Hettiarachchi, Fran Hagstrom
Abstract:
Dyslexia is the most common reading reading-related difficulty among the school school-aged population and currently, 5-10% are showing the features of dyslexia in Sri Lanka. As there is an insufficient number of speech and language pathologists in the country and few speech and language pathologists working in government mainstream school settings, these children who are at risk of dyslexia are not receiving enough quality early intervention services to develop their reading skills. As teachers are the key professionals who are directly working with these children, using them as the primary facilitators to improve their reading skills will be the most effective approach. This study aimed to identify the efficacy of a two and half a day of intensive training provided to fifteen mainstream government school teachers of grade two classes. The goal of the training was to enhance their knowledge of dyslexia and provide full classroom skills training that could be used to support the development of the students’ reading competencies. A closed closed-ended multiple choice questionnaire was given to these teachers pre and -post-training to measure teachers’ knowledge of dyslexia, the areas in which these children needed additional support, and the best strategies to facilitate reading competencies. The data revealed that the teachers’ knowledge in all areas was significantly poorer prior to the training and that there was a clear improvement in all areas after the training. The gain in target areas of teaching skills selected to improve the reading skills of children was evaluated through peer feedback. Teachers were assigned to three groups and expected to model how they were going to introduce the skills in recommended areas using researcher developed, validated and reliability reliability-tested materials and the strategies which were introduced during the training within the given tasks. Peers and the primary investigator rated teachers’ performances and gave feedback on organizational skills, presentation skills of materials, clarity of instruction, and appropriateness of vocabulary. After modifying their skills according to the feedback the teachers received, they were expected to modify and represent the same tasks to the group the following day. Their skills were re-evaluated by the peers and primary investigator using the same rubrics to measure the improvement. The findings revealed a significant improvement in their teaching skills development. The data analysis of both knowledge and skills gains of the teachers was carried out using quantitative descriptive data analysis. The overall findings of the study yielded promising results that support intensive training as a method for improving teachers’ knowledge and teaching skill development for use with children in a whole class intervention setting who are at risk of dyslexia.Keywords: Dyslexia, knowledge, teaching skills, training program
Procedia PDF Downloads 734771 Effect of Accelerated Aging on Antibacterial and Mechanical Properties of SEBS Compounds
Authors: Douglas N. Simoes, Michele Pittol, Vanda F. Ribeiro, Daiane Tomacheski, Ruth M. C. Santana
Abstract:
Thermoplastic elastomers (TPE) compounds are used in a wide range of applications, like home appliances, automotive components, medical devices, footwear, and others. These materials are susceptible to microbial attack, causing a crack in polymer chains compounds based on SEBS copolymers, poly (styrene-b-(ethylene-co-butylene)-b-styrene, are a class of TPE, largely used in domestic appliances like refrigerator seals (gaskets), bath mats and sink squeegee. Moisture present in some areas (such as shower area and sink) in addition to organic matter provides favorable conditions for microbial survival and proliferation, contributing to the spread of diseases besides the reduction of product life cycle due the biodegradation process. Zinc oxide (ZnO) has been studied as an alternative antibacterial additive due its biocidal effect. It is important to know the influence of these additives in the properties of the compounds, both at the beginning and during the life cycle. In that sense, the aim of this study was to evaluate the effect of accelerated aging in oven on antibacterial and mechanical properties of ZnO loaded SEBS based TPE compounds. Two different comercial zinc oxide, named as WR and Pe were used in proportion of 1%. A compound with no antimicrobial additive (standard) was also tested. The compounds were prepared using a co-rotating double screw extruder (L/D ratio of 40/1 and 16 mm screw diameter). The extrusion parameters were kept constant for all materials, screw rotation rate was set at 226 rpm, with a temperature profile from 150 to 190 ºC. Test specimens were prepared using the injection molding machine at 190 ºC. The Standard Test Method for Rubber Property—Effect of Liquids was applied in order to simulate the exposition of TPE samples to detergent ingredients during service. For this purpose, ZnO loaded TPE samples were immersed in a 3.0% w/v detergent (neutral) and accelerated aging in oven at 70°C for 7 days. Compounds were characterized by changes in mechanical (hardness and tension properties) and mass. The Japan Industrial Standard (JIS) Z 2801:2010 was applied to evaluate antibacterial properties against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The microbiological tests showed a reduction up to 42% in E. coli and up to 49% in S. aureus population in non-aged samples. There were observed variations in elongation and hardness values with the addition of zinc The changes in tensile at rupture and mass were not significant between non-aged and aged samples.Keywords: antimicrobial, domestic appliance, sebs, zinc oxide
Procedia PDF Downloads 2464770 Numerical Study of Fire Propagation in Confined and Open Area
Authors: Hadj Miloua, Abbes Azzi
Abstract:
The objective of the present paper is to understand, predict and modeled the fire behavior in confined and open area in different conditions and diverse fuels such as liquid pool fire and the vegetative materials. The distinctive problems are a ventilated road tunnel used for urban transport, by the characterization installations of ventilation and his influence in the mode of smoke dispersion and the flame shape. A general investigation is relatively traditional, based on the modeling and simulation the scenario of the pool fire interacted with wind ventilation by the use of numerical software fire dynamic simulator FDS ver.5 to simulate the fire in ventilated tunnel. The second simulation by WFDS.5 is Wildland fire which is always occurs in forest and rangeland fire environments and will thus have an impact on people, property and resources.Keywords: fire, road tunnel, simulation, vegetation, wildland
Procedia PDF Downloads 5144769 Scientific Development as Diffusion on a Social Network: An Empirical Case Study
Authors: Anna Keuchenius
Abstract:
Broadly speaking, scientific development is studied in either a qualitative manner with a focus on the behavior and interpretations of academics, such as the sociology of science and science studies or in a quantitative manner with a focus on the analysis of publications, such as scientometrics and bibliometrics. Both come with a different set of methodologies and few cross-references. This paper contributes to the bridging of this divide, by on the on hand approaching the process of scientific progress from a qualitative sociological angle and using on the other hand quantitative and computational techniques. As a case study, we analyze the diffusion of Granovetter's hypothesis from his 1973 paper 'On The Strength of Weak Ties.' A network is constructed of all scientists that have referenced this particular paper, with directed edges to all other researchers that are concurrently referenced with Granovetter's 1973 paper. Studying the structure and growth of this network over time, it is found that Granovetter's hypothesis is used by distinct communities of scientists, each with their own key-narrative into which the hypothesis is fit. The diffusion within the communities shares similarities with the diffusion of an innovation in which innovators, early adopters, and an early-late majority can clearly be distinguished. Furthermore, the network structure shows that each community is clustered around one or few hub scientists that are disproportionately often referenced and seem largely responsible for carrying the hypothesis into their scientific subfield. The larger implication of this case study is that the diffusion of scientific hypotheses and ideas are not the spreading of well-defined objects over a network. Rather, the diffusion is a process in which the object itself dynamically changes in concurrence with its spread. Therefore it is argued that the methodology presented in this paper has potential beyond the scientific domain, in the study of diffusion of other not well-defined objects, such as opinions, behavior, and ideas.Keywords: diffusion of innovations, network analysis, scientific development, sociology of science
Procedia PDF Downloads 3074768 A Stochastic Diffusion Process Based on the Two-Parameters Weibull Density Function
Authors: Meriem Bahij, Ahmed Nafidi, Boujemâa Achchab, Sílvio M. A. Gama, José A. O. Matos
Abstract:
Stochastic modeling concerns the use of probability to model real-world situations in which uncertainty is present. Therefore, the purpose of stochastic modeling is to estimate the probability of outcomes within a forecast, i.e. to be able to predict what conditions or decisions might happen under different situations. In the present study, we present a model of a stochastic diffusion process based on the bi-Weibull distribution function (its trend is proportional to the bi-Weibull probability density function). In general, the Weibull distribution has the ability to assume the characteristics of many different types of distributions. This has made it very popular among engineers and quality practitioners, who have considered it the most commonly used distribution for studying problems such as modeling reliability data, accelerated life testing, and maintainability modeling and analysis. In this work, we start by obtaining the probabilistic characteristics of this model, as the explicit expression of the process, its trends, and its distribution by transforming the diffusion process in a Wiener process as shown in the Ricciaardi theorem. Then, we develop the statistical inference of this model using the maximum likelihood methodology. Finally, we analyse with simulated data the computational problems associated with the parameters, an issue of great importance in its application to real data with the use of the convergence analysis methods. Overall, the use of a stochastic model reflects only a pragmatic decision on the part of the modeler. According to the data that is available and the universe of models known to the modeler, this model represents the best currently available description of the phenomenon under consideration.Keywords: diffusion process, discrete sampling, likelihood estimation method, simulation, stochastic diffusion process, trends functions, bi-parameters weibull density function
Procedia PDF Downloads 3084767 Well-Defined Polypeptides: Synthesis and Selective Attachment of Poly(ethylene glycol) Functionalities
Authors: Cristina Lavilla, Andreas Heise
Abstract:
The synthesis of sequence-controlled polymers has received increasing attention in the last years. Well-defined polyacrylates, polyacrylamides and styrene-maleimide copolymers have been synthesized by sequential or kinetic addition of comonomers. However this approach has not yet been introduced to the synthesis of polypeptides, which are in fact polymers developed by nature in a sequence-controlled way. Polypeptides are natural materials that possess the ability to self-assemble into complex and highly ordered structures. Their folding and properties arise from precisely controlled sequences and compositions in their constituent amino acid monomers. So far, solid-phase peptide synthesis is the only technique that allows preparing short peptide sequences with excellent sequence control, but also requires extensive protection/deprotection steps and it is a difficult technique to scale-up. A new strategy towards sequence control in the synthesis of polypeptides is introduced, based on the sequential addition of α-amino acid-N-carboxyanhydrides (NCAs). The living ring-opening process is conducted to full conversion and no purification or deprotection is needed before addition of a new amino acid. The length of every block is predefined by the NCA:initiator ratio in every step. This method yields polypeptides with a specific sequence and controlled molecular weights. A series of polypeptides with varying block sequences have been synthesized with the aim to identify structure-property relationships. All of them are able to adopt secondary structures similar to natural polypeptides, and display properties in the solid state and in solution that are characteristic of the primary structure. By design the prepared polypeptides allow selective modification of individual block sequences, which has been exploited to introduce functionalities in defined positions along the polypeptide chain. Poly(ethylene glycol)(PEG) was the functionality chosen, as it is known to favor hydrophilicity and also yield thermoresponsive materials. After PEGylation, hydrophilicity of the polypeptides is enhanced, and their thermal response in H2O has been studied. Noteworthy differences in the behavior of the polypeptides having different sequences have been found. Circular dichroism measurements confirmed that the α-helical conformation is stable over the examined temperature range (5-90 °C). It is concluded that PEG units are the main responsible of the changes in H-bonding interactions with H2O upon variation of temperature, and the position of these functional units along the backbone is a factor of utmost importance in the resulting properties of the α-helical polypeptides.Keywords: α-amino acid N-carboxyanhydrides, multiblock copolymers, poly(ethylene glycol), polypeptides, ring-opening polymerization, sequence control
Procedia PDF Downloads 2004766 Preparation and Analysis of Enhanced Glass Fiber Reinforced Plastics with Al Base Alloy
Authors: M. R. Ashok, S. Srivatsan, S. Vignesh
Abstract:
Common replacement for glass in composites is the Glass Fiber Reinforced Plastics (GFRP). The GFRP has its own advantages for being a good alternative. The purpose of this research is to find a suitable enhancement for the commonly used composite Glass Fiber Reinforced Plastics (GFRP). The goal is to enhance the material properties of the composite by providing a suitable matrix with Al base. The various mechanical tests are performed to analyze and compare the improvement in the mechanical properties of the composite. As a result, this material can be used as an alternative for the commonly used GFRP in various fields with increased effectiveness in its functioning.Keywords: alloy based composites, composite materials, glass fiber reinforced plastics, sSuper composites
Procedia PDF Downloads 334