Search results for: chemical composition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6294

Search results for: chemical composition

2334 An Alternative Semi-Defined Larval Diet for Rearing of Sand Fly Species Phlebotomus argentipes in Laboratory

Authors: Faizan Hassan, Seema Kumari, V. P. Singh, Pradeep Das, Diwakar Singh Dinesh

Abstract:

Phlebotomus argentipes is an established vector for Visceral Leishmaniasis in Indian subcontinent. Laboratory colonization of Sand flies is imperative in research on vectors, which requires a proper diet for their larvae and adult growth that ultimately affects their survival and fecundity. In most of the laboratories, adult Sand flies are reared on rabbit blood feeding/artificial blood feeding and their larvae on fine grinded rabbit faeces as a sole source of food. Rabbit faeces are unhygienic, difficult to handle, high mites infestation as well as owing to bad odour which creates menacing to human users ranging from respiratory problems to eye infection and most importantly it does not full fill all the nutrients required for proper growth and development. It is generally observed that the adult emergence is very low in comparison to egg hatched, which may be due to insufficient food nutrients provided to growing larvae. To check the role of food nutrients on larvae survival and adult emergence, a high protein rich artificial diet for sand fly larvae were used in this study. The composition of artificial diet to be tested includes fine grinded (9 gm each) Rice, Pea nuts & Soyabean balls. These three food ingredients are rich source of all essential amino acids along with carbohydrate and minerals which is essential for proper metabolism and growth. In this study artificial food was found significantly more effective for larval development and adult emergence than rabbit faeces alone (P value >0.05). The weight of individual larvae was also found higher in test pots than the control. This study suggest that protein plays an important role in insect larvae development and adding carbohydrate will also enhances the fecundity of insects larvae.

Keywords: artificial food, nutrients, Phlebotomus argentipes, sand fly

Procedia PDF Downloads 297
2333 A Decision Support System for the Detection of Illicit Substance Production Sites

Authors: Krystian Chachula, Robert Nowak

Abstract:

Manufacturing home-made explosives and synthetic drugs is an increasing problem in Europe. To combat that, a data fusion system is proposed for the detection and localization of production sites in urban environments. The data consists of measurements of properties of wastewater performed by various sensors installed in a sewage network. A four-stage fusion strategy allows detecting sources of waste products from known chemical reactions. First, suspicious measurements are used to compute the amount and position of discharged compounds. Then, this information is propagated through the sewage network to account for missing sensors. The next step is clustering and the formation of tracks. Eventually, tracks are used to reconstruct discharge events. Sensor measurements are simulated by a subsystem based on real-world data. In this paper, different discharge scenarios are considered to show how the parameters of used algorithms affect the effectiveness of the proposed system. This research is a part of the SYSTEM project (SYnergy of integrated Sensors and Technologies for urban sEcured environMent).

Keywords: continuous monitoring, information fusion and sensors, internet of things, multisensor fusion

Procedia PDF Downloads 107
2332 Development of Surface-Enhanced Raman Spectroscopy-Active Gelatin Based Hydrogels for Label Free Detection of Bio-Analytes

Authors: Zahra Khan

Abstract:

Hydrogels are a macromolecular network of hydrophilic copolymers with physical or chemical cross-linking structures with significant water uptake capabilities. They are a promising substrate for surface-enhanced Raman spectroscopy (SERS) as they are both flexible and biocompatible materials. Conventional SERS-active substrates suffer from limitations such as instability and inflexibility, which restricts their use in broader applications. Gelatin-based hydrogels have been synthesised in a facile and relatively quick method without the use of any toxic cross-linking agents. Composite gel material was formed by combining the gelatin with simple polymers to enhance the functional properties of the gel. Gold nanoparticles prepared by a reproducible seed-mediated growth method were combined into the bulk material during gel synthesis. After gel formation, the gel was submerged in the analyte solution overnight. SERS spectra were then collected from the gel using a standard Raman spectrometer. A wide range of analytes was successfully detected on these hydrogels showing potential for further optimization and use as SERS substrates for biomedical applications.

Keywords: gelatin, hydrogels, flexible materials, SERS

Procedia PDF Downloads 105
2331 Structure and Activity Research of Hydrocarbons Refining Catalysts Based on Wastes of Ferroalloy Production

Authors: Zhanat Shomanova, Ruslan Safarov, Yuri Nosenko, Zheneta Tashmuchambetova, Alima Zharmagambetova

Abstract:

An effective way of utilization of ferroalloy production wastes is preparing hydrocarbon refining catalysts from them. It is possible due to accordable transition metals containing in the wastes. In the work, we are presenting the results on elemental analysis of sludge samples from Aksu ferroalloy plant (Aksu, Kazakhstan), method of catalysts preparing, results of physical-chemical analysis of obtained catalysts (X-ray analysis, electron microscopy, the BET method etc.), results of using the catalysts in some hydrocarbons refining processes such as hydrocracking of rubber waste, cracking of gasoil, oxidation of cyclohexane. The main results of catalytic activity research are: a) In hydrocracking of rubber waste 64.9% of liquid products were fuel fractions; b) In cracking of gasoil conversion was 51% and selectivity by liquid products was 99%; c) In oxidation of cyclohexane the maximal product yield 87.9% and selectivity by cyclohexanol 93.0% were achieved.

Keywords: catalyst, cyclohexane oxidation, ferroalloy production waste, gasoil cracking

Procedia PDF Downloads 258
2330 Selective Circular Dichroism Sensor Based on the Generation of Quantum Dots for Cadmium Ion Detection

Authors: Pradthana Sianglam, Wittaya Ngeontae

Abstract:

A new approach for the fabrication of cadmium ion (Cd2+) sensor is demonstrated. The detection principle is based on the in-situ generation of cadmium sulfide quantum dots (CdS QDs) in the presence of chiral thiol containing compound and detection by the circular dichroism spectroscopy (CD). Basically, the generation of CdS QDs can be done in the presence of Cd2+, sulfide ion and suitable capping compounds. In addition, the strong CD signal can be recorded if the generated QDs possess chiral property (from chiral capping molecule). Thus, the degree of CD signal change depends on the number of the generated CdS QDs which can be related to the concentration of Cd2+ (excess of other components). In this work, we use the mixture of cysteamine (Cys) and L-Penicillamine (LPA) as the capping molecules. The strong CD signal can be observed when the solution contains sodium sulfide, Cys, LPA, and Cd2+. Moreover, the CD signal is linearly related to the concentration of Cd2+. This approach shows excellence selectivity towards the detection of Cd2+ when comparing to other cation. The proposed CD sensor provides low limit detection limits around 70 µM and can be used with real water samples with satisfactory results.

Keywords: circular dichroism sensor, quantum dots, enaniomer, in-situ generation, chemical sensor, heavy metal ion

Procedia PDF Downloads 358
2329 Simultaneous Esterification and Transesterification of High FFA Jatropha Oil Using Reactive Distillation for Biodiesel Production

Authors: Ratna Dewi Kusumaningtyas, Prima Astuti Handayani, Arief Budiman

Abstract:

Reactive Distillation (RD) is a multifunctional reactor which integrates chemical reaction with in situ separation to shift the equilibrium towards the product formation. Thus, it is suitable for equilibrium limited reaction such as esterification and transesterification to enhance the reaction conversion. In this work, the application of RD for high FFA oil esterification-transterification for biodiesel production using sulphuric acid catalyst has been studied. Crude Jatropha Oil with FFA content of 30.57% was utilized as the feedstock. Effects of the catalyst concentration and molar ratio of the alcohol to oils were also investigated. It was revealed that best result was obtained with sulphuric acid catalyst (reaction conversion of 94.71% and FFA content of 1.62%) at 60C, molar ratio of methanol to FFA of 30:1, and catalyst loading of 3%. After undergoing esterification reaction, jatropha oil was then transesterified to produce biodiesel. Transesterification reaction was performed in the presence of NaOH catalyst in RD column at 60C, molar ratio of methanol to oil of 6:1, and catalyst concentration of 1%. It demonstrated that biodiesel produced in this work agreed with the Indonesian National and ASTM standard of fuel.

Keywords: reactive distillation, biodiesel, esterification, transesterification

Procedia PDF Downloads 442
2328 Preliminary Characterization of Hericium Species Sampled in Tuscany, Italy

Authors: V. Cesaroni, C. Girometta, A. Bernicchia, M. Brusoni, F. Corana, R. M. Baiguera, C. M. Cusaro, M. L. Guglielminetti, B. Mannucci, H. Kawagishi, C. Perini, A. M. Picco, P. Rossi, E. Salerni, E. Savino

Abstract:

Fungi of the genus Hericium contain various compounds with antibacterial activity, cytotoxic effect on cancer cells and bioactive molecules. Some of the active metabolites stimulate the synthesis of the Nerve Growth Factor (NGF). Recently, the effect of dietary supplement based on Hericium erinaceus on recognition memory and on hippocampal mossy fiber-CA3 neurotransmission was published. The aim of this study was to investigate the presence of Hericium species on Italian territory in order to isolate the strains for further studies and applications. The first step was to collect Hericium sporophores in Tuscany: H. alpestre Pers., H. coralloides (Scop.) Pers. and H. erinaceus (Bull.) Pers. were the species present. The strains of H. alpestre (H.a.1), H. coralloides (H.c.1) and H. erinaceus (H.e.1 & H.e.2) have been isolated in pure culture and preserved in the collection of the University of Pavia (MicUNIPV). The DNA sequences obtained from the strains were compared to other sequences found in international databases. Therefore, it was possible to construct a phylogenetic tree that highlights the clear separation in clades of the sequences and the molecular identification of our strains with the species of Hericium considered. The second step was to cultivate indoor and outdoor H. erinaceus in order to obtain as many sporophores as possible for further chemical analysis. All the procedures for H. erinaceus cultivation have been followed. Among the available recipes for indoor H. erinaceus cultivation, it was used a substrate formulation contained 70% oak sawdust, 20% rice bran, 10% wheat straw, 1% CaCO3 and 1% sucrose. The bioactive compounds present in the mycelia and in the sporophores of H. erinaceus were chemically analyzed in collaboration with the Centro Grandi Strumenti of the University of Pavia using high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS/MS). The materials to be analyzed were previously freeze-dried and then extracted with an alcoholic procedure. Preliminary chromatographic analysis revealed the presence of potentially bioactive and structurally different secondary metabolites such as polysaccharides, erinacins, ericenones, steroids and other terpenoids. Ericenones C and D (in sporophores) and erinacin A (in mycelium) have been identified by comparison with the respective standards. These molecules are known to have effects on the Central Nervous System (CNS) cells, which is the main objective of our studies. Thanks to the high sensitivity in the detection of bioactive compounds of H. erinaceus, it will be possible to use the To obtain lyophilized mycelium and the respective culture broth, 4 small pieces (about 5 mm2) of the respective H.e.1 or H.c.1 strains, taken from the margin of growing cultures (MEA), were inoculated into 1 liter of 2% ME (malt extract, Biokar Diagnostics). The static liquid cultures were kept at 24 °C in the dark chamber and fungi grew for one month. 10 replicates for each strain have been done. The method proposed as an analytical screening protocol to determine the optimal growth conditions of the fungus and to improve the production chain of H. erinaceus. These results encourage to carry out chemical analyzes also on H. alpestre and H. coralloides in order to evaluate the presence of bioactive compounds in these two species.

Keywords: Hericium species, Hercium erinaceus bioactive compounds, medicinal mushrooms, mushroom cultivation

Procedia PDF Downloads 132
2327 Efficacy of Chia Seed Oil Supplemented Ice-Cream against Hypercholesterolemia

Authors: Naureen Naeem, M. S. Aslam

Abstract:

Chia seeds found to be a rich source of dietary fiber contain oil which is high in omega 6 and omega 3 fatty acids and helpful in the control of cardiovascular diseases. Owing to its spectacular significance, present research had been designed to explore its effect on cholesterol level of the individuals after consumption of chia seed oil supplemented ice cream. The project was designed in such a manner that fat of ice cream was replaced with chia seed oil in different proportions i.e., 25%, 50%, 75%, 100%. After physico-chemical and sensory evaluation of ice cream, best treatment was selected and used for efficacy trials. After baseline line study and thorough inclusion criteria 10 individuals were selected and divided into two groups. One group treated as control and the other was given chia seed oil supplemented l(50%) ice cream. Significant decrease in cholesterol level was observed in the treated group. 18% decrease in cholesterol level was observed at 40th day followed by 8% at 20th day. Similarly 20% decrease in LDL cholesterol with 14% increase in HDL cholesterol. It was recommended that further trials be conducted with sophisticated techniques to completely replace saturated fat in ice cream with unsaturated fats and to study its effect in hyperglycemia and oxidative stress.

Keywords: hypercholesterolemia, chia seed oil, HDL, triglycerides

Procedia PDF Downloads 293
2326 Heavy Sulphide Material Characterization of Grasberg Block Cave Mine, Mimika, Papua: Implication for Tunnel Development and Mill Issue

Authors: Cahya Wimar Wicaksono, Reynara Davin Chen, Alvian Kristianto Santoso

Abstract:

Grasberg Cu-Au ore deposit as one of the biggest porphyry deposits located in Papua Province, Indonesia produced by several intrusion that restricted by Heavy Sulphide Zone (HSZ) in peripheral. HSZ is the rock that becomes the contact between Grassberg Igneous Complex (GIC) with sedimentary and igneous rock outside, which is rich in sulphide minerals such as pyrite ± pyrrhotite. This research is to obtain the characteristic of HSZ based on geotechnical, geochemical and mineralogy aspect and those implication for daily mining operational activities. Method used in this research are geological and alteration mapping, core logging, FAA (Fire Assay Analysis), AAS (Atomic absorption spectroscopy), RQD (Rock Quality Designation) and rock water content. Data generated from methods among RQD data, mineral composition and grade, lithological and structural geology distribution in research area. The mapping data show that HSZ material characteristics divided into three type based on rocks association, there are near igneous rocks, sedimentary rocks and on HSZ area. And also divided based on its location, north and south part of research area. HSZ material characteristic consist of rock which rich of pyrite ± pyrrhotite, and RQD range valued about 25%-100%. Pyrite ± pyrrhotite which outcropped will react with H₂O and O₂ resulting acid that generates corrosive effect on steel wire and rockbolt. Whereas, pyrite precipitation proses in HSZ forming combustible H₂S gas which is harmful during blasting activities. Furthermore, the impact of H₂S gas in blasting activities is forming poison gas SO₂. Although HSZ high grade Cu-Au, however those high grade Cu-Au rich in sulphide components which is affected in flotation milling process. Pyrite ± pyrrhotite in HSZ will chemically react with Cu-Au that will settle in milling process instead of floating.

Keywords: combustible, corrosive, heavy sulphide zone, pyrite ± pyrrhotite

Procedia PDF Downloads 320
2325 Exploring the Influence of Climate Change on Food Behavior in Medieval France: A Multi-Method Analysis of Human-Animal Interactions

Authors: Unsain Dianne, Roussel Audrey, Goude Gwenaëlle, Magniez Pierre, Storå Jan

Abstract:

This paper aims to investigate the changes in husbandry practices and meat consumption during the transition from the Medieval Climate Anomaly to the Little Ice Age in the South of France. More precisely, we will investigate breeding strategies, animal size and health status, carcass exploitation strategies, and the impact of socioeconomic status on human-environment interactions. For that purpose, we will analyze faunal remains from ten sites equally distributed between the two periods. Those include consumers from different socio-economic backgrounds (peasants, city dwellers, soldiers, lords, and the Popes). The research will employ different methods used in zooarchaeology: comparative anatomy, biometry, pathologies analyses, traceology, and utility indices, as well as experimental archaeology, to reconstruct and understand the changes in animal breeding and consumption practices. Their analysis will allow the determination of modifications in the animal production chain, with the composition of the flocks (species, size), their management (age, sex, health status), culinary practices (strategies for the exploitation of carcasses, cooking, tastes) or the importance of trade (butchers, sales of processed animal products). The focus will also be on the social extraction of consumers. The aim will be to determine whether climate change has had a greater impact on the most modest groups (such as peasants), whether the consequences have been global and have also affected the highest levels of society, or whether the social and economic factors have been sufficient to balance out the climatic hazards, leading to no significant changes. This study will contribute to our understanding of the impact of climate change on breeding and consumption strategies in medieval society from a historical and social point of view. It combines various research methods to provide a comprehensive analysis of the changes in human-animal interactions during different climatic periods.

Keywords: archaeology, animal economy, cooking, husbandry practices, climate change, France

Procedia PDF Downloads 48
2324 Fiber-Optic Sensors for Hydrogen Peroxide Vapor Measurement

Authors: H. Akbari Khorami, P. Wild, N. Djilali

Abstract:

This paper reports on the response of a fiber-optic sensing probe to small concentrations of hydrogen peroxide (H2O2) vapor at room temperature. H2O2 has extensive applications in industrial and medical environments. Conversely, H2O2 can be a health hazard by itself. For example, H2O2 induces cellular damage in human cells and its presence can be used to diagnose illnesses such as asthma and human breast cancer. Hence, development of reliable H2O2 sensor is of vital importance to detect and measure this species. Ferric ferrocyanide, referred to as Prussian blue (PB), was deposited on the tip of a multimode optical fiber through the single source precursor technique and served as an indicator of H2O2 in a spectroscopic manner. Sensing tests were performed in H2O2-H2O vapor mixtures with different concentrations of H2O2. The results of sensing tests show the sensor is able to detect H2O2 concentrations in the range of 50.6 ppm to 229.5 ppm. Furthermore, the sensor response to H2O2 concentrations is linear in a log-log scale with the adjacent R-square of 0.93. This sensing behavior allows us to detect and quantify the concentration of H2O2 in the vapor phase.

Keywords: chemical deposition, fiber-optic sensor, hydrogen peroxide vapor, prussian blue

Procedia PDF Downloads 349
2323 Powerful Bacteriocins Produced by Bacillus thuringiensis Strains Isolated from Soil at Northern of Algeria

Authors: R. Gounina-Allouane, I. Moussaoui, N. Boukahel

Abstract:

Bacillus antimicrobial metabolites, especially those of Bacillus thuringiensis (Bt), are of great interest for research because of health risks generated by the excessive use of chemical additives as well as the propagation of resistant microbial strains, caused by the massive treatment with antibiotics. The objective of this study was the selection of Bt strains producing antimicrobial peptides (bacteriocins), and the partial purification of the most powerful bacteriocins, then the determination of their spectra of antimicrobial action. A collection of twenty one Bt strains isolated from soil at Boumerdès (northern of Algeria) was used for screening strains having an antagonistic activity against phylogenetically closed bacteria. Spectra of antagonistic activity of two selected strains was determined against other Bt strains, Gram positive and Gram negative bacterial strains of clinical origin and others from ATCC collection as well as yeasts isolated in human dermatology. Bacteriocins of these two strains were partially purified and their effect on the kinetics of growth of the most sensitive microbial strains was studied. The bacteriocinogenic strains were biochemically characterized and their sensitivity to antibiotics was studied.

Keywords: antimicrobial peptides, Bacillus thuringiensis, bacteriocin, partial purification

Procedia PDF Downloads 348
2322 InP/ZnS Core-Shell and InP/ZnS/ZnS Core-Multishell Quantum Dots for Improved luminescence Efficiency

Authors: Imen Harabi, Hanae Toura, Safa Jemai, Bernabe Mari Soucase

Abstract:

A promising alternative to traditional Quantum Dots QD materials, which contain toxic heavy elements such as lead and cadmium, sheds light on indium phosphide quantum dots (InP QDs) Owing to improve the quantum yields of photoluminescence and other properties. InP, InP/ZnS core/shell and InP/ZnS/ZnS core/shell/shell Quantum Dots (QDs) were synthetized by the hot injection method. The optical and structural properties of the core InP QDs, InP/ZnS QDs, and InP/ZnS/ZnS QDs have being considered by several techniques such as X-ray diffraction, transmission electron microscopy, optical spectroscopy, and photoluminescence. The average diameter of InP, InP/ZnS, and InP/ZnS/ZnS Quantum Dots (QDs) was varying between 10 nm, 5.4 nm, and 4.10 nm. This experience revealed that the surface morphology of the Quantum Dots has a more regular spherical form with color variation of the QDs in solution. The emission peak of colloidal InP Quantum Dots was around 530 nm, while in InP/ZnS, the emission peak is displayed and located at 598 nm. whilst for InP/ZnS/ZnS is placed at 610 nm. Furthermore, an enhanced PL emission due to a passivation effect in the ZnS-covered InP QDs was obtained. Add the XRD information FWHM of the principal peak of InP QDs was 63 nm, while for InP/ZnS was 41 nm and InP/ZnS/ZnS was 33 nm. The effect of the Zinc stearate precursor concentration on the optical, structural, surface chemical of InP and InP/ZnS and InP/ZnS/ZnS QDs will be discussed.

Keywords: indium phosphide, quantum dot, nanoparticle, core-shell, multishell, luminescence

Procedia PDF Downloads 152
2321 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks

Authors: Wang Yichen, Haruka Yamashita

Abstract:

In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.

Keywords: recurrent neural network, players lineup, basketball data, decision making model

Procedia PDF Downloads 121
2320 Fuzzy Inference System for Risk Assessment Evaluation of Wheat Flour Product Manufacturing Systems

Authors: Yas Barzegaar, Atrin Barzegar

Abstract:

The aim of this research is to develop an intelligent system to analyze the risk level of wheat flour product manufacturing system. The model consists of five Fuzzy Inference Systems in two different layers to analyse the risk of a wheat flour product manufacturing system. The first layer of the model consists of four Fuzzy Inference Systems with three criteria. The output of each one of the Physical, Chemical, Biological and Environmental Failures will be the input of the final manufacturing systems. The proposed model based on Mamdani Fuzzy Inference Systems gives a performance ranking of wheat flour products manufacturing systems. The first step is obtaining data to identify the failure modes from expert’s opinions. The second step is the fuzzification process to convert crisp input to a fuzzy set., then the IF-then fuzzy rule applied through inference engine, and in the final step, the defuzzification process is applied to convert the fuzzy output into real numbers.

Keywords: failure modes, fuzzy rules, fuzzy inference system, risk assessment

Procedia PDF Downloads 83
2319 Waste to Biofuel by Torrefaction Technology

Authors: Jyh-Cherng Chen, Yu-Zen Lin, Wei-Zhi Chen

Abstract:

Torrefaction is one of waste to energy (WTE) technologies developing in Taiwan recently, which can reduce the moisture and impurities and increase the energy density of biowaste effectively. To understand the torrefaction characteristics of different biowaste and the influences of different torrefaction conditions, four typical biowaste were selected to carry out the torrefaction experiments. The physical and chemical properties of different biowaste prior to and after torrefaction were analyzed and compared. Experimental results show that the contents of elemental carbon and caloric value of the four biowaste were significantly increased after torrefaction. The increase of combustible and caloric value in bamboo was the greatest among the four biowaste. The caloric value of bamboo can be increased from 1526 kcal/kg to 6104 kcal/kg after 300oC and 1 hour torrefaction. The caloric value of torrefied bamboo was almost four times as the original. The increase of elemental carbon content in wood was the greatest (from 41.03% to 75.24%), and the next was bamboo (from 47.07% to 74.63%). The major parameters which affected the caloric value of torrefied biowaste followed the sequence of biowaste kinds, torrefaction time, and torrefaction temperature. The optimal torrefaction conditions of the experiments were bamboo torrefied at 300oC for 3 hours, and the corresponding caloric value of torrefied bamboo was 5953 kcal/kg. This caloric value is similar to that of brown coal or bituminous coal.

Keywords: torrefaction, waste to energy, calorie, biofuel

Procedia PDF Downloads 363
2318 Analysis of Aquifer Productivity in the Mbouda Area (West Cameroon)

Authors: Folong Tchoffo Marlyse Fabiola, Anaba Onana Achille Basile

Abstract:

Located in the western region of Cameroon, in the BAMBOUTOS department, the city of Mbouda belongs to the Pan-African basement. The water resources exploited in this region consist of surface water and groundwater from weathered and fractured aquifers within the same basement. To study the factors determining the productivity of aquifers in the Mbouda area, we adopted a methodology based on collecting data from boreholes drilled in the region, identifying different types of rocks, analyzing structures, and conducting geophysical surveys in the field. The results obtained allowed us to distinguish two main types of rocks: metamorphic rocks composed of amphibolites and migmatitic gneisses and igneous rocks, namely granodiorites and granites. Several types of structures were also observed, including planar structures (foliation and schistosity), folded structures (folds), and brittle structures (fractures and lineaments). A structural synthesis combines all these elements into three major phases of deformation. Phase D1 is characterized by foliation and schistosity, phase D2 is marked by shear planes and phase D3 is characterized by open and sealed fractures. The analysis of structures (fractures in outcrops, Landsat lineaments, subsurface structures) shows a predominance of ENE-WSW and WNW-ESE directions. Through electrical surveys and borehole data, we were able to identify the sequence of different geological formations. Four geo-electric layers were identified, each with a different electrical conductivity: conductive, semi-resistive, or resistive. The last conductive layer is considered a potentially aquiferous zone. The flow rates of the boreholes ranged from 2.6 to 12 m3/h, classified as moderate to high according to the CIEH classification. The boreholes were mainly located in basalts, which are mineralogically rich in ferromagnesian minerals. This mineral composition contributes to their high productivity as they are more likely to be weathered. The boreholes were positioned along linear structures or at their intersections.

Keywords: Mbouda, Pan-African basement, productivity, west-Cameroon

Procedia PDF Downloads 49
2317 A Mini-Review on Effect of Magnetic Field and Material on Combustion Engines

Authors: A. N. Santhosh, Vinay Hegde, S. Vinod Kumar, R. Giria, D. L. Rakesh, M. S. Raghu

Abstract:

At present, research on automobile engineering is in high demand, particularly in the field of fuel combustion. A large number of fossil fuels are being used in combustion, which may get exhausted in the near future and are not economical. To this end, research on the use of magnetic material in combustion engines is in progress to enhance the efficiency of fuel. The present review describes the chemical, physical and mathematical theory behind the magnetic materials along with the working principle of the internal combustion engine. The effect of different magnets like ferrite magnet, Neodymium magnet, and electromagnets was discussed. The effect of magnetic field on the consumption of the fuel, brake thermal efficiency, carbon monoxide, Oxides of Nitrogen, carbon dioxide, and hydrocarbon emission, along with smoke density, have been discussed in detail. Detailed mathematical modelling that shows the effect of magnetic field on fuel combustion is elaborated. Required pictorial representations are included wherever necessary. This review article could serve as a base for studying the effect of magnetic materials on IC engines.

Keywords: magnetic field, energizer, fuel conditioner, fuel consumption, emission reduction

Procedia PDF Downloads 89
2316 Electricity Production Enhancement in a Constructed Microbial Fuel Cell MFC Using Iron Nanoparticles

Authors: Khaoula Bensaida, Osama Eljamal

Abstract:

The electrical energy generation through Microbial Fuel Cells (MFCs) using microorganisms is a renewable and sustainable approach. It creates truly an efficient technology for power production and wastewater treatment. MFC is an electrochemical device which turns wastewater into electricity. The most important part of MFC is microbes. Nano zero-valent Iron NZVI technique was successfully applied in degrading the chemical pollutants and cleaning wastewater. However, the use of NZVI for enhancing the current production is still not confirmed yet. This study aims to confirm the effect of these particles on the current generation by using MFC. A constructed microbial fuel cell, which utilizes domestic wastewater, has been considered for wastewater treatment and bio-electricity generation. The two electrodes were connected to an external resistor (200 ohms). Experiments were conducted in two steps. First, the MFC was constructed without adding NZVI particles (Control) while at a second step, nanoparticles were added with a concentration of 50mg/L. After 20 hours, the measured voltage increased to 5 and 8mV, respectively. To conclude, the use of zero-valent iron in an MFC system can increase electricity generation.

Keywords: bacterial growth, electricity generation, microbial fuel cell MFC, nano zero-valent iron NZVI.

Procedia PDF Downloads 134
2315 Chemical Demulsification for Treating Crude Oil Emulsion

Authors: Miran Sabah Ibrahim, Nahit Aktas

Abstract:

The utilization of emulsifiers is highly important in the process of breaking emulsions. This examination employed five commercial demulsifiers in various temperatures for evaluating the separation efficiency. Furthermore, two different crude oils (Khurmala and Demir Dagh crude oil) were utilized for preparing emulsion. The outcomes revealed that the application commercial demulsifiers for Khurmala crude oil at 55°C and 100 ppm (KD-3100, KD-3200, FD-6144, FD-6210 and RI35Q) the separation efficiency were (78, 80.6, 78, 86 and 90 %) respectively. However, at 65 °C and 100 ppm (KD-3100, KD-3200, FD-6144, FD-6210 and RI35Q) separation efficiency were (87, 85, 91.3, 94 and 97 %) respectively. Nonetheless, utilizing Demir Dagh crude oil at 55 °C and 100 ppm (KD-3100, KD-3200, FD-6144, FD-6210 and RI35Q) resulted in the separation efficiency of (63.3, 66.6, 65, 73 and 76.6 %) respectively, and at 65 °C and 100 ppm (KD-3100, KD-3200, FD-6144, FD-6210 and RI35Q) were (77, 76.6, 80, 82 and 85 %) respectively. The combinations of FD-6144 and RI35Q at 55°C and ratio of (1:1) and (1:3) for Khurmala crude oil led to (96 and 90.6 %) efficiency respectively. However, the efficiency decreased to (98.6 and 93.3 %) respectively at 65 °C. The same combinations applied on Demir Dagh Crude oil and the results were (78 and 63.3 %) at 55 °C and (86.6 and 71 %) at 65 °C. Three different brine concentrations (NaCl) (0.5, 2 and 3.5 %) were prepared and utilized. It was found that the optimum NaCl concentration was at 3.5 % NaCl concentration for both khurmala and Demir dagh crude oil at 55 °C and 65 °C.

Keywords: demulsifier, emulsion, breaking emulsion, emulsifying agent (surfactant)

Procedia PDF Downloads 326
2314 Advances in Axonal Biomechanics and Mechanobiology: A Nanotechnology-Based Approach to the Study of Mechanotransduction of Axonal Growth

Authors: Alessandro Falconieri, Sara De Vincentiis, Vittoria Raffa

Abstract:

Mechanical force regulates axonal growth, elongation and maturation processes. This force is opening new frontiers in the field, contributing to a general understanding of the mechanisms of axon growth that, in the past, was thought to be governed exclusively by the growth cone and its ability to influence axonal growth in response to chemical signals. A method recently developed in our laboratory allows, through the labeling of neurons with magnetic nanoparticles (MNPs) and the use of permanent magnets, to apply extremely low mechanical forces, similar to those generated endogenously by the growth cone or by the increase of body mass during the organism growth. We found that these extremely low forces strongly enhance the spontaneous axonal elongation rate as well as neuronal sprouting. Data obtained don’t exclude that local phenomena, such as local transport and local translation, may be involved. These new advances could shed new light on what happens when the cell is subjected to external mechanical forces, opening new interesting scenarios in the field of mechanobiology.

Keywords: axon, external mechanical forces, magnetic nanoparticles, mechanotransduction

Procedia PDF Downloads 112
2313 Design of Experiment for Optimizing Immunoassay Microarray Printing

Authors: Alex J. Summers, Jasmine P. Devadhasan, Douglas Montgomery, Brittany Fischer, Jian Gu, Frederic Zenhausern

Abstract:

Immunoassays have been utilized for several applications, including the detection of pathogens. Our laboratory is in the development of a tier 1 biothreat panel utilizing Vertical Flow Assay (VFA) technology for simultaneous detection of pathogens and toxins. One method of manufacturing VFA membranes is with non-contact piezoelectric dispensing, which provides advantages, such as low-volume and rapid dispensing without compromising the structural integrity of antibody or substrate. Challenges of this processinclude premature discontinuation of dispensing and misaligned spotting. Preliminary data revealed the Yp 11C7 mAb (11C7)reagent to exhibit a large angle of failure during printing which may have contributed to variable printing outputs. A Design of Experiment (DOE) was executed using this reagent to investigate the effects of hydrostatic pressure and reagent concentration on microarray printing outputs. A Nano-plotter 2.1 (GeSIM, Germany) was used for printing antibody reagents ontonitrocellulose membrane sheets in a clean room environment. A spotting plan was executed using Spot-Front-End software to dispense volumes of 11C7 reagent (20-50 droplets; 1.5-5 mg/mL) in a 6-test spot array at 50 target membrane locations. Hydrostatic pressure was controlled by raising the Pressure Compensation Vessel (PCV) above or lowering it below our current working level. It was hypothesized that raising or lowering the PCV 6 inches would be sufficient to cause either liquid accumulation at the tip or discontinue droplet formation. After aspirating 11C7 reagent, we tested this hypothesis under stroboscope.75% of the effective raised PCV height and of our hypothesized lowered PCV height were used. Humidity (55%) was maintained using an Airwin BO-CT1 humidifier. The number and quality of membranes was assessed after staining printed membranes with dye. The droplet angle of failure was recorded before and after printing to determine a “stroboscope score” for each run. The DOE set was analyzed using JMP software. Hydrostatic pressure and reagent concentration had a significant effect on the number of membranes output. As hydrostatic pressure was increased by raising the PCV 3.75 inches or decreased by lowering the PCV -4.5 inches, membrane output decreased. However, with the hydrostatic pressure closest to equilibrium, our current working level, membrane output, reached the 50-membrane target. As the reagent concentration increased from 1.5 to 5 mg/mL, the membrane output also increased. Reagent concentration likely effected the number of membrane output due to the associated dispensing volume needed to saturate the membranes. However, only hydrostatic pressure had a significant effect on stroboscope score, which could be due to discontinuation of dispensing, and thus the stroboscope check could not find a droplet to record. Our JMP predictive model had a high degree of agreement with our observed results. The JMP model predicted that dispensing the highest concentration of 11C7 at our current PCV working level would yield the highest number of quality membranes, which correlated with our results. Acknowledgements: This work was supported by the Chemical Biological Technologies Directorate (Contract # HDTRA1-16-C-0026) and the Advanced Technology International (Contract # MCDC-18-04-09-002) from the Department of Defense Chemical and Biological Defense program through the Defense Threat Reduction Agency (DTRA).

Keywords: immunoassay, microarray, design of experiment, piezoelectric dispensing

Procedia PDF Downloads 168
2312 Ionic Liquid 1-Butyl-3-Methylimidazolium Bromide as Reaction Medium for the Synthesis of Flavanones under Solvent-Free Conditions

Authors: Cecilia Espindola, Juan Carlos Palacios

Abstract:

Flavonoids are a large group of natural compounds which are found in many fruits and vegetables. A subgroup of these called flavanones display a wide range of biological activities, and they also have an important physiological role in plants. The ionic liquid (ILs) are compounds consisting of an organic cation with an organic or inorganic anion. Due to its unique properties such as high electrical conductivity, wide temperature range of the liquid state, thermal and electrochemical stability, high ionic density and low volatility and flammability, are considered as ecological solvents in organic synthesis, catalysis, electrolytes in accumulators, and electrochemistry, non-volatile plasticizers, and chemical separation. It was synthesized ionic liquid IL 1-butyl-3-methylimidazolium bromide free-solvent and used as reaction medium for flavanones synthesis, under several reaction conditions of temperature, time and production. The obtained compounds were analyzed by melting point, elemental analysis, IR and UV-vis spectroscopy.

Keywords: 1-butyl-3-methylimidazolium bromide, flavonoids, free-solvent, IR spectroscopy

Procedia PDF Downloads 112
2311 A Simple Chemical Approach to Regenerating Strength of Thermally Recycled Glass Fibre

Authors: Sairah Bashir, Liu Yang, John Liggat, James Thomason

Abstract:

Glass fibre is currently used as reinforcement in over 90% of all fibre-reinforced composites produced. The high rigidity and chemical resistance of these composites are required for optimum performance but unfortunately results in poor recyclability; when such materials are no longer fit for purpose, they are frequently deposited in landfill sites. Recycling technologies, for example, thermal treatment, can be employed to address this issue; temperatures typically between 450 and 600 °C are required to allow degradation of the rigid polymeric matrix and subsequent extraction of fibrous reinforcement. However, due to the severe thermal conditions utilised in the recycling procedure, glass fibres become too weak for reprocessing in second-life composite materials. In addition, more stringent legislation is being put in place regarding disposal of composite waste, and so it is becoming increasingly important to develop long-term recycling solutions for such materials. In particular, the development of a cost-effective method to regenerate strength of thermally recycled glass fibres will have a positive environmental effect as a reduced volume of composite material will be destined for landfill. This research study has demonstrated the positive impact of sodium hydroxide (NaOH) and potassium hydroxide (KOH) solution, prepared at relatively mild temperatures and at concentrations of 1.5 M and above, on the strength of heat-treated glass fibres. As a result, alkaline treatments can potentially be implemented to glass fibres that are recycled from composite waste to allow their reuse in second-life materials. The optimisation of the strength recovery process is being conducted by varying certain reaction parameters such as molarity of alkaline solution and treatment time. It is believed that deep V-shaped surface flaws exist commonly on severely damaged fibre surfaces and are effectively removed to form smooth, U-shaped structures following alkaline treatment. Although these surface flaws are believed to be present on glass fibres they have not in fact been observed, however, they have recently been discovered in this research investigation through analytical techniques such as AFM (atomic force microscopy) and SEM (scanning electron microscopy). Reaction conditions such as molarity of alkaline solution affect the degree of etching of the glass fibre surface, and therefore the extent to which fibre strength is recovered. A novel method in determining the etching rate of glass fibres after alkaline treatment has been developed, and the data acquired can be correlated with strength. By varying reaction conditions such as alkaline solution temperature and molarity, the activation energy of the glass etching process and the reaction order can be calculated respectively. The promising results obtained from NaOH and KOH treatments have opened an exciting route to strength regeneration of thermally recycled glass fibres, and the optimisation of the alkaline treatment process is being continued in order to produce recycled fibres with properties that match original glass fibre products. The reuse of such glass filaments indicates that closed-loop recycling of glass fibre reinforced composite (GFRC) waste can be achieved. In fact, the development of a closed-loop recycling process for GFRC waste is already underway in this research study.

Keywords: glass fibers, glass strengthening, glass structure and properties, surface reactions and corrosion

Procedia PDF Downloads 245
2310 Income Inequality and the Poverty of Youth in the Douala Metropolis of Cameroon

Authors: Nanche Billa Robert

Abstract:

More and more youth are doubtful of making a satisfactory labour market transition because of the present global economic instability and this is more so in Africa of the Sahara and metropolis like Douala. We use the explanatory sequential mixed method: in the first phase we randomly administered 610 questionnaires in the Douala metropolis respecting the population size of each division and its gender composition. We constructed the questionnaire using the desired values for living a comfortable life in Douala. In the second phase, we purposefully selected and interviewed 50 poor youth in order to explain in detail the initial quantitative results. We obtain the following result: The modal income class is 24,000-74,000 frs Central Africa Franc (CFA) and about 67% of the youth of the Douala metropolis earn below 75,000 frs CFA. They earn only 31.02% of the total income. About 85.7% earn below 126,000 frs CFA and about 92.14% earn below 177,000 frs CFA. The poverty-line is estimated at 177,000 frs CFA per month based on the desired predominant values in Douala and only about 9% of youth earn this sum, therefore, 91% of the youth are poor. We discovered that the salary a youth earns influences his level of poverty. Low income earners eat once or twice per day, rent low-standard houses of below 20,000 frs, are dependent and possess very limited durable goods, consult traditional doctors when they are sick, sleep and gamble during their leisure time. Intermediate income earners feed themselves either twice or thrice per day, eat healthy meals weekly, possess more durable goods, are independent, gamble and drink during their leisure time. High income earners feed themselves at least thrice per day, eat healthy food daily, inhabit high quality and expensive houses, are more stable by living longer in their neighbourhoods, like travelling and drinking during their leisure time. Unsalaried youth, are students, housewives or unemployed youth, they eat four times per day, take healthy meals daily, weekly, fortnightly or occasionally, are dependent or homeless depending on whether they are students or unemployed youth. The situation of the youth can be ameliorated through investing in the productive sector and promoting entrepreneurship as well as formalizing the informal sector.

Keywords: income, inequality, poverty, metropolis

Procedia PDF Downloads 87
2309 Corrosion Characteristics and Electrochemical Treatment of Heritage Silver Alloys

Authors: Ahmad N. Abu-Baker

Abstract:

This study investigated the corrosion of a group of heritage silver-copper alloy coins and their conservation treatment by potentiostatic methods. The corrosion products of the coins were characterized by a combination of scanning electron microscopy/ energy-dispersive X-ray spectroscopy (SEM/EDX) and X-ray diffraction (XRD) analyses. Cathodic polarization curves, measured by linear sweep voltammetry (LSV), also identified the corrosion products and the working conditions to treat the coins using a potentiostatic reduction method, which was monitored by chronoamperometry. The corrosion products showed that the decay mechanisms were dominated by selective attack on the copper-rich phases of the silver-copper alloys, which is consistent with an internal galvanic corrosion phenomenon, which leads to the deposition of copper corrosion products on the surface of the coins. Silver chloride was also detected on the coins, which reflects selective corrosion of the silver-rich phases under different chemical environments. The potentiostatic treatment showed excellent effectiveness in determining treatment parameters and monitoring the reduction process of the corrosion products on the coins, which helped to preserve surface details in the cleaning process and to prevent over-treatment.

Keywords: silver alloys, corrosion, conservation, heritage

Procedia PDF Downloads 125
2308 Understanding the Information in Principal Component Analysis of Raman Spectroscopic Data during Healing of Subcritical Calvarial Defects

Authors: Rafay Ahmed, Condon Lau

Abstract:

Bone healing is a complex and sequential process involving changes at the molecular level. Raman spectroscopy is a promising technique to study bone mineral and matrix environments simultaneously. In this study, subcritical calvarial defects are used to study bone composition during healing without discomposing the fracture. The model allowed to monitor the natural healing of bone avoiding mechanical harm to the callus. Calvarial defects were created using 1mm burr drill in the parietal bones of Sprague-Dawley rats (n=8) that served in vivo defects. After 7 days, their skulls were harvested after euthanizing. One additional defect per sample was created on the opposite parietal bone using same calvarial defect procedure to serve as control defect. Raman spectroscopy (785 nm) was established to investigate bone parameters of three different skull surfaces; in vivo defects, control defects and normal surface. Principal component analysis (PCA) was utilized for the data analysis and interpretation of Raman spectra and helped in the classification of groups. PCA was able to distinguish in vivo defects from normal surface and control defects. PC1 shows that the major variation at 958 cm⁻¹, which corresponds to ʋ1 phosphate mineral band. PC2 shows the major variation at 1448 cm⁻¹ which is the characteristic band of CH2 deformation and corresponds to collagens. Raman parameters, namely, mineral to matrix ratio and crystallinity was found significantly decreased in the in vivo defects compared to surface and controls. Scanning electron microscope and optical microscope images show the formation of newly generated matrix by means of bony bridges of collagens. Optical profiler shows that surface roughness increased by 30% from controls to in vivo defects after 7 days. These results agree with Raman assessment parameters and confirm the new collagen formation during healing.

Keywords: Raman spectroscopy, principal component analysis, calvarial defects, tissue characterization

Procedia PDF Downloads 213
2307 Reaction Rate Behavior of a Methane-Air Mixture over a Platinum Catalyst in a Single Channel Catalytic Reactor

Authors: Doo Ki Lee, Kumaresh Selvakumar, Man Young Kim

Abstract:

Catalytic combustion is an environmentally friendly technique to combust fuels in gas turbines. In this paper, the behavior of surface reaction rate on catalytic combustion is studied with respect to the heterogeneous oxidation of methane-air mixture in a catalytic reactor. Plug flow reactor (PFR), the simplified single catalytic channel assists in investigating the catalytic combustion phenomenon over the Pt catalyst by promoting the desired chemical reactions. The numerical simulation with multi-step elementary surface reactions is governed by the availability of free surface sites onto the catalytic surface and thereby, the catalytic combustion characteristics are demonstrated by examining the rate of the reaction for lean fuel mixture. Further, two different surface reaction mechanisms are adopted and compared for surface reaction rates to indicate the controlling heterogeneous reaction for better fuel conversion. The performance of platinum catalyst under heterogeneous reaction is analyzed under the same temperature condition, where the catalyst with the higher kinetic rate of reaction would have a maximum catalytic activity for enhanced methane catalytic combustion.

Keywords: catalytic combustion, heterogeneous reaction, plug flow reactor, surface reaction rate

Procedia PDF Downloads 263
2306 The Impact of Corporate Social Responsibility Information Disclosure on the Accuracy of Analysts' Earnings Forecasts

Authors: Xin-Hua Zhao

Abstract:

In recent years, the growth rate of social responsibility reports disclosed by Chinese corporations has grown rapidly. The economic effects of the growing corporate social responsibility reports have become a hot topic. The article takes the chemical listed engineering corporations that disclose social responsibility reports in China as a sample, and based on the information asymmetry theory, examines the economic effect generated by corporate social responsibility disclosure with the method of ordinary least squares. The research is conducted from the perspective of analysts’ earnings forecasts and studies the impact of corporate social responsibility information disclosure on improving the accuracy of analysts' earnings forecasts. The results show that there is a statistically significant negative correlation between corporate social responsibility disclosure index and analysts’ earnings forecast error. The conclusions confirm that enterprises can reduce the asymmetry of social and environmental information by disclosing social responsibility reports, and thus improve the accuracy of analysts’ earnings forecasts. It can promote the effective allocation of resources in the market.

Keywords: analysts' earnings forecasts, corporate social responsibility disclosure, economic effect, information asymmetry

Procedia PDF Downloads 143
2305 Policy Recommendations for Reducing CO2 Emissions in Kenya's Electricity Generation, 2015-2030

Authors: Paul Kipchumba

Abstract:

Kenya is an East African Country lying at the Equator. It had a population of 46 million in 2015 with an annual growth rate of 2.7%, making a population of at least 65 million in 2030. Kenya’s GDP in 2015 was about 63 billion USD with per capita GDP of about 1400 USD. The rural population is 74%, whereas urban population is 26%. Kenya grapples with not only access to energy but also with energy security. There is direct correlation between economic growth, population growth, and energy consumption. Kenya’s energy composition is at least 74.5% from renewable energy with hydro power and geothermal forming the bulk of it; 68% from wood fuel; 22% from petroleum; 9% from electricity; and 1% from coal and other sources. Wood fuel is used by majority of rural and poor urban population. Electricity is mostly used for lighting. As of March 2015 Kenya had installed electricity capacity of 2295 MW, making a per capital electricity consumption of 0.0499 KW. The overall retail cost of electricity in 2015 was 0.009915 USD/ KWh (KES 19.85/ KWh), for installed capacity over 10MW. The actual demand for electricity in 2015 was 3400 MW and the projected demand in 2030 is 18000 MW. Kenya is working on vision 2030 that aims at making it a prosperous middle income economy and targets 23 GW of generated electricity. However, cost and non-cost factors affect generation and consumption of electricity in Kenya. Kenya does not care more about CO2 emissions than on economic growth. Carbon emissions are most likely to be paid by future costs of carbon emissions and penalties imposed on local generating companies by sheer disregard of international law on C02 emissions and climate change. The study methodology was a simulated application of carbon tax on all carbon emitting sources of electricity generation. It should cost only USD 30/tCO2 tax on all emitting sources of electricity generation to have solar as the only source of electricity generation in Kenya. The country has the best evenly distributed global horizontal irradiation. Solar potential after accounting for technology efficiencies such as 14-16% for solar PV and 15-22% for solar thermal is 143.94 GW. Therefore, the paper recommends adoption of solar power for generating all electricity in Kenya in order to attain zero carbon electricity generation in the country.

Keywords: co2 emissions, cost factors, electricity generation, non-cost factors

Procedia PDF Downloads 351