Search results for: artificial air storage reservoir
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4582

Search results for: artificial air storage reservoir

592 Cognitive Dissonance in Robots: A Computational Architecture for Emotional Influence on the Belief System

Authors: Nicolas M. Beleski, Gustavo A. G. Lugo

Abstract:

Robotic agents are taking more and increasingly important roles in society. In order to make these robots and agents more autonomous and efficient, their systems have grown to be considerably complex and convoluted. This growth in complexity has led recent researchers to investigate forms to explain the AI behavior behind these systems in search for more trustworthy interactions. A current problem in explainable AI is the inner workings with the logic inference process and how to conduct a sensibility analysis of the process of valuation and alteration of beliefs. In a social HRI (human-robot interaction) setup, theory of mind is crucial to ease the intentionality gap and to achieve that we should be able to infer over observed human behaviors, such as cases of cognitive dissonance. One specific case inspired in human cognition is the role emotions play on our belief system and the effects caused when observed behavior does not match the expected outcome. In such scenarios emotions can make a person wrongly assume the antecedent P for an observed consequent Q, and as a result, incorrectly assert that P is true. This form of cognitive dissonance where an unproven cause is taken as truth induces changes in the belief base which can directly affect future decisions and actions. If we aim to be inspired by human thoughts in order to apply levels of theory of mind to these artificial agents, we must find the conditions to replicate these observable cognitive mechanisms. To achieve this, a computational architecture is proposed to model the modulation effect emotions have on the belief system and how it affects logic inference process and consequently the decision making of an agent. To validate the model, an experiment based on the prisoner's dilemma is currently under development. The hypothesis to be tested involves two main points: how emotions, modeled as internal argument strength modulators, can alter inference outcomes, and how can explainable outcomes be produced under specific forms of cognitive dissonance.

Keywords: cognitive architecture, cognitive dissonance, explainable ai, sensitivity analysis, theory of mind

Procedia PDF Downloads 132
591 A Bottom-Up Approach for the Synthesis of Highly Ordered Fullerene-Intercalated Graphene Hybrids

Authors: A. Kouloumpis, P. Zygouri, G. Potsi, K. Spyrou, D. Gournis

Abstract:

Much of the research effort on graphene focuses on its use as building block for the development of new hybrid nanostructures with well-defined dimensions and behavior suitable for applications among else in gas storage, heterogeneous catalysis, gas/liquid separations, nanosensing and biology. Towards this aim, here we describe a new bottom-up approach, which combines the self-assembly with the Langmuir Schaefer technique, for the production of fullerene-intercalated graphene hybrid materials. This new method uses graphene nanosheets as a template for the grafting of various fullerene C60 molecules (pure C60, bromo-fullerenes, C60Br24, and fullerols, C60(OH)24) in a bi-dimensional array, and allows for perfect layer-by-layer growth with control at the molecular level. Our film preparation approach involves a bottom-up layer-by-layer process that includes the formation of a hybrid organo-graphene Langmuir film hosting fullerene molecules within its interlayer spacing. A dilute water solution of chemically oxidized graphene (GO) was used as subphase on the Langmuir-Blodgett deposition system while an appropriate amino surfactant (that binds covalently with the GO) was applied for the formation of hybridized organo-GO. After the horizontal lift of a hydrophobic substrate, a surface modification of the GO platelets was performed by bringing the surface of the transferred Langmuir film in contact with a second amino surfactant solution (capable to interact strongly with the fullerene derivatives). In the final step, the hybrid organo-graphene film was lowered in the solution of the appropriate fullerene derivative. Multilayer films were constructed by repeating this procedure. Hybrid fullerene-based thin films deposited on various hydrophobic substrates were characterized by X-ray diffraction (XRD) and X-ray reflectivity (XRR), FTIR, and Raman spectroscopies, Atomic Force Microscopy, and optical measurements. Acknowledgments. This research has been co‐financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF)‐Research Funding Program: THALES. Investing in knowledge society through the European Social Fund (no. 377285).

Keywords: hybrids, graphene oxide, fullerenes, langmuir-blodgett, intercalated structures

Procedia PDF Downloads 327
590 How Technology Can Help Teachers in Reflective Practice

Authors: Ambika Perisamy, Asyriawati binte Mohd Hamzah

Abstract:

The focus of this presentation is to discuss teacher professional development (TPD) through the use of technology. TPD is necessary to prepare teachers for future challenges they will face throughout their careers and to develop new skills and good teaching practices. We will also be discussing current issues in embracing technology in the field of early childhood education and the impact on the professional development of teachers. Participants will also learn to apply teaching and learning practices through the use of technology. One major objective of this presentation is to coherently fuse practical, technology and theoretical content. The process begins by concretizing a set of preconceived ideas which need to be joined with theoretical justifications found in the literature. Technology can make observations fairer and more reliable, easier to implement, and more preferable to teachers and principals. Technology will also help principals to improve classroom observations of teachers and ultimately improve teachers’ continuous professional development. Video technology allows the early childhood teachers to record and keep the recorded video for reflection at any time. This will also provide opportunities for her to share with her principals for professional dialogues and continuous professional development plans. A total of 10 early childhood teachers and 4 principals were involved in these efforts which identified and analyze the gaps in the quality of classroom observations and its co relation to developing teachers as reflective practitioners. The methodology used involves active exploration with video technology recordings, conversations, interviews and authentic teacher child interactions which forms the key thrust in improving teaching and learning practice. A qualitative analysis of photographs, videos, transcripts which illustrates teacher’s reflections and classroom observation checklists before and after the use of video technology were adopted. Arguably, although PD support can be magnanimously strong, if teachers could not connect or create meaning out of the opportunities made available to them, they may remain passive or uninvolved. Therefore, teachers must see the value of applying new ideas such as technology and approaches to practice while creating personal meaning out of professional development. These video recordings are transferable, can be shared and edited through social media, emails and common storage between teachers and principals. To conclude the importance of reflective practice among early childhood teachers and addressing the concerns raised before and after the use of video technology, teachers and principals shared the feasibility, practical and relevance use of video technology.

Keywords: early childhood education, reflective, improve teaching and learning, technology

Procedia PDF Downloads 502
589 Efficacy of Knowledge Management Practices in Selected Public Libraries in the Province of Kwazulu-Natal, South Africa

Authors: Petros Dlamini, Bethiweli Malambo, Maggie Masenya

Abstract:

Knowledge management practices are very important in public libraries, especial in the era of the information society. The success of public libraries depends on the recognition and application of knowledge management practices. The study investigates the value and challenges of knowledge management practices in public libraries. Three research objectives informed the study: to identify knowledge management practices in public libraries, understand the value of knowledge management practices in public libraries, and determine the factors hampering knowledge management practices in public libraries. The study was informed by the interpretivism research paradigm, which is associated with qualitative studies. In that light, the study collected data from eight librarians and or library heads, who were purposively selected from public libraries. The study adopted a social anthropological approach, which thoroughly evaluated each participant's response. Data was collected from the respondents through telephonic semi-structured interviews and assessed accordingly. Furthermore, the study used the latest content concept for data interpretation. The chosen data analysis method allowed the study to achieve its main purpose with concrete and valid information. The study's findings showed that all six (100%) selected public libraries apply knowledge management practices. The findings of the study revealed that public libraries have knowledge sharing as the main knowledge management practice. It was noted that public libraries employ many practices, but each library employed its practices of choice depending on their knowledge management practices structure. The findings further showed that knowledge management practices in public libraries are employed through meetings, training, information sessions, and awareness, to mention a few. The findings revealed that knowledge management practices make the libraries usable. Furthermore, it has been asserted that knowledge management practices in public libraries meet users’ needs and expectations and equip them with skills. It was discovered that all participating public libraries from Umkhanyakude district municipality valued their knowledge management practices as the pillar and foundation of services. Noticeably, knowledge management practices improve users ‘standard of living and build an information society. The findings of the study showed that librarians should be responsible for the value of knowledge management practices as they are qualified personnel. The results also showed that 83.35% of public libraries had factors hampering knowledge management practices. The factors are not limited to shortage of funds, resources and space, and political interference. Several suggestions were made to improve knowledge management practices in public libraries. These suggestions include improving the library budget, increasing libraries’ building sizes, and conducting more staff training.

Keywords: knowledge management, knowledge management practices, storage, dissemination

Procedia PDF Downloads 94
588 A Comprehensive Review on Structural Properties and Erection Benefits of Large Span Stressed-Arch Steel Truss Industrial Buildings

Authors: Anoush Saadatmehr

Abstract:

Design and build of large clear span structures have always been demanding in the construction industry targeting industrial and commercial buildings around the world. The function of these spectacular structures encompasses distinguished types of building such as aircraft and airship hangars, warehouses, bulk storage buildings, sports and recreation facilities. From an engineering point of view, there are various types of steel structure systems that are often adopted in large-span buildings like conventional trusses, space frames and cable-supported roofs. However, this paper intends to investigate and review an innovative light, economic and quickly erected large span steel structure renowned as “Stressed-Arch,” which has several advantages over the other common types of structures. This patented system integrates the use of cold-formed hollow section steel material with high-strength pre-stressing strands and concrete grout to establish an arch shape truss frame anywhere there is a requirement to construct a cost-effective column-free space for spans within the range of 60m to 180m. In this study and firstly, the main structural properties of the stressed-arch system and its components are discussed technically. These features include nonlinear behavior of truss chords during stress-erection, the effect of erection method on member’s compressive strength, the rigidity of pre-stressed trusses to overcome strict deflection criteria for cases with roof suspended cranes or specialized front doors and more importantly, the prominent lightness of steel structure. Then, the effects of utilizing pre-stressing strands to safeguard a smooth process of installation of main steel members and roof components and cladding are investigated. In conclusion, it is shown that the Stressed-Arch system not only provides an optimized light steel structure up to 30% lighter than its conventional competitors but also streamlines the process of building erection and minimizes the construction time while preventing the risks of working at height.

Keywords: large span structure, pre-stressed steel truss, stressed-arch building, stress-erection, steel structure

Procedia PDF Downloads 163
587 Application of Ground-Penetrating Radar in Environmental Hazards

Authors: Kambiz Teimour Najad

Abstract:

The basic methodology of GPR involves the use of a transmitting antenna to send electromagnetic waves into the subsurface, which then bounce back to the surface and are detected by a receiving antenna. The transmitter and receiver antennas are typically placed on the ground surface and moved across the area of interest to create a profile of the subsurface. The GPR system consists of a control unit that powers the antennas and records the data, as well as a display unit that shows the results of the survey. The control unit sends a pulse of electromagnetic energy into the ground, which propagates through the soil or rock until it encounters a change in material or structure. When the electromagnetic wave encounters a buried object or structure, some of the energy is reflected back to the surface and detected by the receiving antenna. The GPR data is then processed using specialized software that analyzes the amplitude and travel time of the reflected waves. By interpreting the data, GPR can provide information on the depth, location, and nature of subsurface features and structures. GPR has several advantages over other geophysical survey methods, including its ability to provide high-resolution images of the subsurface and its non-invasive nature, which minimizes disruption to the site. However, the effectiveness of GPR depends on several factors, including the type of soil or rock, the depth of the features being investigated, and the frequency of the electromagnetic waves used. In environmental hazard assessments, GPR can be used to detect buried structures, such as underground storage tanks, pipelines, or utilities, which may pose a risk of contamination to the surrounding soil or groundwater. GPR can also be used to assess soil stability by identifying areas of subsurface voids or sinkholes, which can lead to the collapse of the surface. Additionally, GPR can be used to map the extent and movement of groundwater contamination, which is critical in designing effective remediation strategies. the methodology of GPR in environmental hazard assessments involves the use of electromagnetic waves to create high of the subsurface, which are then analyzed to provide information on the depth, location, and nature of subsurface features and structures. This information is critical in identifying and mitigating environmental hazards, and the non-invasive nature of GPR makes it a valuable tool in this field.

Keywords: GPR, hazard, landslide, rock fall, contamination

Procedia PDF Downloads 81
586 Development of a 3D Model of Real Estate Properties in Fort Bonifacio, Taguig City, Philippines Using Geographic Information Systems

Authors: Lyka Selene Magnayi, Marcos Vinas, Roseanne Ramos

Abstract:

As the real estate industry continually grows in the Philippines, Geographic Information Systems (GIS) provide advantages in generating spatial databases for efficient delivery of information and services. The real estate sector is not only providing qualitative data about real estate properties but also utilizes various spatial aspects of these properties for different applications such as hazard mapping and assessment. In this study, a three-dimensional (3D) model and a spatial database of real estate properties in Fort Bonifacio, Taguig City are developed using GIS and SketchUp. Spatial datasets include political boundaries, buildings, road network, digital terrain model (DTM) derived from Interferometric Synthetic Aperture Radar (IFSAR) image, Google Earth satellite imageries, and hazard maps. Multiple model layers were created based on property listings by a partner real estate company, including existing and future property buildings. Actual building dimensions, building facade, and building floorplans are incorporated in these 3D models for geovisualization. Hazard model layers are determined through spatial overlays, and different scenarios of hazards are also presented in the models. Animated maps and walkthrough videos were created for company presentation and evaluation. Model evaluation is conducted through client surveys requiring scores in terms of the appropriateness, information content, and design of the 3D models. Survey results show very satisfactory ratings, with the highest average evaluation score equivalent to 9.21 out of 10. The output maps and videos obtained passing rates based on the criteria and standards set by the intended users of the partner real estate company. The methodologies presented in this study were found useful and have remarkable advantages in the real estate industry. This work may be extended to automated mapping and creation of online spatial databases for better storage, access of real property listings and interactive platform using web-based GIS.

Keywords: geovisualization, geographic information systems, GIS, real estate, spatial database, three-dimensional model

Procedia PDF Downloads 158
585 Comparative Study of Greenhouse Locations through Satellite Images and Geographic Information System: Methodological Evaluation in Venezuela

Authors: Maria A. Castillo H., Andrés R. Leandro C.

Abstract:

During the last decades, agricultural productivity in Latin America has increased with precision agriculture and more efficient agricultural technologies. The use of automated systems, satellite images, geographic information systems, and tools for data analysis, and artificial intelligence have contributed to making more effective strategic decisions. Twenty years ago, the state of Mérida, located in the Venezuelan Andes, reported the largest area covered by greenhouses in the country, where certified seeds of potatoes, vegetables, ornamentals, and flowers were produced for export and consumption in the central region of the country. In recent years, it is estimated that production under greenhouses has changed, and the area covered has decreased due to different factors, but there are few historical statistical data in sufficient quantity and quality to support this estimate or to be used for analysis and decision making. The objective of this study is to compare data collected about geoposition, use, and covered areas of the greenhouses in 2007 to data available in 2021, as support for the analysis of the current situation of horticultural production in the main municipalities of the state of Mérida. The document presents the development of the work in the diagnosis and integration of geographic coordinates in GIS and data analysis phases. As a result, an evaluation of the process is made, a dashboard is presented with the most relevant data along with the geographical coordinates integrated into GIS, and an analysis of the obtained information is made. Finally, some recommendations for actions are added, and works that expand the information obtained and its geographical traceability over time are proposed. This study contributes to granting greater certainty in the supporting data for the evaluation of social, environmental, and economic sustainability indicators and to make better decisions according to the sustainable development goals in the area under review. At the same time, the methodology provides improvements to the agricultural data collection process that can be extended to other study areas and crops.

Keywords: greenhouses, geographic information system, protected agriculture, data analysis, Venezuela

Procedia PDF Downloads 93
584 Collaborative Data Refinement for Enhanced Ionic Conductivity Prediction in Garnet-Type Materials

Authors: Zakaria Kharbouch, Mustapha Bouchaara, F. Elkouihen, A. Habbal, A. Ratnani, A. Faik

Abstract:

Solid-state lithium-ion batteries have garnered increasing interest in modern energy research due to their potential for safer, more efficient, and sustainable energy storage systems. Among the critical components of these batteries, the electrolyte plays a pivotal role, with LLZO garnet-based electrolytes showing significant promise. Garnet materials offer intrinsic advantages such as high Li-ion conductivity, wide electrochemical stability, and excellent compatibility with lithium metal anodes. However, optimizing ionic conductivity in garnet structures poses a complex challenge, primarily due to the multitude of potential dopants that can be incorporated into the LLZO crystal lattice. The complexity of material design, influenced by numerous dopant options, requires a systematic method to find the most effective combinations. This study highlights the utility of machine learning (ML) techniques in the materials discovery process to navigate the complex range of factors in garnet-based electrolytes. Collaborators from the materials science and ML fields worked with a comprehensive dataset previously employed in a similar study and collected from various literature sources. This dataset served as the foundation for an extensive data refinement phase, where meticulous error identification, correction, outlier removal, and garnet-specific feature engineering were conducted. This rigorous process substantially improved the dataset's quality, ensuring it accurately captured the underlying physical and chemical principles governing garnet ionic conductivity. The data refinement effort resulted in a significant improvement in the predictive performance of the machine learning model. Originally starting at an accuracy of 0.32, the model underwent substantial refinement, ultimately achieving an accuracy of 0.88. This enhancement highlights the effectiveness of the interdisciplinary approach and underscores the substantial potential of machine learning techniques in materials science research.

Keywords: lithium batteries, all-solid-state batteries, machine learning, solid state electrolytes

Procedia PDF Downloads 61
583 Assessment of Groundwater Aquifer Impact from Artificial Lagoons and the Reuse of Wastewater in Qatar

Authors: H. Aljabiry, L. Bailey, S. Young

Abstract:

Qatar is a desert with an average temperature 37⁰C, reaching over 40⁰C during summer. Precipitation is uncommon and mostly in winter. Qatar depends on desalination for drinking water and on groundwater and recycled water for irrigation. Water consumption and network leakage per capita in Qatar are amongst the highest in the world; re-use of treated wastewater is extremely limited with only 14% of treated wastewater being used for irrigation. This has led to the country disposing of unwanted water from various sources in lagoons situated around the country, causing concern over the possibility of environmental pollution. Accordingly, our hypothesis underpinning this research is that the quality and quantity of water in lagoons is having an impact on the groundwater reservoirs in Qatar. Lagoons (n = 14) and wells (n = 55) were sampled for both summer and winter in 2018 (summer and winter). Water, adjoining soil and plant samples were analysed for multiple elements by Inductively Coupled Plasma Mass Spectrometry. Organic and inorganic carbon were measured (CN analyser) and the major anions were determined by ion chromatography. Salinization in both the lagoon and the wells was seen with good correlations between Cl⁻, Na⁺, Li, SO₄, S, Sr, Ca, Ti (p-value < 0.05). Association of heavy metals was observed of Ni, Cu, Ag, and V, Cr, Mo, Cd which is due to contamination from anthropological activities such as wastewater disposal or spread of contaminated dust. However, looking at each elements none of them exceeds the Qatari regulation. Moreover, gypsum saturation in the system was observed in both the lagoon and wells water samples. Lagoons and the water of the well are found to be of a saline type as well as Ca²⁺, Cl⁻, SO₄²⁻ type evidencing both gypsum dissolution and salinization in the system. Moreover, Maps produced by Inverse distance weighting showed an increasing level of Nitrate in the groundwater in winter, and decrease chloride and sulphate level, indicating recharge effect after winter rain events. While E. coli and faecal bacteria were found in most of the lagoons, biological analysis for wells needs to be conducted to understand the biological contamination from lagoon water infiltration. As a conclusion, while both the lagoon and the well showed the same results, more sampling is needed to understand the impact of the lagoons on the groundwater.

Keywords: groundwater quality, lagoon, treated wastewater, water management, wastewater treatment, wetlands

Procedia PDF Downloads 135
582 Advancing Aviation: A Multidisciplinary Approach to Innovation, Management, and Technology Integration in the 21st Century

Authors: Fatih Frank Alparslan

Abstract:

The aviation industry is at a crucial turning point due to modern technologies, environmental concerns, and changing ways of transporting people and goods globally. The paper examines these challenges and opportunities comprehensively. It emphasizes the role of innovative management and advanced technology in shaping the future of air travel. This study begins with an overview of the current state of the aviation industry, identifying key areas where innovation and technology could be highly beneficial. It explores the latest advancements in airplane design, propulsion, and materials. These technological advancements are shown to enhance aircraft performance and environmental sustainability. The paper also discusses the use of artificial intelligence and machine learning in improving air traffic control, enhancing safety, and making flight operations more efficient. The management of these technologies is critically important. Therefore, the research delves into necessary changes in organization, culture, and operations to support innovation. It proposes a management approach that aligns with these modern technologies, underlining the importance of forward-thinking leaders who collaborate across disciplines and embrace innovative ideas. The paper addresses challenges in adopting these innovations, such as regulatory barriers, the need for industry-wide standards, and the impact of technological changes on jobs and society. It recommends that governments, aviation businesses, and educational institutions collaborate to address these challenges effectively, paving the way for a more innovative and eco-friendly aviation industry. In conclusion, the paper argues that the future of aviation relies on integrating new management practices with innovative technologies. It urges a collective effort to push beyond current capabilities, envisioning an aviation industry that is safer, more efficient, and environmentally responsible. By adopting a broad approach, this research contributes to the ongoing discussion about resolving the complex issues facing today's aviation sector, offering insights and guidance to prepare for future advancements.

Keywords: aviation innovation, technology integration, environmental sustainability, management strategies, multidisciplinary approach

Procedia PDF Downloads 48
581 Genetic Diversity of Wild Population of Heterobranchus Spp. Based on Mitochondria DNA Cytochrome C Oxidase Subunit I Gene Analysis

Authors: M. Y. Abubakar, Ipinjolu J. K., Yuzine B. Esa, Magawata I., Hassan W. A., Turaki A. A.

Abstract:

Catfish (Heterobranchus spp.) is a major freshwater fish that are widely distributed in Nigeria waters and are gaining rapid aquaculture expansion. However, indiscriminate artificial crossbreeding of the species with others poses a threat to their biodiversity. There is a paucity of information about the genetic variability, hence this insight on the genetic variability is badly needed, not only for the species conservation but for aquaculture expansion. In this study, we tested the level of Genetic diversity, population differentiation and phylogenetic relationship analysis on 35 individuals of two populations of Heterobranchus bidorsalis and 29 individuals of three populations of Heterobranchus longifilis using the mitochondrial cytochrome c oxidase subunit I (mtDNA COI) gene sequence. Nucleotide sequences of 650 bp fragment of the COI gene of the two species were compared. In the whole 4 and 5 haplotypes were distinguished in the populations of H. bidorsalis & H. longifilis with accession numbers (MG334168 - MG334171 & MG334172 to MG334176) respectively. Haplotypes diversity indices revealed a range of 0.59 ± 0.08 to 0.57 ± 0.09 in H. bidorsalis and 0.000 to 0.001051 ± 0.000945 in H. longifilis population, respectively. Analysis of molecular variance (AMOVA) revealed no significant variation among H. bidorsalis population of the Niger & Benue Rivers, detected significant genetic variation was between the Rivers of Niger, Kaduna and Benue population of H. longifilis. Two main clades were recovered, showing a clear separation between H. bidorsalis and H. longifilis in the phylogenetic tree. The mtDNA COI genes studied revealed high gene flow between populations with no distinct genetic differentiation between the populations as measured by the fixation index (FST) statistic. However, a proportion of population-specific haplotypes was observed in the two species studied, suggesting a substantial degree of genetic distinctiveness for each of the population investigated. These findings present the description of the species character and accessions of the fish’s genetic resources, through gene sequence submitted in Genetic database. The data will help to protect their valuable wild resource and contribute to their recovery and selective breeding in Nigeria.

Keywords: AMOVA, genetic diversity, Heterobranchus spp., mtDNA COI, phylogenetic tree

Procedia PDF Downloads 139
580 Characterizing Solid Glass in Bending, Torsion and Tension: High-Temperature Dynamic Mechanical Analysis up to 950 °C

Authors: Matthias Walluch, José Alberto Rodríguez, Christopher Giehl, Gunther Arnold, Daniela Ehgartner

Abstract:

Dynamic mechanical analysis (DMA) is a powerful method to characterize viscoelastic properties and phase transitions for a wide range of materials. It is often used to characterize polymers and their temperature-dependent behavior, including thermal transitions like the glass transition temperature Tg, via determination of storage and loss moduli in tension (Young’s modulus, E) and shear or torsion (shear modulus, G) or other testing modes. While production and application temperatures for polymers are often limited to several hundred degrees, material properties of glasses usually require characterization at temperatures exceeding 600 °C. This contribution highlights a high temperature setup for rotational and oscillatory rheometry as well as for DMA in different modes. The implemented standard convection oven enables the characterization of glass in different loading modes at temperatures up to 950 °C. Three-point bending, tension and torsional measurements on different glasses, with E and G moduli as a function of frequency and temperature, are presented. Additional tests include superimposing several frequencies in a single temperature sweep (“multiwave”). This type of test results in a considerable reduction of the experiment time and allows to evaluate structural changes of the material and their frequency dependence. Furthermore, DMA in torsion and tension was performed to determine the complex Poisson’s ratio as a function of frequency and temperature within a single test definition. Tests were performed in a frequency range from 0.1 to 10 Hz and temperatures up to the glass transition. While variations in the frequency did not reveal significant changes of the complex Poisson’s ratio of the glass, a monotonic increase of this parameter was observed when increasing the temperature. This contribution outlines the possibilities of DMA in bending, tension and torsion for an extended temperature range. It allows the precise mechanical characterization of material behavior from room temperature up to the glass transition and the softening temperature interval. Compared to other thermo-analytical methods, like Dynamic Scanning Calorimetry (DSC) where mechanical stress is neglected, the frequency-dependence links measurement results (e.g. relaxation times) to real applications

Keywords: dynamic mechanical analysis, oscillatory rheometry, Poisson's ratio, solid glass, viscoelasticity

Procedia PDF Downloads 83
579 A Small-Scale Survey on Risk Factors of Musculoskeletal Disorders in Workers of Logistics Companies in Cyprus and on the Early Adoption of Industrial Exoskeletons as Mitigation Measure

Authors: Kyriacos Clerides, Panagiotis Herodotou, Constantina Polycarpou, Evagoras Xydas

Abstract:

Background: Musculoskeletal disorders (MSDs) in the workplace is a very common problem in Europe which are caused by multiple risk factors. In recent years, wearable devices and exoskeletons for the workplace have been trying to address the various risk factors that are associated with strenuous tasks in the workplace. The logistics sector is a huge sector that includes warehousing, storage, and transportation. However, the task associated with logistics is not well-studied in terms of MSDs risk. This study was aimed at looking into the MSDs affecting workers of logistics companies. It compares the prevalence of MSDs among workers and evaluates multiple risk factors that contribute to the development of MSDs. Moreover, this study seeks to obtain user feedback on the adoption of exoskeletons in such a work environment. Materials and Methods: The study was conducted among workers in logistics companies in Nicosia, Cyprus, from July to September 2022. A set of standardized questionnaires was used for collecting different types of data. Results: A high proportion of logistics professionals reported MSDs in one or more other body regions, the lower back being the most commonly affected area. Working in the same position for long periods, working in awkward postures, and handling an excessive load, were found to be the most commonly reported job risk factor that contributed to the development of MSDs, in this study. A significant number of participants consider the back region as the most to be benefited from a wearable exoskeleton device. Half of the participants would like to have at least a 50% reduction in their daily effort. The most important characteristics for the adoption of exoskeleton devices were found to be how comfortable the device is and its weight. Conclusion: Lower back and posture were the highest risk factors among all logistics professionals assessed in this study. A larger scale study using quantitative analytical tools may give a more accurate estimate of MSDs, which would pave the way for making more precise recommendations to eliminate the risk factors and thereby prevent MSDs. A follow-up study using exoskeletons in the workplace should be done to assess whether they assist in MSD prevention.

Keywords: musculoskeletal disorders, occupational health, safety, occupational risk, logistic companies, workers, Cyprus, industrial exoskeletons, wearable devices

Procedia PDF Downloads 107
578 Modelling Distress Sale in Agriculture: Evidence from Maharashtra, India

Authors: Disha Bhanot, Vinish Kathuria

Abstract:

This study focusses on the issue of distress sale in horticulture sector in India, which faces unique challenges, given the perishable nature of horticulture crops, seasonal production and paucity of post-harvest produce management links. Distress sale, from a farmer’s perspective may be defined as urgent sale of normal or distressed goods, at deeply discounted prices (way below the cost of production) and it is usually characterized by unfavorable conditions for the seller (farmer). The small and marginal farmers, often involved in subsistence farming, stand to lose substantially if they receive lower prices than expected prices (typically framed in relation to cost of production). Distress sale maximizes price uncertainty of produce leading to substantial income loss; and with increase in input costs of farming, the high variability in harvest price severely affects profit margin of farmers, thereby affecting their survival. The objective of this study is to model the occurrence of distress sale by tomato cultivators in the Indian state of Maharashtra, against the background of differential access to set of factors such as - capital, irrigation facilities, warehousing, storage and processing facilities, and institutional arrangements for procurement etc. Data is being collected using primary survey of over 200 farmers in key tomato growing areas of Maharashtra, asking information on the above factors in addition to seeking information on cost of cultivation, selling price, time gap between harvesting and selling, role of middleman in selling, besides other socio-economic variables. Farmers selling their produce far below the cost of production would indicate an occurrence of distress sale. Occurrence of distress sale would then be modelled as a function of farm, household and institutional characteristics. Heckman-two-stage model would be applied to find the probability/likelihood of a famer falling into distress sale as well as to ascertain how the extent of distress sale varies in presence/absence of various factors. Findings of the study would recommend suitable interventions and promotion of strategies that would help farmers better manage price uncertainties, avoid distress sale and increase profit margins, having direct implications on poverty.

Keywords: distress sale, horticulture, income loss, India, price uncertainity

Procedia PDF Downloads 243
577 The Impact of Artificial Intelligence on Journalism and Mass Communication

Authors: Saad Zagloul Shokri Melika

Abstract:

The London College of Communication is one of the only universities in the world to offer a lifestyle journalism master’s degree. A hybrid originally constructed largely out of a generic journalism program crossed with numerous cultural studies approaches, the degree has developed into a leading lifestyle journalism education attracting students worldwide. This research project seeks to present a framework for structuring the degree as well as to understand how students in this emerging field of study value the program. While some researchers have addressed questions about journalism and higher education, none have looked specifically at the increasingly important genre of lifestyle journalism, which Folker Hanusch defines as including notions of consumerism and critique among other identifying traits. Lifestyle journalism, itself poorly researched by scholars, can relate to topics including travel, fitness, and entertainment, and as such, arguably a lifestyle journalism degree should prepare students to engage with these topics. This research uses the existing Masters of Arts and Lifestyle Journalism at the London College of Communications as a case study to examine the school’s approach. Furthering Hanusch’s original definition, this master’s program attempts to characterizes lifestyle journalism by a specific voice or approach, as reflected in the diversity of student’s final projects. This framework echoes the ethos and ideas of the university, which focuses on creativity, design, and experimentation. By analyzing the current degree as well as student feedback, this research aims to assist future educators in pursuing the often neglected field of lifestyle journalism. Through a discovery of the unique mix of practical coursework, theoretical lessons, and broad scope of student work presented in this degree program, researchers strive to develop a framework for lifestyle journalism education, referring to Mark Deuze’s ten questions for journalism education development. While Hanusch began the discussion to legitimize the study of lifestyle journalism, this project strives to go one step further and open up a discussion about teaching of lifestyle journalism at the university level.

Keywords: Journalism, accountability, education, television, publicdearth, investigative, journalism, Nigeria, journalismeducation, lifestyle, university

Procedia PDF Downloads 44
576 Development of Three-Dimensional Groundwater Model for Al-Corridor Well Field, Amman–Zarqa Basin

Authors: Moayyad Shawaqfah, Ibtehal Alqdah, Amjad Adaileh

Abstract:

Coridoor area (400 km2) lies to the north – east of Amman (60 km). It lies between 285-305 E longitude and 165-185 N latitude (according to Palestine Grid). It been subjected to exploitation of groundwater from new eleven wells since the 1999 with a total discharge of 11 MCM in addition to the previous discharge rate from the well field 14.7 MCM. Consequently, the aquifer balance is disturbed and a major decline in water level. Therefore, suitable groundwater resources management is required to overcome the problems of over pumping and its effect on groundwater quality. Three–dimensional groundwater flow model Processing Modeflow for Windows Pro (PMWIN PRO, 2003) has been used in order to calculate the groundwater budget, aquifer characteristics, and to predict the aquifer response under different stresses for the next 20 years (2035). The model was calibrated for steady state conditions by trial and error calibration. The calibration was performed by matching observed and calculated initial heads for year 2001. Drawdown data for period 2001-2010 were used to calibrate transient model by matching calculated with observed one, after that, the transient model was validated by using the drawdown data for the period 2011-2014. The hydraulic conductivities of the Basalt- A7/B2 aquifer System are ranging between 1.0 and 8.0 m/day. The low conductivity value was found at the north-west and south-western parts of the study area, the high conductivity value was found at north-western corner of the study area and the average storage coefficient is about 0.025. The water balance for the Basalt and B2/A7 formation at steady state condition with a discrepancy of 0.003%. The major inflows come from Jebal Al Arab through the basalt and through the limestone aquifer (B2/A7 12.28 MCMY aquifer and from excess rainfall is about 0.68 MCM/a. While the major outflows from the Basalt-B2/A7 aquifer system are toward Azraq basin with about 5.03 MCMY and leakage to A1/6 aquitard with 7.89 MCMY. Four scenarios have been performed to predict aquifer system responses under different conditions. Scenario no.2 was found to be the best one which indicates that the reduction the abstraction rates by 50% of current withdrawal rate (25.08 MCMY) to 12.54 MCMY. The maximum drawdowns were decreased to reach about, 7.67 and 8.38m in the years 2025 and 2035 respectively.

Keywords: Amman/Zarqa Basin, Jordan, groundwater management, groundwater modeling, modflow

Procedia PDF Downloads 216
575 Strategic Innovation of Nanotechnology: Novel Applications of Biomimetics and Microfluidics in Food Safety

Authors: Boce Zhang

Abstract:

Strategic innovation of nanotechnology to promote food safety has drawn tremendous attentions among research groups, which includes the need for research support during the implementation of the Food Safety Modernization Act (FSMA) in the United States. There are urgent demands and knowledge gaps to the understanding of a) food-water-bacteria interface as for how pathogens persist and transmit during food processing and storage; b) minimum processing requirement needed to prevent pathogen cross-contamination in the food system. These knowledge gaps are of critical importance to the food industry. However, the lack of knowledge is largely hindered by the limitations of research tools. Our groups recently endeavored two novel engineering systems with biomimetics and microfluidics as a holistic approach to hazard analysis and risk mitigation, which provided unprecedented research opportunities to study pathogen behavior, in particular, contamination, and cross-contamination, at the critical food-water-pathogen interface. First, biomimetically-patterned surfaces (BPS) were developed to replicate the identical surface topography and chemistry of a natural food surface. We demonstrated that BPS is a superior research tool that empowers the study of a) how pathogens persist through sanitizer treatment, b) how to apply fluidic shear-force and surface tension to increase the vulnerability of the bacterial cells, by detaching them from a protected area, etc. Secondly, microfluidic devices were designed and fabricated to study the bactericidal kinetics in the sub-second time frame (0.1~1 second). The sub-second kinetics is critical because the cross-contamination process, which includes detachment, migration, and reattachment, can occur in a very short timeframe. With this microfluidic device, we were able to simulate and study these sub-second cross-contamination scenarios, and to further investigate the minimum sanitizer concentration needed to sufficiently prevent pathogen cross-contamination during the food processing. We anticipate that the findings from these studies will provide critical insight on bacterial behavior at the food-water-cell interface, and the kinetics of bacterial inactivation from a broad range of sanitizers and processing conditions, thus facilitating the development and implementation of science-based food safety regulations and practices to mitigate the food safety risks.

Keywords: biomimetic materials, microbial food safety, microfluidic device, nanotechnology

Procedia PDF Downloads 359
574 Deep Injection Wells for Flood Prevention and Groundwater Management

Authors: Mohammad R. Jafari, Francois G. Bernardeau

Abstract:

With its arid climate, Qatar experiences low annual rainfall, intense storms, and high evaporation rates. However, the fast-paced rate of infrastructure development in the capital city of Doha has led to recurring instances of surface water flooding as well as rising groundwater levels. Public Work Authority (PWA/ASHGHAL) has implemented an approach to collect and discharge the flood water into a) positive gravity systems; b) Emergency Flooding Area (EFA) – Evaporation, Infiltration or Storage off-site using tankers; and c) Discharge to deep injection wells. As part of the flood prevention scheme, 21 deep injection wells have been constructed to discharge the collected surface and groundwater table in Doha city. These injection wells function as an alternative in localities that do not possess either positive gravity systems or downstream networks that can accommodate additional loads. These injection wells are 400-m deep and are constructed in a complex karstic subsurface condition with large cavities. The injection well system will discharge collected groundwater and storm surface runoff into the permeable Umm Er Radhuma Formation, which is an aquifer present throughout the Persian Gulf Region. The Umm Er Radhuma formation contains saline water that is not being used for water supply. The injection zone is separated by an impervious gypsum formation which acts as a barrier between upper and lower aquifer. State of the art drilling, grouting, and geophysical techniques have been implemented in construction of the wells to assure that the shallow aquifer would not be contaminated and impacted by injected water. Injection and pumping tests were performed to evaluate injection well functionality (injectability). The results of these tests indicated that majority of the wells can accept injection rate of 200 to 300 m3 /h (56 to 83 l/s) under gravity with average value of 250 m3 /h (70 l/s) compared to design value of 50 l/s. This paper presents design and construction process and issues associated with these injection wells, performing injection/pumping tests to determine capacity and effectiveness of the injection wells, the detailed design of collection system and conveying system into the injection wells, and the operation and maintenance process. This system is completed now and is under operation, and therefore, construction of injection wells is an effective option for flood control.

Keywords: deep injection well, flood prevention scheme, geophysical tests, pumping and injection tests, wellhead assembly

Procedia PDF Downloads 119
573 RA-Apriori: An Efficient and Faster MapReduce-Based Algorithm for Frequent Itemset Mining on Apache Flink

Authors: Sanjay Rathee, Arti Kashyap

Abstract:

Extraction of useful information from large datasets is one of the most important research problems. Association rule mining is one of the best methods for this purpose. Finding possible associations between items in large transaction based datasets (finding frequent patterns) is most important part of the association rule mining. There exist many algorithms to find frequent patterns but Apriori algorithm always remains a preferred choice due to its ease of implementation and natural tendency to be parallelized. Many single-machine based Apriori variants exist but massive amount of data available these days is above capacity of a single machine. Therefore, to meet the demands of this ever-growing huge data, there is a need of multiple machines based Apriori algorithm. For these types of distributed applications, MapReduce is a popular fault-tolerant framework. Hadoop is one of the best open-source software frameworks with MapReduce approach for distributed storage and distributed processing of huge datasets using clusters built from commodity hardware. However, heavy disk I/O operation at each iteration of a highly iterative algorithm like Apriori makes Hadoop inefficient. A number of MapReduce-based platforms are being developed for parallel computing in recent years. Among them, two platforms, namely, Spark and Flink have attracted a lot of attention because of their inbuilt support to distributed computations. Earlier we proposed a reduced- Apriori algorithm on Spark platform which outperforms parallel Apriori, one because of use of Spark and secondly because of the improvement we proposed in standard Apriori. Therefore, this work is a natural sequel of our work and targets on implementing, testing and benchmarking Apriori and Reduced-Apriori and our new algorithm ReducedAll-Apriori on Apache Flink and compares it with Spark implementation. Flink, a streaming dataflow engine, overcomes disk I/O bottlenecks in MapReduce, providing an ideal platform for distributed Apriori. Flink's pipelining based structure allows starting a next iteration as soon as partial results of earlier iteration are available. Therefore, there is no need to wait for all reducers result to start a next iteration. We conduct in-depth experiments to gain insight into the effectiveness, efficiency and scalability of the Apriori and RA-Apriori algorithm on Flink.

Keywords: apriori, apache flink, Mapreduce, spark, Hadoop, R-Apriori, frequent itemset mining

Procedia PDF Downloads 294
572 Records of Lepidopteron Borers (Lepidoptera) on Stored Seeds of Indian Himalayan Conifers

Authors: Pawan Kumar, Pitamber Singh Negi

Abstract:

Many of the regeneration failures in conifers are often being attributed to heavy insect attack and pathogens during the period of seed formation and under storage conditions. Conifer berries and seed insects occur throughout the known range of the hosts and also limit the production of seed for nursery stock. On occasion, even entire seed crops are lost due to insect attacks. The berry and seeds of both the species have been found to be infected with insects. Recently, heavy damage to the berry and seeds of Juniper and Chilgoza Pine was observed in the field as well as in stored conditions, leading to reduction in the viability of seeds to germinate. Both the species are under great threat and regeneration of the species is very low. Due to lack of adequate literature, the study on the damage potential of seed insects was urgently required to know the exact status of the insect-pests attacking seeds/berries of both the pine species so as to develop pest management practices against the insect pests attack. As both the species are also under threat and are fighting for survival, so the study is important to develop management practices for the insect-pests of seeds/berries of Juniper and Chilgoza pine so as to evaluate in the nursery, as these species form major vegetation of their distribution zones. A six-year study on the management of insect pests of seeds of Chilgoza revealed that seeds of this species are prone to insect pests mainly borers. During present investigations, it was recorded that cones of are heavily attacked only by Dioryctria abietella (Lepidoptera: Pyralidae) in natural conditions, but seeds which are economically important are heavily infected, (sometimes up to 100% damage was also recorded) by insect borer, Plodia interpunctella (Lepidoptera: Pyralidae) and is recorded for the first time ‘to author’s best knowledge’ infesting the stored Chilgoza seeds. Similarly, Juniper berries and seeds were heavily attacked only by a single borer, Homaloxestis cholopis (Lepidoptera: Lecithoceridae) recorded as a new report in natural habitat as well as in stored conditions. During the present investigation details of insect pest attack on Juniper and Chilgoza pine seeds and berries was observed and suitable management practices were also developed to contain the insect-pests attack.

Keywords: borer, chilgozapine, cones, conifer, Lepidoptera, juniper, management, seed

Procedia PDF Downloads 148
571 Neuroevolution Based on Adaptive Ensembles of Biologically Inspired Optimization Algorithms Applied for Modeling a Chemical Engineering Process

Authors: Sabina-Adriana Floria, Marius Gavrilescu, Florin Leon, Silvia Curteanu, Costel Anton

Abstract:

Neuroevolution is a subfield of artificial intelligence used to solve various problems in different application areas. Specifically, neuroevolution is a technique that applies biologically inspired methods to generate neural network architectures and optimize their parameters automatically. In this paper, we use different biologically inspired optimization algorithms in an ensemble strategy with the aim of training multilayer perceptron neural networks, resulting in regression models used to simulate the industrial chemical process of obtaining bricks from silicone-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. In addition, the initial conditions that were taken into account during the design and commissioning of the installation can change over time, which leads to the need to add new mixes to adjust the operating conditions for the desired purpose, e.g., material properties and energy saving. The present approach follows the study by simulation of a process of obtaining bricks from silicone-based materials, i.e., the modeling and optimization of the process. Optimization aims to determine the working conditions that minimize the emissions represented by nitrogen monoxide. We first use a search procedure to find the best values for the parameters of various biologically inspired optimization algorithms. Then, we propose an adaptive ensemble strategy that uses only a subset of the best algorithms identified in the search stage. The adaptive ensemble strategy combines the results of selected algorithms and automatically assigns more processing capacity to the more efficient algorithms. Their efficiency may also vary at different stages of the optimization process. In a given ensemble iteration, the most efficient algorithms aim to maintain good convergence, while the less efficient algorithms can improve population diversity. The proposed adaptive ensemble strategy outperforms the individual optimizers and the non-adaptive ensemble strategy in convergence speed, and the obtained results provide lower error values.

Keywords: optimization, biologically inspired algorithm, neuroevolution, ensembles, bricks, emission minimization

Procedia PDF Downloads 116
570 Short Life Cycle Time Series Forecasting

Authors: Shalaka Kadam, Dinesh Apte, Sagar Mainkar

Abstract:

The life cycle of products is becoming shorter and shorter due to increased competition in market, shorter product development time and increased product diversity. Short life cycles are normal in retail industry, style business, entertainment media, and telecom and semiconductor industry. The subject of accurate forecasting for demand of short lifecycle products is of special enthusiasm for many researchers and organizations. Due to short life cycle of products the amount of historical data that is available for forecasting is very minimal or even absent when new or modified products are launched in market. The companies dealing with such products want to increase the accuracy in demand forecasting so that they can utilize the full potential of the market at the same time do not oversupply. This provides the challenge to develop a forecasting model that can forecast accurately while handling large variations in data and consider the complex relationships between various parameters of data. Many statistical models have been proposed in literature for forecasting time series data. Traditional time series forecasting models do not work well for short life cycles due to lack of historical data. Also artificial neural networks (ANN) models are very time consuming to perform forecasting. We have studied the existing models that are used for forecasting and their limitations. This work proposes an effective and powerful forecasting approach for short life cycle time series forecasting. We have proposed an approach which takes into consideration different scenarios related to data availability for short lifecycle products. We then suggest a methodology which combines statistical analysis with structured judgement. Also the defined approach can be applied across domains. We then describe the method of creating a profile from analogous products. This profile can then be used for forecasting products with historical data of analogous products. We have designed an application which combines data, analytics and domain knowledge using point-and-click technology. The forecasting results generated are compared using MAPE, MSE and RMSE error scores. Conclusion: Based on the results it is observed that no one approach is sufficient for short life-cycle forecasting and we need to combine two or more approaches for achieving the desired accuracy.

Keywords: forecast, short life cycle product, structured judgement, time series

Procedia PDF Downloads 358
569 Advancements in Mathematical Modeling and Optimization for Control, Signal Processing, and Energy Systems

Authors: Zahid Ullah, Atlas Khan

Abstract:

This abstract focuses on the advancements in mathematical modeling and optimization techniques that play a crucial role in enhancing the efficiency, reliability, and performance of these systems. In this era of rapidly evolving technology, mathematical modeling and optimization offer powerful tools to tackle the complex challenges faced by control, signal processing, and energy systems. This abstract presents the latest research and developments in mathematical methodologies, encompassing areas such as control theory, system identification, signal processing algorithms, and energy optimization. The abstract highlights the interdisciplinary nature of mathematical modeling and optimization, showcasing their applications in a wide range of domains, including power systems, communication networks, industrial automation, and renewable energy. It explores key mathematical techniques, such as linear and nonlinear programming, convex optimization, stochastic modeling, and numerical algorithms, that enable the design, analysis, and optimization of complex control and signal processing systems. Furthermore, the abstract emphasizes the importance of addressing real-world challenges in control, signal processing, and energy systems through innovative mathematical approaches. It discusses the integration of mathematical models with data-driven approaches, machine learning, and artificial intelligence to enhance system performance, adaptability, and decision-making capabilities. The abstract also underscores the significance of bridging the gap between theoretical advancements and practical applications. It recognizes the need for practical implementation of mathematical models and optimization algorithms in real-world systems, considering factors such as scalability, computational efficiency, and robustness. In summary, this abstract showcases the advancements in mathematical modeling and optimization techniques for control, signal processing, and energy systems. It highlights the interdisciplinary nature of these techniques, their applications across various domains, and their potential to address real-world challenges. The abstract emphasizes the importance of practical implementation and integration with emerging technologies to drive innovation and improve the performance of control, signal processing, and energy.

Keywords: mathematical modeling, optimization, control systems, signal processing, energy systems, interdisciplinary applications, system identification, numerical algorithms

Procedia PDF Downloads 112
568 Monolithic Integrated GaN Resonant Tunneling Diode Pair with Picosecond Switching Time for High-speed Multiple-valued Logic System

Authors: Fang Liu, JiaJia Yao, GuanLin Wu, ZuMaoLi, XueYan Yang, HePeng Zhang, ZhiPeng Sun, JunShuai Xue

Abstract:

The explosive increasing needs of data processing and information storage strongly drive the advancement of the binary logic system to multiple-valued logic system. Inherent negative differential resistance characteristic, ultra-high-speed switching time, and robust anti-irradiation capability make III-nitride resonant tunneling diode one of the most promising candidates for multi-valued logic devices. Here we report the monolithic integration of GaN resonant tunneling diodes in series to realize multiple negative differential resistance regions, obtaining at least three stable operating states. A multiply-by-three circuit is achieved by this combination, increasing the frequency of the input triangular wave from f0 to 3f0. The resonant tunneling diodes are grown by plasma-assistedmolecular beam epitaxy on free-standing c-plane GaN substrates, comprising double barriers and a single quantum well both at the atomic level. Device with a peak current density of 183kA/cm² in conjunction with a peak-to-valley current ratio (PVCR) of 2.07 is observed, which is the best result reported in nitride-based resonant tunneling diodes. Microwave oscillation event at room temperature was discovered with a fundamental frequency of 0.31GHz and an output power of 5.37μW, verifying the high repeatability and robustness of our device. The switching behavior measurement was successfully carried out, featuring rise and fall times in the order of picoseconds, which can be used in high-speed digital circuits. Limited by the measuring equipment and the layer structure, the switching time can be further improved. In general, this article presents a novel nitride device with multiple negative differential regions driven by the resonant tunneling mechanism, which can be used in high-speed multiple value logic field with reduced circuit complexity, demonstrating a new solution of nitride devices to break through the limitations of binary logic.

Keywords: GaN resonant tunneling diode, negative differential resistance, multiple-valued logic system, switching time, peak-to-valley current ratio

Procedia PDF Downloads 100
567 Evaluation of Indoor Radon as Air Pollutant in Schools and Control of Exposure of the Children

Authors: Kremena Ivanona, Bistra Kunovska, Jana Djunova, Desislava Djunakova, Zdenka Stojanovska

Abstract:

In recent decades, the general public has become increasingly interested in the impact of air pollutions on their health. Currently, numerous studies are aimed at identifying pollutants in the indoor environment where they carry out daily activities. Internal pollutants can be of both natural and artificial origin. With regard to natural pollutants, special attention is paid to natural radioactivity. In recent years, radon has been one of the most studied indoor pollutants because it has the greatest contribution to human exposure to natural radionuclides. It is a known fact that lung cancer can be caused by radon radiation and it is the second risk factor after smoking for the onset of the disease. The main objective of the study under the National Science Fund of Bulgaria, in the framework of grant No КП-06-Н23/1/07.12.2018 is to evaluate the indoor radon as an important air pollutant in school buildings in order to reduce the exposure to children. The measurements were performed in 48 schools located in 55 buildings in one Bulgarian administrative district (Kardjaly). The nuclear track detectors (CR-39) were used for measurements. The arithmetic and geometric means of radon concentrations are AM = 140 Bq/m3, and GM = 117 Bq/m3 respectively. In 51 school rooms, the radon levels were greater than 200 Bq/m3, and in 28 rooms, located in 17 school buildings, it exceeded the national reference level of 300 Bq/m3, defined in the Bulgarian ordinance on radiation protection (or 30% of the investigated buildings). The statistically significant difference in the values of radon concentration by municipalities (KW, р < 0.001) obtained showed that the most likely reason for the differences between the groups is the geographical location of the buildings and the possible influence of the geological composition. The combined effect of the year of construction (technical condition of the buildings) and the energy efficiency measures was considered. The values of the radon concentration in the buildings where energy efficiency measures have been implemented are higher than those in buildings where they have not been performed. This result confirms the need for investigation of radon levels before conducting the energy efficiency measures in buildings. Corrective measures for reducing the radon levels have been recommended in school buildings with high radon levels in order to decrease the children's exposure.

Keywords: air pollution, indoor radon, children exposure, schools

Procedia PDF Downloads 173
566 Evaluation of the Self-Organizing Map and the Adaptive Neuro-Fuzzy Inference System Machine Learning Techniques for the Estimation of Crop Water Stress Index of Wheat under Varying Application of Irrigation Water Levels for Efficient Irrigation Scheduling

Authors: Aschalew C. Workneh, K. S. Hari Prasad, C. S. P. Ojha

Abstract:

The crop water stress index (CWSI) is a cost-effective, non-destructive, and simple technique for tracking the start of crop water stress. This study investigated the feasibility of CWSI derived from canopy temperature to detect the water status of wheat crops. Artificial intelligence (AI) techniques have become increasingly popular in recent years for determining CWSI. In this study, the performance of two AI techniques, adaptive neuro-fuzzy inference system (ANFIS) and self-organizing maps (SOM), are compared while determining the CWSI of paddy crops. Field experiments were conducted for varying irrigation water applications during two seasons in 2022 and 2023 at the irrigation field laboratory at the Civil Engineering Department, Indian Institute of Technology Roorkee, India. The ANFIS and SOM-simulated CWSI values were compared with the experimentally calculated CWSI (EP-CWSI). Multiple regression analysis was used to determine the upper and lower CWSI baselines. The upper CWSI baseline was found to be a function of crop height and wind speed, while the lower CWSI baseline was a function of crop height, air vapor pressure deficit, and wind speed. The performance of ANFIS and SOM were compared based on mean absolute error (MAE), mean bias error (MBE), root mean squared error (RMSE), index of agreement (d), Nash-Sutcliffe efficiency (NSE), and coefficient of correlation (R²). Both models successfully estimated the CWSI of the paddy crop with higher correlation coefficients and lower statistical errors. However, the ANFIS (R²=0.81, NSE=0.73, d=0.94, RMSE=0.04, MAE= 0.00-1.76 and MBE=-2.13-1.32) outperformed the SOM model (R²=0.77, NSE=0.68, d=0.90, RMSE=0.05, MAE= 0.00-2.13 and MBE=-2.29-1.45). Overall, the results suggest that ANFIS is a reliable tool for accurately determining CWSI in wheat crops compared to SOM.

Keywords: adaptive neuro-fuzzy inference system, canopy temperature, crop water stress index, self-organizing map, wheat

Procedia PDF Downloads 55
565 Nanotechnology in Conservation of Artworks: TiO2-Based Nanocoatings for the Protection and Preservation of Stone Monuments

Authors: Sayed M. Ahmed, Sawsan S. Darwish, Nagib A. Elmarzugi, Mohammad A. Al-Dosari, Mahmoud A. Adam, Nadia A. Al-Mouallimi

Abstract:

The preservation of cultural heritage is a worldwide problem. Stone monuments represent an important part of this heritage, but due to their prevalently outdoor location, they are generally subject to a complex series of weathering and decay processes, in addition to physical and chemical factors, also biological agents usually play an important role in deterioration phenomena. The aim of this paper is to experimentally verify applicability and feasibility of titanium dioxide (TiO2) nanoparticles for the preservation of historical (architectural, monumental, archaeological) stone surfaces which enables to reduce the deterioration behaviors mentioned above. TiO2 nanoparticles dispersed in an aqueous colloidal suspension were applied directly on travertine (Marble and limestone often used in historical and monumental buildings) by spray-coating in order to obtain a nanometric film on stone samples. SEM, coupled with EDX microanalysis. (SEM-EDX), in order to obtain information oncoating homogeneity, surface morphology before and after aging and penetration depth of the TiO2 within the samples. Activity of the coated surface was evaluated with UV accelerated aging test. Capillary water absorption, thermal aging and colorimetric measurements have been performed on on coated and uncoated samples to evaluate their properties and estimate change of appearance with colour variation. Results show Tio2 nanoparticles good candidate for coating applications on calcareous stone, good water-repellence was observed on the samples after treatment; analyses were carried out on both untreated and freshly treated samples as well as after artificial aging. Colour change showed negligible variations on the coated or uncoated stone as well as after aging. Results showed that treated stone surfaces seem to be not affected after 1000 hours of exposure to UV radiation, no alteration of the original features.

Keywords: architectural and archaeological heritage, calcareous stone, photocatalysis TiO2, self-cleaning, thermal aging

Procedia PDF Downloads 276
564 The Effect of Foot Progression Angle on Human Lower Extremity

Authors: Sungpil Ha, Ju Yong Kang, Sangbaek Park, Seung-Ju Lee, Soo-Won Chae

Abstract:

The growing number of obese patients in aging societies has led to an increase in the number of patients with knee medial osteoarthritis (OA). Artificial joint insertion is the most common treatment for knee medial OA. Surgery is effective for patients with serious arthritic symptoms, but it is costly and dangerous. It is also inappropriate way to prevent a disease as an early stage. Therefore Non-operative treatments such as toe-in gait are proposed recently. Toe-in gait is one of non-surgical interventions, which restrain the progression of arthritis and relieves pain by reducing knee adduction moment (KAM) to facilitate lateral distribution of load on to knee medial cartilage. Numerous studies have measured KAM in various foot progression angle (FPA), and KAM data could be obtained by motion analysis. However, variations in stress at knee cartilage could not be directly observed or evaluated by these experiments of measuring KAM. Therefore, this study applied motion analysis to major gait points (1st peak, mid –stance, 2nd peak) with regard to FPA, and to evaluate the effects of FPA on the human lower extremity, the finite element (FE) method was employed. Three types of gait analysis (toe-in, toe-out, baseline gait) were performed with markers placed at the lower extremity. Ground reaction forces (GRF) were obtained by the force plates. The forces associated with the major muscles were computed using GRF and marker trajectory data. MRI data provided by the Visible Human Project were used to develop a human lower extremity FE model. FE analyses for three types of gait simulations were performed based on the calculated muscle force and GRF. We observed the maximum stress point during toe-in gait was lower than the other types, by comparing the results of FE analyses at the 1st peak across gait types. This is the same as the trend exhibited by KAM, measured through motion analysis in other papers. This indicates that the progression of knee medial OA could be suppressed by adopting toe-in gait. This study integrated motion analysis with FE analysis. One advantage of this method is that re-modeling is not required even with changes in posture. Therefore another type of gait simulation or various motions of lower extremity can be easily analyzed using this method.

Keywords: finite element analysis, gait analysis, human model, motion capture

Procedia PDF Downloads 335
563 Contribution of Artificial Intelligence in the Studies of Natural Compounds Against SARS-COV-2

Authors: Salah Belaidi

Abstract:

We have carried out extensive and in-depth research to search for bioactive compounds based on Algerian plants. A selection of 50 ligands from Algerian medicinal plants. Several compounds used in herbal medicine have been drawn using Marvin Sketch software. We determined the three-dimensional structures of the ligands with the MMFF94 force field in order to prepare these ligands for molecular docking. The 3D protein structure of the SARS-CoV-2 main protease was taken from the Protein Data Bank. We used AutoDockVina software to apply molecular docking. The hydrogen atoms were added during the molecular docking process, and all the twist bonds of the ligands were added using the (ligand) module in the AutoDock software. The COVID-19 main protease (Mpro) is a key enzyme that plays a vital role in viral transcription and mediating replication, so it is a very attractive drug target for SARS-CoV-2. In this work, an evaluation was carried out on the biologically active compounds present in these selected medicinal plants as effective inhibitors of the protease enzyme of COVID-19, with an in-depth computational calculation of the molecular docking using the Autodock Vina software. The top 7 ligands: Phloroglucinol, Afzelin, Myricetin-3-O- rutinosidTricin 7-neohesperidoside, Silybin, Silychristinthat and Kaempferol are selected among the 50 molecules studied which are Algerian medicinal plants, whose selection is based on the best binding energy which is relatively low compared to the reference molecule with binding affinities of -9.3, -9.3, -9, -8.9, -8 .5, 8.3 and -8.3 kcal mol-1 respectively. Then, we analyzed the ADME properties of the best7 ligands using the web server SwissADME. Two ligands (Silybin, Silychristin) were found to be potential candidates for the discovery and design of novel drug inhibitors of the protease enzyme of SARS-CoV-2. The stability of the two ligands in complexing with the Mpro protease was validated by molecular dynamics simulation; they revealed a stable trajectory in both techniques, RMSD and RMSF, by showing molecular properties with coherent interactions in molecular dynamics simulations. Finally, we conclude that the Silybin ligand forms a more stable complex with the Mpro protease compared to the Silychristin ligand.

Keywords: COVID-19, medicinal plants, molecular docking, ADME properties, molecular dynamics

Procedia PDF Downloads 34