Search results for: erosive-mudflow processes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5605

Search results for: erosive-mudflow processes

1645 Adsorptive Membrane for Hemodialysis: Potential, Future Prospection and Limitation of MOF as Nanofillers

Authors: Musawira Iftikhar

Abstract:

The field of membrane materials is the most dynamic due to the constantly evolving requirements advancement of materials, to address challenges such as biocompatibility, protein-bound uremic toxins, blood coagulation, auto-immune responses, oxidative stress, and poor clearance of uremic toxins. Hemodialysis is a membrane filtration processes that is currently necessary for daily living of the patients with ESRD. Tens of millions of people with ESRD have benefited from hemodialysis over the past 60–70 years, both in terms of safeguarding life and a longer lifespan. Beyond challenges associated with the efficiency and separative properties of the membranes, ensuring hemocompatibility, or the safe circulation of blood outside the body for four hours every two days, remains a persistent challenge. This review explores the ongoing field of metal–Organic Frameworks (MOFs) and their applications in hemodialysis, offering a comprehensive examination of various MOFs employed to address challenges inherent in traditional hemodialysis methodologies. this This review included includes the experimental work done with various MOFs as a filler such as UiO-66, HKUST-1, MIL-101, and ZIF-8, which together lead to improved adsorption capacities for a range of uremic toxins and proteins. Furthermore, this review highlights how effectively MOF-based hemodialysis membranes remove a variety of uremic toxins, including p-cresol, urea, creatinine, and indoxyl sulfate and potential filler choices for the future. Future research efforts should focus on refining synthesis techniques, enhancing toxin selectivity, and investigating the long-term durability of MOF-based membranes. With these considerations, MOFs emerge as transformative materials in the quest to develop advanced and efficient hemodialysis technologies, holding the promise to significantly enhance patient outcomes and redefine the landscape of renal therapy.

Keywords: membrane, hemodailysis, metal organic frameworks, seperation, protein adsorbtion

Procedia PDF Downloads 56
1644 Assessment of Barriers Influencing the Adoption of Building Information Modelling in the Construction Industry, Lagos State, Nigeria

Authors: Tosin Deborah Akanbi, Adeyemi Oluwaseun Adepoju, Hameed Olusegun Adebambo, Akinloye Fatai Lawal

Abstract:

Building information modelling (BIM) is a process that starts with the development of a sequential 3D design and encourages data administration, organization, and visualization throughout the life span of a facility (drawings, construction, and supervision). The implementation of building information modelling has been slow in recent years, and this is due to some prominent barriers that hinder its adoption. In this regard, the study aims to examine the significant barriers that influence the adoption of building information modelling in the Lagos state construction industry. Data were gathered through a questionnaire survey with 332 construction professionals in the study area. Three online structured interviews were conducted to support and validate the findings of the quantitative analysis. The results revealed that interest (lack of awareness and understanding of BIM, absence of in-house BIM competent professionals, and unavailability of BIM competent professionals in the labour market), legal (lack of policies and regulations on copyright ownership and lack of enforcement from government agencies and industry leaderships) and professional (people’s inability or refusal to learn new technologies and processes, waste in time and human resource and lack of clarity of professional roles in BIM) barriers are the major barriers influencing the adoption of BIM. The results also revealed that six final themes were generated, namely: finance barriers, industry barriers, interest barriers, leadership barriers, legal barriers, and professional barriers. Thus, there is a need for policymakers to design and implement policies (regulatory, economic, and information) to promote financial schemes to support construction firms and professionals and to reduce financial barriers. It is also important for the government to lay down rules and regulations that must be enforced among the construction professionals and firms in the Lagos state construction industry.

Keywords: BIM barriers, BIM adoption characteristics, construction industry, Lagos State Nigeria

Procedia PDF Downloads 51
1643 Random Vertical Seismic Vibrations of the Long Span Cantilever Beams

Authors: Sergo Esadze

Abstract:

Seismic resistance norms require calculation of cantilevers on vertical components of the base seismic acceleration. Long span cantilevers, as a rule, must be calculated as a separate construction element. According to the architectural-planning solution, functional purposes and environmental condition of a designing buildings/structures, long span cantilever construction may be of very different types: both by main bearing element (beam, truss, slab), and by material (reinforced concrete, steel). A choice from these is always linked with bearing construction system of the building. Research of vertical seismic vibration of these constructions requires individual approach for each (which is not specified in the norms) in correlation with model of seismic load. The latest may be given both as deterministic load and as a random process. Loading model as a random process is more adequate to this problem. In presented paper, two types of long span (from 6m – up to 12m) reinforcement concrete cantilever beams have been considered: a) bearing elements of cantilevers, i.e., elements in which they fixed, have cross-sections with large sizes and cantilevers are made with haunch; b) cantilever beam with load-bearing rod element. Calculation models are suggested, separately for a) and b) types. They are presented as systems with finite quantity degree (concentrated masses) of freedom. Conditions for fixing ends are corresponding with its types. Vertical acceleration and vertical component of the angular acceleration affect masses. Model is based on assumption translator-rotational motion of the building in the vertical plane, caused by vertical seismic acceleration. Seismic accelerations are considered as random processes and presented by multiplication of the deterministic envelope function on stationary random process. Problem is solved within the framework of the correlation theory of random process. Solved numerical examples are given. The method is effective for solving the specific problems.

Keywords: cantilever, random process, seismic load, vertical acceleration

Procedia PDF Downloads 189
1642 Sol-Gel Derived 58S Bioglass Substituted by Li and Mg: A Comparative Evaluation on in vitro Bioactivity, MC3T3 Proliferation and Antibacterial Efficiency

Authors: Amir Khaleghipour, Amirhossein Moghanian, Elhamalsadat Ghaffari

Abstract:

Modified bioactive glass has been considered as a promising multifunctional candidate in bone repair and regeneration due to its attractive properties. The present study mainly aims to evaluate how the individual substitution of lithium (L-BG) and magnesium (M-BG) for calcium can affect the in vitro bioactivity of sol-gel derived substituted 58S bioactive glass (BG); and to present one composition in both of the 60SiO₂–(36-x)CaO–4P₂O₅–(x)Li₂O and 60SiO₂–(36-x)CaO–4P₂O₅–(x)MgO quaternary systems (where x= 0, 5, 10 mol.%) with improved biocompatibility, enhanced alkaline phosphatase (ALP) activity, and the most efficient antibacterial activity against methicillin-resistant Staphylococcus aureus bacteria. To address these aims, and study the effect of CaO/Li₂O and CaO/MgO substitution up to 10 mol % in 58S-BGs, the samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometry and scanning electron microscopy after immersion in simulated body fluid up to 14 days. Results indicated that substitution of either CaO/ Li₂O and CaO/ MgO had a retarding effect on in vitro hydroxyapatite (HA) formation due to the lower supersaturation degree for nucleation of HA compared with 58s-BG. Meanwhile, magnesium had a more pronounced effect. The 3-(4, 5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphatase (ALP) assays showed that both substitutions of CaO/ Li₂O and CaO/ MgO up to 5mol % in 58s-BGs led to increased biocompatibility and stimulated proliferation of the pre-osteoblast MC3T3 cells with respect to the control. On the other hand, substitution of either Li or Mg for Ca in the 58s BG composition resulted in improved bactericidal efficiency against MRSA bacteria. Taken together, sample 58s-BG with 5 mol % CaO/Li₂O substitution (BG-5L) was considered as a multifunctional biomaterial in bone repair/regeneration with improved biocompatibility, enhanced ALP activity as well enhanced antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) bacteria among all of the synthesized L-BGs and M-BGs.

Keywords: alkaline, alkaline earth, bioactivity, biomedical applications, sol-gel processes

Procedia PDF Downloads 190
1641 An Approach for Ensuring Data Flow in Freight Delivery and Management Systems

Authors: Aurelija Burinskienė, Dalė Dzemydienė, Arūnas Miliauskas

Abstract:

This research aims at developing the approach for more effective freight delivery and transportation process management. The road congestions and the identification of causes are important, as well as the context information recognition and management. The measure of many parameters during the transportation period and proper control of driver work became the problem. The number of vehicles per time unit passing at a given time and point for drivers can be evaluated in some situations. The collection of data is mainly used to establish new trips. The flow of the data is more complex in urban areas. Herein, the movement of freight is reported in detail, including the information on street level. When traffic density is extremely high in congestion cases, and the traffic speed is incredibly low, data transmission reaches the peak. Different data sets are generated, which depend on the type of freight delivery network. There are three types of networks: long-distance delivery networks, last-mile delivery networks and mode-based delivery networks; the last one includes different modes, in particular, railways and other networks. When freight delivery is switched from one type of the above-stated network to another, more data could be included for reporting purposes and vice versa. In this case, a significant amount of these data is used for control operations, and the problem requires an integrated methodological approach. The paper presents an approach for providing e-services for drivers by including the assessment of the multi-component infrastructure needed for delivery of freights following the network type. The construction of such a methodology is required to evaluate data flow conditions and overloads, and to minimize the time gaps in data reporting. The results obtained show the possibilities of the proposing methodological approach to support the management and decision-making processes with functionality of incorporating networking specifics, by helping to minimize the overloads in data reporting.

Keywords: transportation networks, freight delivery, data flow, monitoring, e-services

Procedia PDF Downloads 126
1640 Source Identification Model Based on Label Propagation and Graph Ordinary Differential Equations

Authors: Fuyuan Ma, Yuhan Wang, Junhe Zhang, Ying Wang

Abstract:

Identifying the sources of information dissemination is a pivotal task in the study of collective behaviors in networks, enabling us to discern and intercept the critical pathways through which information propagates from its origins. This allows for the control of the information’s dissemination impact in its early stages. Numerous methods for source detection rely on pre-existing, underlying propagation models as prior knowledge. Current models that eschew prior knowledge attempt to harness label propagation algorithms to model the statistical characteristics of propagation states or employ Graph Neural Networks (GNNs) for deep reverse modeling of the diffusion process. These approaches are either deficient in modeling the propagation patterns of information or are constrained by the over-smoothing problem inherent in GNNs, which limits the stacking of sufficient model depth to excavate global propagation patterns. Consequently, we introduce the ODESI model. Initially, the model employs a label propagation algorithm to delineate the distribution density of infected states within a graph structure and extends the representation of infected states from integers to state vectors, which serve as the initial states of nodes. Subsequently, the model constructs a deep architecture based on GNNs-coupled Ordinary Differential Equations (ODEs) to model the global propagation patterns of continuous propagation processes. Addressing the challenges associated with solving ODEs on graphs, we approximate the analytical solutions to reduce computational costs. Finally, we conduct simulation experiments on two real-world social network datasets, and the results affirm the efficacy of our proposed ODESI model in source identification tasks.

Keywords: source identification, ordinary differential equations, label propagation, complex networks

Procedia PDF Downloads 20
1639 Energy-Led Sustainability Assessment Approach for Energy-Efficient Manufacturing

Authors: Aldona Kluczek

Abstract:

In recent years, manufacturing processes have interacted with sustainability issues realized in the cost-effective ways that minimalize energy, decrease negative impacts on the environment and are safe for society. However, the attention has been on separate sustainability assessment methods considering energy and material flow, energy consumption, and emission release or process control. In this paper, the energy-led sustainability assessment approach combining the methods: energy Life Cycle Assessment to assess environmental impact, Life Cycle Cost to analyze costs, and Social Life Cycle Assessment through ‘energy LCA-based value stream map’, is used to assess the energy sustainability of the hardwood lumber manufacturing process in terms of technologies. The approach integrating environmental, economic and social issues can be visualized in the considered energy-efficient technologies on the map of an energy LCA-related (input and output) inventory data. It will enable the identification of efficient technology of a given process to be reached, through the effective analysis of energy flow. It is also indicated that interventions in the considered technology should focus on environmental, economic improvements to achieve energy sustainability. The results have indicated that the most intense energy losses are caused by a cogeneration technology. The environmental impact analysis shows that a substantial reduction by 34% can be achieved with the improvement of it. From the LCC point of view, the result seems to be cost-effective, when done at that plant where the improvement is used. By demonstrating the social dimension, every component of the energy of plant labor use in the life-cycle process of the lumber production has positive energy benefits. The energy required to install the energy-efficient technology amounts to 30.32 kJ compared to others components of the energy of plant labor and it has the highest value in terms of energy-related social indicators. The paper depicts an example of hardwood lumber production in order to prove the applicability of a sustainability assessment method.

Keywords: energy efficiency, energy life cycle assessment, life cycle cost, social life cycle analysis, manufacturing process, sustainability assessment

Procedia PDF Downloads 247
1638 Identification of Blood Biomarkers Unveiling Early Alzheimer's Disease Diagnosis Through Single-Cell RNA Sequencing Data and Autoencoders

Authors: Hediyeh Talebi, Shokoofeh Ghiam, Changiz Eslahchi

Abstract:

Traditionally, Alzheimer’s disease research has focused on genes with significant fold changes, potentially neglecting subtle but biologically important alterations. Our study introduces an integrative approach that highlights genes crucial to underlying biological processes, regardless of their fold change magnitude. Alzheimer's Single-cell RNA-seq data related to the peripheral blood mononuclear cells (PBMC) was extracted from the Gene Expression Omnibus (GEO). After quality control, normalization, scaling, batch effect correction, and clustering, differentially expressed genes (DEGs) were identified with adjusted p-values less than 0.05. These DEGs were categorized based on cell-type, resulting in four datasets, each corresponding to a distinct cell type. To distinguish between cells from healthy individuals and those with Alzheimer's, an adversarial autoencoder with a classifier was employed. This allowed for the separation of healthy and diseased samples. To identify the most influential genes in this classification, the weight matrices in the network, which includes the encoder and classifier components, were multiplied, and focused on the top 20 genes. The analysis revealed that while some of these genes exhibit a high fold change, others do not. These genes, which may be overlooked by previous methods due to their low fold change, were shown to be significant in our study. The findings highlight the critical role of genes with subtle alterations in diagnosing Alzheimer's disease, a facet frequently overlooked by conventional methods. These genes demonstrate remarkable discriminatory power, underscoring the need to integrate biological relevance with statistical measures in gene prioritization. This integrative approach enhances our understanding of the molecular mechanisms in Alzheimer’s disease and provides a promising direction for identifying potential therapeutic targets.

Keywords: alzheimer's disease, single-cell RNA-seq, neural networks, blood biomarkers

Procedia PDF Downloads 66
1637 Pragmatic Interpretation in Translated Texts

Authors: Jamal Alqinai

Abstract:

A pragmatic approach to translation studies the rules and principles governing the use of language over and above the rules of syntax or morphology, and what makes some uses of language more appropriate than others in [communicative] situations. It attempts to explain translation as a procedure and product from the point of view of how, why and what is done by the source text author (ST) and what is to be done in the target text (TT) rendition. The latter will be subject to evaluation not as generated by the linguistics system but as conveyed and manipulated by participants in a communicative situation according to the referential and pragmatic standards employed. The failure of a purely lexical or structural translation stems from ignoring the relation between words as signs and the effect they have on their users. A more refined approach would also consider those processes that are sometimes labeled extra-linguistic or intuitive and which translators strive to reproduce unscathed in the translation process. We need to grasp the kind of actions an ST author performs on his readers by combining linguistic and non-linguistic elements against a backdrop of beliefs and cultural values. In other words, aside from considering the cohesive ties at the textual level, one needs to understand how the whole ST discourse hangs together logically in order to reproduce a coherent TT. The latter can only be achieved by an analysis of the pragmatic elements of presuppositions, implicatures and acts performed in the ST. Establishing cohesive ties within a text may require seeking reference outside the immediate text. The illocutionary functions manifested in one language/culture are relatively autonomous cultural/linguistic categories, but are imaginable by members of other cultures and, to some extent , are translatable though not, of course, without translation loss. Globalization and the spread of literacy worldwide may have created a universal empathy to comprehend the performative aspect of utterances when explained by approximate glosses or by paraphrase. Yet, it is often the multilayered and the culture-specific nature of illocutionary functions that de-universalize their possible interpretations. This paper addresses the pragmatic interpretation of culturally specific texts with examples adduced from a number of distinct settings to illustrate the influence of the pragmatic factors at stake.

Keywords: pragmatic, presupposition, implicature, cohesion

Procedia PDF Downloads 4
1636 A Fast Optimizer for Large-scale Fulfillment Planning based on Genetic Algorithm

Authors: Choonoh Lee, Seyeon Park, Dongyun Kang, Jaehyeong Choi, Soojee Kim, Younggeun Kim

Abstract:

Market Kurly is the first South Korean online grocery retailer that guarantees same-day, overnight shipping. More than 1.6 million customers place an average of 4.7 million orders and add 3 to 14 products into a cart per month. The company has sold almost 30,000 kinds of various products in the past 6 months, including food items, cosmetics, kitchenware, toys for kids/pets, and even flowers. The company is operating and expanding multiple dry, cold, and frozen fulfillment centers in order to store and ship these products. Due to the scale and complexity of the fulfillment, pick-pack-ship processes are planned and operated in batches, and thus, the planning that decides the batch of the customers’ orders is a critical factor in overall productivity. This paper introduces a metaheuristic optimization method that reduces the complexity of batch processing in a fulfillment center. The method is an iterative genetic algorithm with heuristic creation and evolution strategies; it aims to group similar orders into pick-pack-ship batches to minimize the total number of distinct products. With a well-designed approach to create initial genes, the method produces streamlined plans, up to 13.5% less complex than the actual plans carried out in the company’s fulfillment centers in the previous months. Furthermore, our digital-twin simulations show that the optimized plans can reduce 3% of operation time for packing, which is the most complex and time-consuming task in the process. The optimization method implements a multithreading design on the Spring framework to support the company’s warehouse management systems in near real-time, finding a solution for 4,000 orders within 5 to 7 seconds on an AWS c5.2xlarge instance.

Keywords: fulfillment planning, genetic algorithm, online grocery retail, optimization

Procedia PDF Downloads 83
1635 The Beacon of Collective Hope: Mixed Method Study on the Participation of Indian Youth with Regard to Mass Demonstrations Fueled by Social Activism Media

Authors: Akanksha Lohmore, Devanshu Arya, Preeti Kapur

Abstract:

Rarely does the human mind look at the positive fallout of highly negative events. Positive psychology attempts to emphasize on the strengths and positives for human well-being. The present study examines the underpinning socio-cognitive factors of the protest movements regarding the gang rape case of December 16th, 2012 through the lens of positive psychology. A gamut of negative emotions came to the forum globally: of anger, shame, hatred, violence, death penalty for the perpetrators, amongst other equally strong. In relation to this incident, a number of questions can be raised. Can such a heinous crime have some positive inputs for contemporary society? What is it that has held people to protests for long even when they see faded lines of success in view? This paper explains the constant feeding of protests and continuation of movements by the robust model of Collective Hope by Snyder, a phenomenon unexplored by social psychologists. In this paper, mixed method approach was undertaken. Results confirmed the interaction of various socio-psychological factors that imitated the Snyders model of collective hope. Emergence of major themes was: Sense of Agency, Sense of Worthiness, Social Sharing and Common Grievances and Hope of Collective Efficacy. Statistical analysis (correlation and regression) showed significant relationship between media usage and occurrence of these themes among participants. Media-communication processes and educational theories for development of citizenship behavior can find implications from these results. Theory development as indicated by theorists working in the area of Social Psychology of Protests can be furthered by the direction of research.

Keywords: agency, collective, hope, positive psychology, protest, social media

Procedia PDF Downloads 359
1634 Sounds of Power: An Ethnoorganological Approach to Understanding Colonial Music Culture in the Peruvian Andes

Authors: Natascha Reich

Abstract:

In colonial Peru, the Spanish crown relied on religious orders, most notably Dominicans, Franciscans, and Jesuits, for accelerating processes of colonization. The dissemination of Christian art, architecture, and music, and most of all, the agency of indigenous people in their production played a key role in facilitating the acceptance of the new religious and political system. Current research on Peruvian colonial music culture and its role as a vehicle for colonization focus on practices in urban centers. The lack of (written) primary sources seems to turn rural areas into a less attractive research territory for musicologists. This paper advocates for a more inclusive approach. By investigating seventeenth-century pipe organs as material remains of Franciscan missionary music culture, it shows how reactions to colonial forces and Christianization in rural Andean locations could follow tendencies different from those in urban areas. Indigenous musicians in cities tried to 'fit' into the European system in order to be accepted by the ruling Spanish elite. By contrast, the indigenous-built pipe organs in the rural Peruvian Colca-Valley show distinctly native-Andean influences. This paper argues that this syncretism can be interpreted as hybridity in Homi K. Bhabha’s sense, as a means of the colonized to undermine the power of the colonizer and to advance reactionary politics. Not only will it show the necessity of considering rural Peruvian music history in modern scholarship for arriving at a more complete picture of colonial culture, but it will also evidence the advantages of a mixed-methodology approach. Historical organology, combined with concepts from ethnomusicology and post-colonial studies, proves as a useful tool in the absence or scarcity of written primary sources.

Keywords: cultural hybridity, music as reactionary politics, Latin American pipe organs, Peruvian colonial music

Procedia PDF Downloads 164
1633 Effects of Cannabis and Cocaine on Driving Related Tasks of Perception, Cognition, and Action

Authors: Michelle V. Tomczak, Reyhaneh Bakhtiari, Aaron Granley, Anthony Singhal

Abstract:

Objective: Cannabis and cocaine are associated with a range of mental and physical effects that can impair aspects of human behavior. Driving is a complex cognitive behavior that is an essential part of everyday life and can be broken down into many subcomponents, each of which can uniquely impact road safety. With the growing movement of jurisdictions to legalize cannabis, there is an increased focus on impairment and driving. The purpose of this study was to identify driving-related cognitive-performance deficits that are impacted by recreational drug use. Design and Methods: With the assistance of law enforcement agencies, we recruited over 300 participants under the influence of various drugs including cannabis and cocaine. These individuals performed a battery of computer-based tasks scientifically proven to be re-lated to on-road driving performance and designed to test response-speed, memory processes, perceptual-motor skills, and decision making. Data from a control group with healthy non-drug using adults was collected as well. Results: Compared to controls, the drug group showed def-icits in all tasks. The data also showed clear differences between the cannabis and cocaine groups where cannabis users were faster, and performed better on some aspects of the decision-making and perceptual-motor tasks. Memory performance was better in the cocaine group for simple tasks but not more complex tasks. Finally, the participants who consumed both drugs performed most similarly to the cannabis group. Conclusions: Our results show distinct and combined effects of cannabis and cocaine on human performance relating to driving. These dif-ferential effects are likely related to the unique effects of each drug on the human brain and how they distinctly contribute to mental states. Our results have important implications for road safety associated with driver impairment.

Keywords: driving, cognitive impairment, recreational drug use, cannabis and cocaine

Procedia PDF Downloads 126
1632 Transverse Momentum Dependent Factorization and Evolution for Spin Physics

Authors: Bipin Popat Sonawane

Abstract:

After 1988 Electron muon Collaboration (EMC) announcement of measurement of spin dependent structure function, it has been found that it has become a need to understand spin structure of a hadron. In the study of three-dimensional spin structure of a proton, we need to understand the foundation of quantum field theory in terms of electro-weak and strong theories using rigorous mathematical theories and models. In the process of understanding the inner dynamical stricture of proton we need understand the mathematical formalism in perturbative quantum chromodynamics (pQCD). In QCD processes like proton-proton collision at high energy we calculate cross section using conventional collinear factorization schemes. In this calculations, parton distribution functions (PDFs) and fragmentation function are used which provide the information about probability density of finding quarks and gluons ( partons) inside the proton and probability density of finding final hadronic state from initial partons. In transverse momentum dependent (TMD) PDFs and FFs, collectively called as TMDs, take an account for intrinsic transverse motion of partons. The TMD factorization in the calculation of cross sections provide a scheme of hadronic and partonic states in the given QCD process. In this study we review Transverse Momentum Dependent (TMD) factorization scheme using Collins-Soper-Sterman (CSS) Formalism. CSS formalism considers the transverse momentum dependence of the partons, in this formalism the cross section is written as a Fourier transform over a transverse position variable which has physical interpretation as impact parameter. Along with this we compare this formalism with improved CSS formalism. In this work we study the TMD evolution schemes and their comparison with other schemes. This would provide description in the process of measurement of transverse single spin asymmetry (TSSA) in hadro-production and electro-production of J/psi meson at RHIC, LHC, ILC energy scales. This would surely help us to understand J/psi production mechanism which is an appropriate test of QCD.

Keywords: QCD, PDF, TMD, CSS

Procedia PDF Downloads 69
1631 Mathematical Modeling of the AMCs Cross-Contamination Removal in the FOUPs: Finite Element Formulation and Application in FOUP’s Decontamination

Authors: N. Santatriniaina, J. Deseure, T. Q. Nguyen, H. Fontaine, C. Beitia, L. Rakotomanana

Abstract:

Nowadays, with the increasing of the wafer's size and the decreasing of critical size of integrated circuit manufacturing in modern high-tech, microelectronics industry needs a maximum attention to challenge the contamination control. The move to 300 mm is accompanied by the use of Front Opening Unified Pods for wafer and his storage. In these pods an airborne cross contamination may occur between wafers and the pods. A predictive approach using modeling and computational methods is very powerful method to understand and qualify the AMCs cross contamination processes. This work investigates the required numerical tools which are employed in order to study the AMCs cross-contamination transfer phenomena between wafers and FOUPs. Numerical optimization and finite element formulation in transient analysis were established. Analytical solution of one dimensional problem was developed and the calibration process of physical constants was performed. The least square distance between the model (analytical 1D solution) and the experimental data are minimized. The behavior of the AMCs intransient analysis was determined. The model framework preserves the classical forms of the diffusion and convection-diffusion equations and yields to consistent form of the Fick's law. The adsorption process and the surface roughness effect were also traduced as a boundary condition using the switch condition Dirichlet to Neumann and the interface condition. The methodology is applied, first using the optimization methods with analytical solution to define physical constants, and second using finite element method including adsorption kinetic and the switch of Dirichlet to Neumann condition.

Keywords: AMCs, FOUP, cross-contamination, adsorption, diffusion, numerical analysis, wafers, Dirichlet to Neumann, finite elements methods, Fick’s law, optimization

Procedia PDF Downloads 507
1630 Experimental Study of an Isobaric Expansion Heat Engine with Hydraulic Power Output for Conversion of Low-Grade-Heat to Electricity

Authors: Maxim Glushenkov, Alexander Kronberg

Abstract:

Isobaric expansion (IE) process is an alternative to conventional gas/vapor expansion accompanied by a pressure decrease typical of all state-of-the-art heat engines. The elimination of the expansion stage accompanied by useful work means that the most critical and expensive parts of ORC systems (turbine, screw expander, etc.) are also eliminated. In many cases, IE heat engines can be more efficient than conventional expansion machines. In addition, IE machines have a very simple, reliable, and inexpensive design. They can also perform all the known operations of existing heat engines and provide usable energy in a very convenient hydraulic or pneumatic form. This paper reports measurement made with the engine operating as a heat-to-shaft-power or electricity converter and a comparison of the experimental results to a thermodynamic model. Experiments were carried out at heat source temperature in the range 30–85 °C and heat sink temperature around 20 °C; refrigerant R134a was used as the engine working fluid. The pressure difference generated by the engine varied from 2.5 bar at the heat source temperature 40 °C to 23 bar at the heat source temperature 85 °C. Using a differential piston, the generated pressure was quadrupled to pump hydraulic oil through a hydraulic motor that generates shaft power and is connected to an alternator. At the frequency of about 0.5 Hz, the engine operates with useful powers up to 1 kW and an oil pumping flowrate of 7 L/min. Depending on the temperature of the heat source, the obtained efficiency was 3.5 – 6 %. This efficiency looks very high, considering such a low temperature difference (10 – 65 °C) and low power (< 1 kW). The engine’s observed performance is in good agreement with the predictions of the model. The results are very promising, showing that the engine is a simple and low-cost alternative to ORC plants and other known energy conversion systems, especially at low temperatures (< 100 °C) and low power range (< 500 kW) where other known technologies are not economic. Thus low-grade solar, geothermal energy, biomass combustion, and waste heat with a temperature above 30 °C can be involved into various energy conversion processes.

Keywords: isobaric expansion, low-grade heat, heat engine, renewable energy, waste heat recovery

Procedia PDF Downloads 226
1629 Mainland China and Taiwan’s Strategies for Overcoming the Middle/High Income Trap: Domestic Consensus-Building and the Foundations of Cross-Strait Interactions

Authors: Mingke Ma

Abstract:

The recent discovery of the High-Income Trap phenomena and the established Middle-Income Trap literature have identified the similarity of the structural challenges that both Mainland China and Taiwan have been facing since the simultaneous growth slowdown from the 2000s. Mainland China and Taiwan’s ineffectiveness in productivity growth weakened their overall competitiveness in Global Value Chains. With the subsequent decline of industrial profitability, social compression from late development persists and jeopardises the social cohesion. From Ma Ying-jeou’s ‘633’ promise and Tsai Ing-wen’s ‘5+2’ industrial framework to Mainland China’s 11th to 14th Five-Year Plans, leaderships across the Strait have been striving to constitute new models for inclusive and sustainable development through policy responses. This study argues that social consensuses that have been constructed by the domestic political processes define the feasibility of the reform strategies, which further construct the conditions for Cross-Strait interactions. Based on the existing literature of New Institutional Economics, Middle/High Income Trap, and Compressed Development, this study adopts a Historical Institutionalist analytical framework to identify how the historical path-dependency contributes to the contemporary growth constraints in both economies and the political difficulty on navigating the institutional and Organisational change. It continues by tracing the political process of economic reform to examine the sustainability and resilience of the manifested social consensus that had empowered the proposed policy frameworks. Afterwards, it examines how the political outcomes in such a simultaneous process shared by both Mainland China and Taiwan construct the social, economic, institutional, and political foundations of contemporary Cross-Strait engagement.

Keywords: historical institutionalism, political economy, cross-strait relations, high/middle income trap

Procedia PDF Downloads 195
1628 Reasonable Adjustment for Students with Disabilities - Opportunities and Limits in Social Work Education

Authors: Bartelsen-Raemy Annabelle, Gerber Andrea

Abstract:

Objectives: The adoption of the UN Convention on the Rights of Persons with Disabilities has the effect that higher education institutions in Switzerland are called upon to promote inclusive university education. In this context, our School of Social Work aims to provide fair participation and the removal of barriers in our study programmes at bachelor’s and master’s levels. In 2015 we developed a concept of reasonable adjustments for students with disabilities and chronic illness as an instrument to provide equal opportunities for those students. We reviewed the implementation of this concept as part of our quality management process. Using a qualitative research design, we explored how affected students and lecturers experience the processes and measures taken and which barriers they still perceive. Methods: We captured subjective perspectives and experience of measures by conducting 15 problem-centred interviews with affected students and three experimental focus groups with lecturers. The data was processed using structured qualitative content analysis and summarised as key categories. Results: All respondents evaluated the concept of reasonable adjustment very positively and emphasised its importance for equal opportunities. Our analysis revealed differences in the usage and perception of both groups and showed that the students interviewed were a heterogeneous group with different needs. Overall, the students described the adjustments, in particular in relation to examinations and other assignments, as a great relief. The lecturers expressed high standards for their own teaching and supervision of students and, at the same time, wished for more support from the university. However, despite the positive evaluation by the lecturers, the limits of reasonable adjustment became evident. It is necessary to consider the limits of reasonable adjustments in terms of professional skills. Conclusion: Reasonable adjustments should, therefore, be seen as an element of an inclusive university culture that must be complemented by further measures. Taking this into account, we have planned further research as a basis for the development of a diversity and inclusion policy.

Keywords: opportunities and limits, reasonable adjustment, social work education, students with disabilities

Procedia PDF Downloads 132
1627 Combined Effect of Roughness and Suction on Heat Transfer in a Laminar Channel Flow

Authors: Marzieh Khezerloo, Lyazid Djenidi

Abstract:

Owing to wide range of the micro-device applications, the problems of mixing at small scales is of significant interest. Also, because most of the processes produce heat, it is needed to develop and implement strategies for heat removal in these devices. There are many studies which focus on the effect of roughness or suction on heat transfer performance, separately, although it would be useful to take advantage of these two methods to improve heat transfer performance. Unfortunately, there is a gap in this area. The present numerical study is carried to investigate the combined effects of roughness and wall suction on heat transfer performance of a laminar channel flow; suction is applied on the top and back faces of the roughness element, respectively. The study is carried out for different Reynolds numbers, different suction rates, and various locations of suction area on the roughness. The flow is assumed two dimensional, incompressible, laminar, and steady state. The governing Navier-Stokes equations are solved using ANSYS-Fluent 18.2 software. The present results are tested against previous theoretical results. The results show that by adding suction, the local Nusselt number is enhanced in the channel. In addition, it is shown that by applying suction on the bottom section of the roughness back face, one can reduce the thickness of thermal boundary layer, which leads to an increase in local Nusselt number. This indicates that suction is an effective means for improving the heat transfer rate (suction by controls the thickness of thermal boundary layer). It is also shown that the size and intensity of vortical motion behind the roughness element, decreased with an increasing suction rate, which leads to higher local Nusselt number. So, it can be concluded that by using suction, strategically located on the roughness element, one can control both the recirculation region and the heat transfer rate. Further results will be presented at the conference for coefficient of drag and the effect of adding more roughness elements.

Keywords: heat transfer, laminar flow, numerical simulation, roughness, suction

Procedia PDF Downloads 113
1626 Numerical Simulation of a Single Cell Passing through a Narrow Slit

Authors: Lanlan Xiao, Yang Liu, Shuo Chen, Bingmei Fu

Abstract:

Most cancer-related deaths are due to metastasis. Metastasis is a complex, multistep processes including the detachment of cancer cells from the primary tumor and the migration to distant targeted organs through blood and/or lymphatic circulations. During hematogenous metastasis, the emigration of tumor cells from the blood stream through the vascular wall into the tissue involves arrest in the microvasculature, adhesion to the endothelial cells forming the microvessel wall and transmigration to the tissue through the endothelial barrier termed as extravasation. The narrow slit between endothelial cells that line the microvessel wall is the principal pathway for tumor cell extravasation to the surrounding tissue. To understand this crucial step for tumor hematogenous metastasis, we used Dissipative Particle Dynamics method to investigate an individual cell passing through a narrow slit numerically. The cell membrane was simulated by a spring-based network model which can separate the internal cytoplasm and surrounding fluid. The effects of the cell elasticity, cell shape and cell surface area increase, and slit size on the cell transmigration through the slit were investigated. Under a fixed driven force, the cell with higher elasticity can be elongated more and pass faster through the slit. When the slit width decreases to 2/3 of the cell diameter, the spherical cell becomes jammed despite reducing its elasticity modulus by 10 times. However, transforming the cell from a spherical to ellipsoidal shape and increasing the cell surface area only by 3% can enable the cell to pass the narrow slit. Therefore the cell shape and surface area increase play a more important role than the cell elasticity in cell passing through the narrow slit. In addition, the simulation results indicate that the cell migration velocity decreases during entry but increases during exit of the slit, which is qualitatively in agreement with the experimental observation.

Keywords: dissipative particle dynamics, deformability, surface area increase, cell migration

Procedia PDF Downloads 334
1625 Taguchi-Based Surface Roughness Optimization for Slotted and Tapered Cylindrical Products in Milling and Turning Operations

Authors: Vineeth G. Kuriakose, Joseph C. Chen, Ye Li

Abstract:

The research follows a systematic approach to optimize the parameters for parts machined by turning and milling processes. The quality characteristic chosen is surface roughness since the surface finish plays an important role for parts that require surface contact. A tapered cylindrical surface is designed as a test specimen for the research. The material chosen for machining is aluminum alloy 6061 due to its wide variety of industrial and engineering applications. HAAS VF-2 TR computer numerical control (CNC) vertical machining center is used for milling and HAAS ST-20 CNC machine is used for turning in this research. Taguchi analysis is used to optimize the surface roughness of the machined parts. The L9 Orthogonal Array is designed for four controllable factors with three different levels each, resulting in 18 experimental runs. Signal to Noise (S/N) Ratio is calculated for achieving the specific target value of 75 ± 15 µin. The controllable parameters chosen for turning process are feed rate, depth of cut, coolant flow and finish cut and for milling process are feed rate, spindle speed, step over and coolant flow. The uncontrollable factors are tool geometry for turning process and tool material for milling process. Hypothesis testing is conducted to study the significance of different uncontrollable factors on the surface roughnesses. The optimal parameter settings were identified from the Taguchi analysis and the process capability Cp and the process capability index Cpk were improved from 1.76 and 0.02 to 3.70 and 2.10 respectively for turning process and from 0.87 and 0.19 to 3.85 and 2.70 respectively for the milling process. The surface roughnesses were improved from 60.17 µin to 68.50 µin, reducing the defect rate from 52.39% to 0% for the turning process and from 93.18 µin to 79.49 µin, reducing the defect rate from 71.23% to 0% for the milling process. The purpose of this study is to efficiently utilize the Taguchi design analysis to improve the surface roughness.

Keywords: surface roughness, Taguchi parameter design, CNC turning, CNC milling

Procedia PDF Downloads 155
1624 Development of Doctoral Education in Armenia (1990 - 2023)

Authors: Atom Mkhitaryan, Astghik Avetisyan

Abstract:

We analyze the developments of doctoral education in Armenia since 1990 and the management process. Education and training of highly qualified personnel are increasingly seen as a fundamental platform that ensures the development of the state. Reforming the national institute for doctoral studies (aspirantura) is aimed at improving the quality of human resources in science, optimizing research topics in accordance with the priority areas of development of science and technology, increasing publication and innovative activities, bringing national science and research closer to the world level and achieving international recognition. We present a number of defended dissertations in Armenia during the last 30 years, the dynamics and the main trends of the development of the academic degree awarding system. We discuss the possible impact of reforming the system of training and certification of highly qualified personnel on the organization of third–level doctoral education (doctoral schools) and specialized / dissertation councils in Armenia. The results of the SWOT analysis of doctoral education and academic degree awarding processes in Armenia are shown. The article presents the main activities and projects aimed at using the advantages and strong points of the National Academy network in order to improve the quality of doctoral education and training. The paper explores the mechanisms of organizational, methodological and infrastructural support for research and innovation activities of doctoral students and young scientists. There are also suggested approaches to the organization of strong networking between research institutes and foreign universities for training and certification of highly qualified personnel. The authors define the role of ISEC in the management of doctoral studies and the establishment of a competitive third-level education for the sphere of research and development in Armenia.

Keywords: doctoral studies, academic degree, PhD, certification, highly qualified personnel, dissertation, research and development, innovation, networking, management of doctoral school

Procedia PDF Downloads 63
1623 Systematic Identification and Quantification of Substrate Specificity Determinants in Human Protein Kinases

Authors: Manuel A. Alonso-Tarajano, Roberto Mosca, Patrick Aloy

Abstract:

Protein kinases participate in a myriad of cellular processes of major biomedical interest. The in vivo substrate specificity of these enzymes is a process determined by several factors, and despite several years of research on the topic, is still far from being totally understood. In the present work, we have quantified the contributions to the kinase substrate specificity of i) the phosphorylation sites and their surrounding residues in the sequence and of ii) the association of kinases to adaptor or scaffold proteins. We have used position-specific scoring matrices (PSSMs), to represent the stretches of sequences phosphorylated by 93 families of kinases. We have found negative correlations between the number of sequences from which a PSSM is generated and the statistical significance and the performance of that PSSM. Using a subset of 22 statistically significant PSSMs, we have identified specificity determinant residues (SDRs) for 86% of the corresponding kinase families. Our results suggest that different SDRs can function as positive or negative elements of substrate recognition by the different families of kinases. Additionally, we have found that human proteins with known function as adaptors or scaffolds (kAS) tend to interact with a significantly large fraction of the substrates of the kinases to which they associate. Based on this characteristic we have identified a set of 279 potential adaptors/scaffolds (pAS) for human kinases, which is enriched in Pfam domains and functional terms tightly related to the proposed function. Moreover, our results show that for 74.6% of the kinase– pAS association found, the pAS colocalize with the substrates of the kinases they are associated to. Finally, we have found evidence suggesting that the association of kinases to adaptors and scaffolds, may contribute significantly to diminish the in vivo substrate crossed- specificity of protein kinases. In general, our results indicate the relevance of several SDRs for both the positive and negative selection of phosphorylation sites by kinase families and also suggest that the association of kinases to pAS proteins may be an important factor for the localization of the enzymes with their set of substrates.

Keywords: kinase, phosphorylation, substrate specificity, adaptors, scaffolds, cellular colocalization

Procedia PDF Downloads 343
1622 Investigation of Projected Organic Waste Impact on a Tropical Wetland in Singapore

Authors: Swee Yang Low, Dong Eon Kim, Canh Tien Trinh Nguyen, Yixiong Cai, Shie-Yui Liong

Abstract:

Nee Soon swamp forest is one of the last vestiges of tropical wetland in Singapore. Understanding the hydrological regime of the swamp forest and implications for water quality is critical to guide stakeholders in implementing effective measures to preserve the wetland against anthropogenic impacts. In particular, although current field measurement data do not indicate a concern with organic pollution, reviewing the ways in which the wetland responds to elevated organic waste influx (and the corresponding impact on dissolved oxygen, DO) can help identify potential hotspots, and the impact on the outflow from the catchment which drains into downstream controlled watercourses. An integrated water quality model is therefore developed in this study to investigate spatial and temporal concentrations of DO levels and organic pollution (as quantified by biochemical oxygen demand, BOD) within the catchment’s river network under hypothetical, projected scenarios of spiked upstream inflow. The model was developed using MIKE HYDRO for modelling the study domain, as well as the MIKE ECO Lab numerical laboratory for characterising water quality processes. Model parameters are calibrated against time series of observed discharges at three measurement stations along the river network. Over a simulation period of April 2014 to December 2015, the calibrated model predicted that a continuous spiked inflow of 400 mg/l BOD will elevate downstream concentrations at the catchment outlet to an average of 12 mg/l, from an assumed nominal baseline BOD of 1 mg/l. Levels of DO were decreased from an initial 5 mg/l to 0.4 mg/l. Though a scenario of spiked organic influx at the swamp forest’s undeveloped upstream sub-catchments is currently unlikely to occur, the outcomes nevertheless will be beneficial for future planning studies in understanding how the water quality of the catchment will be impacted should urban redevelopment works be considered around the swamp forest.

Keywords: hydrology, modeling, water quality, wetland

Procedia PDF Downloads 140
1621 American Sign Language Recognition System

Authors: Rishabh Nagpal, Riya Uchagaonkar, Venkata Naga Narasimha Ashish Mernedi, Ahmed Hambaba

Abstract:

The rapid evolution of technology in the communication sector continually seeks to bridge the gap between different communities, notably between the deaf community and the hearing world. This project develops a comprehensive American Sign Language (ASL) recognition system, leveraging the advanced capabilities of convolutional neural networks (CNNs) and vision transformers (ViTs) to interpret and translate ASL in real-time. The primary objective of this system is to provide an effective communication tool that enables seamless interaction through accurate sign language interpretation. The architecture of the proposed system integrates dual networks -VGG16 for precise spatial feature extraction and vision transformers for contextual understanding of the sign language gestures. The system processes live input, extracting critical features through these sophisticated neural network models, and combines them to enhance gesture recognition accuracy. This integration facilitates a robust understanding of ASL by capturing detailed nuances and broader gesture dynamics. The system is evaluated through a series of tests that measure its efficiency and accuracy in real-world scenarios. Results indicate a high level of precision in recognizing diverse ASL signs, substantiating the potential of this technology in practical applications. Challenges such as enhancing the system’s ability to operate in varied environmental conditions and further expanding the dataset for training were identified and discussed. Future work will refine the model’s adaptability and incorporate haptic feedback to enhance the interactivity and richness of the user experience. This project demonstrates the feasibility of an advanced ASL recognition system and lays the groundwork for future innovations in assistive communication technologies.

Keywords: sign language, computer vision, vision transformer, VGG16, CNN

Procedia PDF Downloads 43
1620 Action Research for School Development

Authors: Beate Weyland

Abstract:

The interdisciplinary laboratory EDEN, Educational Environments with Nature, born in 2020 at the Faculty of Education of the Free University of Bolzano, is working on a research path initiated in 2012 on the relationship between pedagogy and architecture in the design process of school buildings. Between 2016 and 2018, advisory support activity for schools was born, which combined the need to qualify the physical spaces of the school with the need to update teaching practices and develop school organization with the aim of improving pupils' and teachers' sense of well-being. The goal of accompanying the development of school communities through research-training paths concerns the process of designing together pedagogical-didactic and architectural environments in which to stage the educational relationship, involving professionals from education, educational research, architecture and design, and local administration. Between 2019 and 2024, more than 30 schools and educational communities throughout Italy have entered into research-training agreements with the university, focusing increasingly on the need to create new spaces and teaching methods capable of imagining educational spaces as places of well-being and where cultural development can be presided over. The paper will focus on the presentation of the research path and on the mixed methods used to support schools and educational communities: identification of the research question, development of the research objective, experimentation, and data collection for analysis and reflection. School and educational communities are involved in a participative and active manner. The quality of the action-research work is enriched by a special focus on the relationship with plants and nature in general. Plants are seen as mediators of processes that unhinge traditional didactics and invite teachers, students, parents, and administrators to think about the quality of learning spaces and relationships based on well-being. The contribution is characterized by a particular focus on research methodologies and tools developed together with teachers to answer the issues raised and to measure the impact of the actions undertaken.

Keywords: school development, learning space, wellbeing, plants and nature

Procedia PDF Downloads 36
1619 A Geospatial Analysis of Residential Conservation-Attitude, Intention and Behavior

Authors: Prami Sengupta, Randall A. Cantrell, Tracy Johns

Abstract:

A typical US household consumes more energy than households in other countries and is directly responsible for a considerable proportion of the atmospheric concentration of the greenhouse gases. This makes U.S. household a vital target group for energy conservation studies. Positive household behavior is central to residential energy conservation. However, for individuals to conserve energy they must not only know how to conserve energy but be also willing to do so. That is, a positive attitude towards residential conservation and an intention to conserve energy are two of the most important psychological determinants for energy conservation behavior. Most social science studies, to date, have studied the relationships between attitude, intention, and behavior by building upon socio-psychological theories of behavior. However, these frameworks, including the widely used Theory of Planned Behavior and Social Cognitive Theory, lack a spatial component. That is, these studies fail to capture the impact of the geographical locations of homeowners’ residences on their residential energy consumption and conservation practices. Therefore, the purpose of this study is to explore geospatial relationships between homeowners’ residential energy conservation-attitudes, conservation-intentions, and consumption behavior. The study analyzes residential conservation-attitudes and conservation-intentions of homeowners across 63 counties in Florida and compares it with quantifiable measures of residential energy consumption. Empirical findings revealed that the spatial distribution of high and/or low values of homeowners’ mean-score values of conservation-attitudes and conservation-intentions are more spatially clustered than would be expected if the underlying spatial processes were random. On the contrary, the spatial distribution of high and/or low values of households’ carbon footprints was found to be more spatially dispersed than assumed if the underlying spatial process were random. The study also examined the influence of potential spatial variables, such as urban or rural setting and presence of educational institutions and/or extension program, on the conservation-attitudes, intentions, and behaviors of homeowners.

Keywords: conservation-attitude, conservation-intention, geospatial analysis, residential energy consumption, spatial autocorrelation

Procedia PDF Downloads 191
1618 Optimization of an Electro-Submersible Pump for Crude Oil Extraction Processes

Authors: Deisy Becerra, Nicolas Rios, Miguel Asuaje

Abstract:

The Electrical Submersible Pump (ESP) is one of the most artificial lifting methods used in the last years, which consists of a serial arrangement of centrifugal pumps. One of the main concerns when handling crude oil is the formation of O/W or W/O (oil/water or water/oil) emulsions inside the pump, due to the shear rate imparted and the presence of high molecular weight substances that act as natural surfactants. Therefore, it is important to perform an analysis of the flow patterns inside the pump to increase the percentage of oil recovered using the centrifugal force and the difference in density between the oil and the water to generate the separation of liquid phases. For this study, a Computational Fluid Dynamic (CFD) model was developed on STAR-CCM+ software based on 3D geometry of a Franklin Electric 4400 4' four-stage ESP. In this case, the modification of the last stage was carried out to improve the centrifugal effect inside the pump, and a perforated double tube was designed with three different holes configurations disposed at the outlet section, through which the cut water flows. The arrangement of holes used has different geometrical configurations such as circles, rectangles, and irregular shapes determined as grating around the tube. The two-phase flow was modeled using an Eulerian approach with the Volume of Fluid (VOF) method, which predicts the distribution and movement of larger interfaces in immiscible phases. Different water-oil compositions were evaluated, such as 70-30% v/v, 80-20% v/v and 90-10% v/v, respectively. Finally, greater recovery of oil was obtained. For the several compositions evaluated, the volumetric oil fraction was greater than 0.55 at the pump outlet. Similarly, it is possible to show an inversely proportional relationship between the Water/Oil rate (WOR) and the volumetric flow. The volumetric fractions evaluated, the oil flow increased approximately between 41%-10% for circular perforations and 49%-19% for rectangular shaped perforations, regarding the inlet flow. Besides, the elimination of the pump diffuser in the last stage of the pump reduced the head by approximately 20%.

Keywords: computational fluid dynamic, CFD, electrical submersible pump, ESP, two phase flow, volume of fluid, VOF, water/oil rate, WOR

Procedia PDF Downloads 158
1617 Impacts of Climate Elements on the Annual Periodic Behavior of the Shallow Groundwater Level: Case Study from Central-Eastern Europe

Authors: Tamas Garamhegyi, Jozsef Kovacs, Rita Pongracz, Peter Tanos, Balazs Trasy, Norbert Magyar, Istvan G. Hatvani

Abstract:

Like most environmental processes, shallow groundwater fluctuation under natural circumstances also behaves periodically. With the statistical tools at hand, it can easily be determined if a period exists in the data or not. Thus, the question may be raised: Does the estimated average period time characterize the whole time period, or not? This is especially important in the case of such complex phenomena as shallow groundwater fluctuation, driven by numerous factors. Because of the continuous changes in the oscillating components of shallow groundwater time series, the most appropriate method should be used to investigate its periodicity, this is wavelet spectrum analysis. The aims of the research were to investigate the periodic behavior of the shallow groundwater time series of an agriculturally important and drought sensitive region in Central-Eastern Europe and its relationship to the European pressure action centers. During the research ~216 shallow groundwater observation wells located in the eastern part of the Great Hungarian Plain with a temporal coverage of 50 years were scanned for periodicity. By taking the full-time interval as 100%, the presence of any period could be determined in percentages. With the complex hydrogeological/meteorological model developed in this study, non-periodic time intervals were found in the shallow groundwater levels. On the local scale, this phenomenon linked to drought conditions, and on a regional scale linked to the maxima of the regional air pressures in the Gulf of Genoa. The study documented an important link between shallow groundwater levels and climate variables/indices facilitating the necessary adaptation strategies on national and/or regional scales, which have to take into account the predictions of drought-related climatic conditions.

Keywords: climate change, drought, groundwater periodicity, wavelet spectrum and coherence analyses

Procedia PDF Downloads 385
1616 Effect of Lithium Bromide Concentration on the Structure and Performance of Polyvinylidene Fluoride (PVDF) Membrane for Wastewater Treatment

Authors: Poojan Kothari, Yash Madhani, Chayan Jani, Bharti Saini

Abstract:

The requirements for quality drinking and industrial water are increasing and water resources are depleting. Moreover large amount of wastewater is being generated and dumped into water bodies without treatment. These have made improvement in water treatment efficiency and its reuse, an important agenda. Membrane technology for wastewater treatment is an advanced process and has become increasingly popular in past few decades. There are many traditional methods for tertiary treatment such as chemical coagulation, adsorption, etc. However recent developments in membrane technology field have led to manufacturing of better quality membranes at reduced costs. This along with the high costs of conventional treatment processes, high separation efficiency and relative simplicity of the membrane treatment process has made it an economically viable option for municipal and industrial purposes. Ultrafiltration polymeric membranes can be used for wastewater treatment and drinking water applications. The proposed work focuses on preparation of one such UF membrane - Polyvinylidene fluoride (PVDF) doped with LiBr for wastewater treatment. Majorly all polymeric membranes are hydrophobic in nature. This property leads to repulsion of water and hence solute particles occupy the pores, decreasing the lifetime of a membrane. Thus modification of membrane through addition of small amount of salt such as LiBr helped us attain certain characteristics of membrane, which can then be used for wastewater treatment. The membrane characteristics are investigated through measuring its various properties such as porosity, contact angle and wettability to find out the hydrophilic nature of the membrane and morphology (surface as well as structure). Pure water flux, solute rejection and permeability of membrane is determined by permeation experiments. A study of membrane characteristics with various concentration of LiBr helped us to compare its effectivity.

Keywords: Lithium bromide (LiBr), morphology, permeability, Polyvinylidene fluoride (PVDF), solute rejection, wastewater treatment

Procedia PDF Downloads 147