Search results for: atomic design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12855

Search results for: atomic design

8895 Syntheses of Anionic Poly(urethanes) with Imidazolium, Phosphonium, and Ammonium as Counter-cations and Their Evaluation for CO2 Separation

Authors: Franciele L. Bernard, Felipe Dalla Vecchia, Barbara B. Polesso, Jose A. Donato, Marcus Seferin, Rosane Ligabue, Jailton F. do Nascimento, Sandra Einloft

Abstract:

The increasing level of carbon dioxide concentration in the atmosphere related to fossil fuels processing and utilization are contributing to global warming phenomena considerably. Carbon capture and storage (CCS) technologies appear as one of the key technologies to reduce CO2 emissions mitigating the effects of climate change. Absorption using amines solutions as solvents have been extensively studied and used in industry for decades. However, solvent degradation and equipment corrosion are two of the main problems in this process. Poly (ionic liquid) (PIL) is considered as a promising material for CCS technology, potentially more environmentally friendly and lesser energy demanding than traditional material. PILs possess a unique combination of ionic liquids (ILs) features, such as affinity for CO2, thermal and chemical stability and adjustable properties, coupled with the intrinsic properties of the polymer. This study investigated new Poly (ionic liquid) (PIL) based on polyurethanes with different ionic liquids cations and its potential for CO2 capture. The PILs were synthesized by the addition of diisocyante to a difunctional polyol, followed by an exchange reaction with the ionic Liquids 1-butyl-3-methylimidazolium chloride (BMIM Cl); tetrabutylammonium bromide (TBAB) and tetrabutylphosphonium bromide (TBPB). These materials were characterized by Fourier transform infrared spectroscopy (FTIR), Proton Nuclear Magnetic Resonance (1H-NMR), Atomic force microscopy (AFM), Tensile strength analysis, Field emission scanning electron microscopy (FESEM), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC). The PILs CO2 sorption capacity were gravimetrically assessed in a Magnetic Suspension Balance (MSB). It was found that the ionic liquids cation influences in the compounds properties as well as in the CO2 sorption. The best result for CO2 sorption (123 mgCO2/g at 30 bar) was obtained for the PIL (PUPT-TBA). The higher CO2 sorption in PUPT-TBA is probably linked to the fact that the tetraalkylammonium cation having a higher positive density charge can have a stronger interaction with CO2, while the imidazolium charge is delocalized. The comparative CO2 sorption values of the PUPT-TBA with different ionic liquids showed that this material has greater capacity for capturing CO2 when compared to the ILs even at higher temperature. This behavior highlights the importance of this study, as the poly (urethane) based PILs are cheap and versatile materials.

Keywords: capture, CO2, ionic liquids, ionic poly(urethane)

Procedia PDF Downloads 222
8894 Efficacy of Self-Assessment Metacognitive Strategy on Academic Performance Among Upper Basic Students in Ankpa, Kogi State, Nigeria

Authors: Daodu Joshua Rotimi

Abstract:

This study investigated the Efficacy of Self-Assessment Metacognitive Strategy on Academic performance in Energy Concepts among Upper Basic Science Students in Ankpa, Kogi State, Nigeria. The research design adopted for the study was a Quasi-experimental control group design which employed a pretest, posttest of the experimental and control groups. The population of the study consisted of one hundred and twenty-four (124) JSSII Students; sixty-five (65) for the experimental group and (59) for the control group. The instrument used for the study was the Energy Concept Performance Test (ECPT), with a reliability coefficient of 0.80. Two research questions were answered using descriptive statistics of mean and standard deviation, while two hypotheses were tested using a t-test at P≤0.05 level of significance. The findings of the study revealed that the use of the Self-Assessment Metacognitive Strategy has a positive effect on students’ performance in energy concepts among upper Basic Science Students leading to high academic performance; also, there is no significant difference in the mean Academic Performance scores between Male and Female students taught Energy Concept using Self-Assessment Metacognitive Strategy. Based on the research findings, recommendations were made, which include that Secondary school teachers should be encouraged the use Self-Assessment Metacognitive strategy so as to make the learning process attractive, interactive and enriching to the learners.

Keywords: metacognition, self-assessment, performance, efficacy

Procedia PDF Downloads 106
8893 Design Challenges for Severely Skewed Steel Bridges

Authors: Muna Mitchell, Akshay Parchure, Krishna Singaraju

Abstract:

There is an increasing need for medium- to long-span steel bridges with complex geometry due to site restrictions in developed areas. One of the solutions to grade separations in congested areas is to use longer spans on skewed supports that avoid at-grade obstructions limiting impacts to the foundation. Where vertical clearances are also a constraint, continuous steel girders can be used to reduce superstructure depths. Combining continuous long steel spans on severe skews can resolve the constraints at a cost. The behavior of skewed girders is challenging to analyze and design with subsequent complexity during fabrication and construction. As a part of a corridor improvement project, Walter P Moore designed two 1700-foot side-by-side bridges carrying four lanes of traffic in each direction over a railroad track. The bridges consist of prestressed concrete girder approach spans and three-span continuous steel plate girder units. The roadway design added complex geometry to the bridge with horizontal and vertical curves combined with superelevation transitions within the plate girder units. The substructure at the steel units was skewed approximately 56 degrees to satisfy the existing railroad right-of-way requirements. A horizontal point of curvature (PC) near the end of the steel units required the use flared girders and chorded slab edges. Due to the flared girder geometry, the cross-frame spacing in each bay is unique. Staggered cross frames were provided based on AASHTO LRFD and NCHRP guidelines for high skew steel bridges. Skewed steel bridges develop significant forces in the cross frames and rotation in the girder websdue to differential displacements along the girders under dead and live loads. In addition, under thermal loads, skewed steel bridges expand and contract not along the alignment parallel to the girders but along the diagonal connecting the acute corners, resulting in horizontal displacement both along and perpendicular to the girders. AASHTO LRFD recommends a 95 degree Fahrenheit temperature differential for the design of joints and bearings. The live load and the thermal loads resulted in significant horizontal forces and rotations in the bearings that necessitated the use of HLMR bearings. A unique bearing layout was selected to minimize the effect of thermal forces. The span length, width, skew, and roadway geometry at the bridges also required modular bridge joint systems (MBJS) with inverted-T bent caps to accommodate movement in the steel units. 2D and 3D finite element analysis models were developed to accurately determine the forces and rotations in the girders, cross frames, and bearings and to estimate thermal displacements at the joints. This paper covers the decision-making process for developing the framing plan, bearing configurations, joint type, and analysis models involved in the design of the high-skew three-span continuous steel plate girder bridges.

Keywords: complex geometry, continuous steel plate girders, finite element structural analysis, high skew, HLMR bearings, modular joint

Procedia PDF Downloads 170
8892 Electro-Fenton Degradation of Erythrosine B Using Carbon Felt as a Cathode: Doehlert Design as an Optimization Technique

Authors: Sourour Chaabane, Davide Clematis, Marco Panizza

Abstract:

This study investigates the oxidation of Erythrosine B (EB) food dye by a homogeneous electro-Fenton process using iron (II) sulfate heptahydrate as a catalyst, carbon felt as cathode, and Ti/RuO2. The treated synthetic wastewater contains 100 mg L⁻¹ of EB and has a pH = 3. The effects of three independent variables have been considered for process optimization, such as applied current intensity (0.1 – 0.5 A), iron concentration (1 – 10 mM), and stirring rate (100 – 1000 rpm). Their interactions were investigated considering response surface methodology (RSM) based on Doehlert design as optimization method. EB removal efficiency and energy consumption were considered model responses after 30 minutes of electrolysis. Analysis of variance (ANOVA) revealed that the quadratic model was adequately fitted to the experimental data with R² (0.9819), adj-R² (0.9276) and low Fisher probability (< 0.0181) for EB removal model, and R² (0.9968), adj-R² (0.9872) and low Fisher probability (< 0.0014) relative to the energy consumption model reflected a robust statistical significance. The energy consumption model significantly depends on current density, as expected. The foregoing results obtained by RSM led to the following optimal conditions for EB degradation: current intensity of 0.2 A, iron concentration of 9.397 mM, and stirring rate of 500 rpm, which gave a maximum decolorization rate of 98.15 % with a minimum energy consumption of 0.74 kWh m⁻³ at 30 min of electrolysis.

Keywords: electrofenton, erythrosineb, dye, response serface methdology, carbon felt

Procedia PDF Downloads 59
8891 Study on Metabolic and Mineral Balance, Oxidative Stress and Cardiovascular Risk Factors in Type 2 Diabetic Patients on Different Therapy

Authors: E. Nemes-Nagy, E. Fogarasi, M. Croitoru, A. Nyárádi, K. Komlódi, S. Pál, A. Kovács, O. Kopácsy, R. Tripon, Z. Fazakas, C. Uzun, Z. Simon-Szabó, V. Balogh-Sămărghițan, E. Ernő Nagy, M. Szabó, M. Tilinca

Abstract:

Intense oxidative stress, increased glycated hemoglobin and mineral imbalance represent risk factors for complications in diabetic patients. Cardiovascular complications are most common in these patients, including nephropathy. This study was conducted in 2015 at the Procardia Laboratory in Tîrgu Mureș, Romania on 40 type 2 diabetic adults. Routine biochemical tests were performed on the Konleab 20XTi analyzer (serum glucose, total cholesterol, LDL and HDL cholesterol, triglyceride, creatinine, urea). We also measured serum uric acid, magnesium and calcium concentration by photometric procedures, potassium, sodium and chloride by ion selective electrode, and chromium by atomic absorption spectrometry in a group of patients. Glycated hemoglobin (HbA1c) dosage was made by reflectometry. Urine analysis was performed using the HandUReader equipment. The level of oxidative stress was measured by serum malondialdehyde dosage using the thiobarbituric acid reactive substances method. MDRD (Modification of Diet in Renal Disease) formula was applied for calculation of creatinine-derived glomerular filtration rate. GraphPad InStat software was used for statistical analysis of the data. The diabetic subject included in the study presented high MDA concentrations, showing intense oxidative stress. Calcium was deficient in 5% of the patients, chromium deficiency was present in 28%. The atherogenic cholesterol fraction was elevated in 13% of the patients. Positive correlation was found between creatinine and MDRD-creatinine values (p<0.0001), 68% of the patients presented increased creatinine values. The majority of the diabetic patients had good control of their diabetes, having optimal HbA1c values, 35% of them presented fasting serum glucose over 120 mg/dl and 18% had glucosuria. Intense oxidative stress and mineral deficiencies can increase the risk of cardiovascular complications in diabetic patients in spite of their good metabolic balance. More than two third of the patients present biochemical signs of nephropathy, cystatin C dosage and microalbuminuria could reveal better the kidney disorder, but glomerular filtration rate calculation formulas are also useful for evaluation of renal function.

Keywords: cardiovascular risk, homocysteine, malondialdehyde, metformin, minerals, type 2 diabetes, vitamin B12

Procedia PDF Downloads 305
8890 Nonlinear Finite Element Analysis of Concrete Filled Steel I-Girder Bridge

Authors: Waheed Ahmad Safi, Shunichi Nakamura

Abstract:

Concrete filled steel I-girder (CFIG) bridge was proposed and the bending and shear strength was confirmed by experiments. The area surrounded by the upper and lower flanges and the web is filled with concrete in CFIG, which is used to the intermediate support of a continuous girder. Three-dimensional finite element models were established to simulate the bending and shear behaviors of CFIG and to clarify the load transfer mechanism. Steel plates and filled concrete were modeled as a three-dimensional 8-node solid element and steel reinforcement bars as a three-dimensional 2-node truss element. The elements were mostly divided into the 50 x 50 mm mesh size. The non-linear stress-strain relation is assumed for concrete in compression including the softening effect after the peak, and the stress increases linearly for concrete in tension until concrete cracking but then decreases due to tension stiffening effect. The stress-strain relation for steel plates was tri-linear and that for reinforcements was bi-linear. The concrete and the steel plates were rigidly connected. The developed FEM model was applied to simulate and analysis the bending behaviors of the CFIG specimens. The vertical displacements and the strains of steel plates and the filled concrete obtained by FEM agreed very well with the test results until the yield load. The specimens collapsed when the upper flange buckled or the concrete spalled off. These phenomena cannot be properly analyzed by FEM, which produces a small discrepancy at the ultimate states. The FEM model was also applied to simulate and analysis the shear tests of the CFIG specimens. The vertical displacements and strains of steel and concrete calculated by FEM model agreed well with the test results. A truss action was confirmed by the FEM and the experiment, clarifying that shear forces were mainly resisted by the tension strut of the steel plate and the compression strut of the filled concrete acting in the diagonal direction. A trail design with the CFIG was carried out for a four-span continuous highway bridge and the design method was established. Construction cost was estimated about 12% lower than that of a conventional steel I-section girder.

Keywords: concrete filled steel I-girder, bending strength, FEM, limit states design, steel I-girder, shear strength

Procedia PDF Downloads 203
8889 Investigating the Experiences of Higher Education Academics on the Blended Approach Used during the Induction Course

Authors: Ann-May Marais

Abstract:

South African higher education institutions are following the global adoption of a blended approach to teaching and learning. Blended learning is viewed as a transformative teaching-learning approach, as it provides students with the optimum experience by mixing the best of face-to-face and online learning. Although academics realise the benefits of blended learning, they find it challenging and time-consuming to implement blended strategies. Professional development is a critical component of the adoption of higher education teaching-learning approaches. The Institutional course for higher education academics offered at a South African University was designed in a blended model, implemented and evaluated. This paper reports on a study that investigated the experiences of academics on the blended approach used during the induction course. A qualitative design-based research methodology was employed, and data was collected using participant feedback and document analysis. The data gathered from each of the four ICNL offerings were used to inform the design of the next course. Findings indicated that lecturers realised that blended learning could cater to student diversity, different learning styles, engagement, and innovation. Furthermore, it emerged that the course has to cater for diversity in technology proficiency and readiness of participants. Participants also require ongoing support in technology usage and discipline-specific blended learning workshops. This paper contends that the modelling of a blended approach to professional development can be an effective way to motivate academics to apply blended learning in their teaching-learning experiences.

Keywords: blended learning, professional development, induction course, integration of technology

Procedia PDF Downloads 149
8888 Magneto-Thermo-Mechanical Analysis of Electromagnetic Devices Using the Finite Element Method

Authors: Michael G. Pantelyat

Abstract:

Fundamental basics of pure and applied research in the area of magneto-thermo-mechanical numerical analysis and design of innovative electromagnetic devices (modern induction heaters, novel thermoelastic actuators, rotating electrical machines, induction cookers, electrophysical devices) are elaborated. Thus, mathematical models of magneto-thermo-mechanical processes in electromagnetic devices taking into account main interactions of interrelated phenomena are developed. In addition, graphical representation of coupled (multiphysics) phenomena under consideration is proposed. Besides, numerical techniques for nonlinear problems solution are developed. On this base, effective numerical algorithms for solution of actual problems of practical interest are proposed, validated and implemented in applied 2D and 3D computer codes developed. Many applied problems of practical interest regarding modern electrical engineering devices are numerically solved. Investigations of the influences of various interrelated physical phenomena (temperature dependences of material properties, thermal radiation, conditions of convective heat transfer, contact phenomena, etc.) on the accuracy of the electromagnetic, thermal and structural analyses are conducted. Important practical recommendations on the choice of rational structures, materials and operation modes of electromagnetic devices under consideration are proposed and implemented in industry.

Keywords: electromagnetic devices, multiphysics, numerical analysis, simulation and design

Procedia PDF Downloads 374
8887 Analytical Solutions of Josephson Junctions Dynamics in a Resonant Cavity for Extended Dicke Model

Authors: S.I.Mukhin, S. Seidov, A. Mukherjee

Abstract:

The Dicke model is a key tool for the description of correlated states of quantum atomic systems, excited by resonant photon absorption and subsequently emitting spontaneous coherent radiation in the superradiant state. The Dicke Hamiltonian (DH) is successfully used for the description of the dynamics of the Josephson Junction (JJ) array in a resonant cavity under applied current. In this work, we have investigated a generalized model, which is described by DH with a frustrating interaction term. This frustrating interaction term is explicitly the infinite coordinated interaction between all the spin half in the system. In this work, we consider an array of N superconducting islands, each divided into two sub-islands by a Josephson Junction, taken in a charged qubit / Cooper Pair Box (CPB) condition. The array is placed inside the resonant cavity. One important aspect of the problem lies in the dynamical nature of the physical observables involved in the system, such as condensed electric field and dipole moment. It is important to understand how these quantities behave with time to define the quantum phase of the system. The Dicke model without frustrating term is solved to find the dynamical solutions of the physical observables in analytic form. We have used Heisenberg’s dynamical equations for the operators and on applying newly developed Rotating Holstein Primakoff (HP) transformation and DH we have arrived at the four coupled nonlinear dynamical differential equations for the momentum and spin component operators. It is possible to solve the system analytically using two-time scales. The analytical solutions are expressed in terms of Jacobi's elliptic functions for the metastable ‘bound luminosity’ dynamic state with the periodic coherent beating of the dipoles that connect the two double degenerate dipolar ordered phases discovered previously. In this work, we have proceeded the analysis with the extended DH with a frustrating interaction term. Inclusion of the frustrating term involves complexity in the system of differential equations and it gets difficult to solve analytically. We have solved semi-classical dynamic equations using the perturbation technique for small values of Josephson energy EJ. Because the Hamiltonian contains parity symmetry, thus phase transition can be found if this symmetry is broken. Introducing spontaneous symmetry breaking term in the DH, we have derived the solutions which show the occurrence of finite condensate, showing quantum phase transition. Our obtained result matches with the existing results in this scientific field.

Keywords: Dicke Model, nonlinear dynamics, perturbation theory, superconductivity

Procedia PDF Downloads 118
8886 The Effect of Sand Content on Behavior of Kaolin Clay

Authors: Hamed Tohidi, James W. Mahar

Abstract:

One of the unknowns in the design of zoned earth dams is the percentage of sand which can be present in a clay core and still retain the necessary plasticity to prevent cracking in response to deformation. Cracks in the clay core of a dam caused by differential settlement can lead to failure of the dam. In this study, a series of Atterberg Limit tests and unconfined compression strength tests have been conducted in the ISU soil mechanics laboratory on prepared mixes of quartz sand and commercial clays (Kaolin and Smectite) to determine the relationship between sand content, plasticity and squeezing behavior. The prepared mixes have variable percentages of sand ranging between 10 and 90% by weight. Plastic limit test results in which specimens can be rolled into 1/8 in. threads without crumbling and plasticity index values which represent the range of water content over which the specimens can be remolded without cracking were used to evaluate the plasticity of the sand-clay mixtures. The test results show that the design mixes exhibit plastic behavior with sand contents up to 80% by weight. However, the plasticity of the mixes decreases with increasing sand content. For unconfined compression strength tests, the same mixtures of sand and clay (Kaolin) were made in plastic limit. The results which were concluded from the UCC tests represent the relationship between sand-clay content and chance of having squeezing behavior, also according to the results from UCC, strength of different samples and stress-strain curves can be obtained.

Keywords: clay's behaviour, plasticity, sand content, Kaolin clay

Procedia PDF Downloads 235
8885 Structural Analysis of Sheep and Goat Farms in Konya Province

Authors: Selda Uzal Seyfi

Abstract:

Goat milk is a quite important in human nutrition. In order to meet the demand to the goat and sheep milk occurring in the recent years, an increase is seen in the demand to housing projects, which will enable animals to be sheltered in the suitable environments. This study was carried out in between 2012 and 2013, in order to identify the existing cases of sheep and goat housings in the province Konya and their possibilities to be developed. In the study, in the province Konya, 25 pieces of sheep and goat farms and 46 pieces of sheep and goat housings (14 sheep housings, 3 goat housings, and 29 housings, in which both sheep and goat are bred ) that are present in the farm were investigated as material. In the study, examining the general features of the farms that are present in the region and structural features of housings that are present in the farms, it is studied whether or not they are suitable for animal breeding. As a result of the study, the barns were evaluated as insufficient in terms of barn design, although 48% of they were built after 2000. In 63% of housings examined, stocking density of resting area was below the value of 1 m2/animal and in 59% of the housings, stocking density of courtyard area was below the 2 m2/animal. Feeding length, in 57% of housings has a value of 0.30 m and below. In the region, it will be possible to obtain the desired productivity level by building new barn designs, developed in accordance with the animal behaviors and welfare. Carrying out the necessary works is an important issue in terms of country and regional economy.

Keywords: barn design, goat housing, sheep housing, structural analysis

Procedia PDF Downloads 270
8884 An Investigation of the Quantitative Correlation between Urban Spatial Morphology Indicators and Block Wind Environment

Authors: Di Wei, Xing Hu, Yangjun Chen, Baofeng Li, Hong Chen

Abstract:

To achieve the research purpose of guiding the spatial morphology design of blocks through the indicators to obtain a good wind environment, it is necessary to find the most suitable type and value range of each urban spatial morphology indicator. At present, most of the relevant researches is based on the numerical simulation of the ideal block shape and rarely proposes the results based on the complex actual block types. Therefore, this paper firstly attempted to make theoretical speculation on the main factors influencing indicators' effectiveness by analyzing the physical significance and formulating the principle of each indicator. Then it was verified by the field wind environment measurement and statistical analysis, indicating that Porosity(P₀) can be used as an important indicator to guide the design of block wind environment in the case of deep street canyons, while Frontal Area Density (λF) can be used as a supplement in the case of shallow street canyons with no height difference. Finally, computational fluid dynamics (CFD) was used to quantify the impact of block height difference and street canyons depth on λF and P₀, finding the suitable type and value range of λF and P₀. This paper would provide a feasible wind environment index system for urban designers.

Keywords: urban spatial morphology indicator, urban microclimate, computational fluid dynamics, block ventilation, correlation analysis

Procedia PDF Downloads 121
8883 Fabrication of Textile-Based Radio Frequency Metasurfaces

Authors: Adria Kajenski, Guinevere Strack, Edward Kingsley, Shahriar Khushrushahi, Alkim Akyurtlu

Abstract:

Radio Frequency (RF) metasurfaces are arrangements of subwavelength elements interacting with electromagnetic radiation. These arrangements affect polarization state, amplitude, and phase of impinged radio waves; for example, metasurface designs are used to produce functional passband and stopband filters. Recent advances in additive manufacturing techniques have enabled the low-cost, rapid fabrication of ultra-thin metasurface elements on flexible substrates such as plastic films, paper, and textiles. Furthermore, scalable manufacturing processes promote the integration of fabric-based RF metasurfaces into the market of sensors and devices within the Internet of Things (IoT). The design and fabrication of metasurfaces on textiles require a multidisciplinary team with expertise in i) textile and materials science, ii) metasurface design and simulation, and iii) metasurface fabrication and testing. In this presentation, we will discuss RF metasurfaces on fabric with an emphasis on how the materials, including fabric and inks, along with fabrication techniques, affect the RF performance. We printed metasurfaces using a direct-write approach onto various woven and non-woven fabrics, as well as on fabrics coated with either thermoplastic or thermoset coatings. Our team also performed a range of tests on the printed structures, including different inks and their curing parameters, wash durability, abrasion resistance, and RF performance over time.

Keywords: electronic textiles, metasurface, printed electronics, flexible

Procedia PDF Downloads 180
8882 Personal Variables and Students’ Perception of School Security in Secondary Schools in Calabar Municipality, Cross River State, Nigeria

Authors: James Bassey Ejue, Dorn Cklaimz Enamhe, Helen Francis Ejue

Abstract:

The study examined the influence of personal variables such as sex, type of school, and parental socio-economic status on secondary school students’ perception of school security. To guide the study, three null hypotheses were formulated. The research design adopted was the survey design, and a 20-item instrument was constructed and validated by the researchers through a test-retest procedure. The sample size for the study comprised 2,198 students made up of male and female students selected through a stratified random sampling technique. This was drawn from a study population of 21,988, made up of 12,635 students and 9353 students from public and private secondary schools, respectively. Data were analyzed using an independent t-test statistical tool. The findings showed that female students were more fearful in their perception of school security; the students in private schools perceived school to be more insecure than those in public schools; and the students from high parental socio-economic status are more associated with the perception of school as insecure than the ones from low parental socio-economic status. Based on these findings, it was recommended that, among others, more reassuring measures be put in place to check school security for females, for those in private schools, and for those from high parental socio-economic status. School counsellors should also be guided accordingly in designing intervention strategies.

Keywords: personal variables, students, perception, school security

Procedia PDF Downloads 59
8881 Impact of Colors, Space Design and Artifacts on Cognitive Health in Government Hospitals of Uttarakhand

Authors: Ila Gupta

Abstract:

The government hospitals in India by and large lack the necessary aesthetic therapeutic components, both in their interior and exterior space designs. These components especially in terms of color application are important to the emotional as well as physical well being of the patients and other participants of the space. The preliminary survey of few government hospitals in Uttarakhand, India, reveals that the government health care industry provides a wide scope for intervention. All most all of the spaces do not adhere to a proper therapeutic color scheme which directly helps the well-being of their patients and workers. The paper aims to conduct a survey and come up with recommendations in this regard. The government hospitals also lack a proper signage system which allows the space to be more user-friendly. The hospital spaces in totality also have scope for improvement in terms of space/landscape design which enhances the work environment in an efficient and positive way. This study will thus enable to come up with feasible recommendations for healthcare and built environment as well as retrofitting the existing spaces. The objective of the paper is mainly on few case studies. The present ambience in many government hospitals generally lacks a welcoming ambience. It is proposed to select one or two government hospitals and demonstrate application of appropriate and self-sustainable color schemes, placement of artifacts, changes in outdoor and indoor space design to bring about a change that is conducive for cognitive healing. Exterior changes to existing and old hospital buildings in depressed historic areas signify financial investment and change, and have the potential to play a significant role in both urban preservation and revitalization. Changes to exterior architectural colors are perhaps the most visible signifier of such revitalization, as the use of color changes as a tool in façade and interior improvement programs. The present project will provide its recommendations on the basis of case studies done in the Indian Public Health Care system. Furthermore, the recommendations will be in accordance with the extended study conducted in Indian Ayurvedic, Yogic texts as well as Vastu texts, which provides knowledge about built environments and healing properties of color.

Keywords: color, environment, facade, architectural color history, interior improvement programs, community development, district/government hospitals

Procedia PDF Downloads 155
8880 Sign Language Recognition of Static Gestures Using Kinect™ and Convolutional Neural Networks

Authors: Rohit Semwal, Shivam Arora, Saurav, Sangita Roy

Abstract:

This work proposes a supervised framework with deep convolutional neural networks (CNNs) for vision-based sign language recognition of static gestures. Our approach addresses the acquisition and segmentation of correct inputs for the CNN-based classifier. Microsoft Kinect™ sensor, despite complex environmental conditions, can track hands efficiently. Skin Colour based segmentation is applied on cropped images of hands in different poses, used to depict different sign language gestures. The segmented hand images are used as an input for our classifier. The CNN classifier proposed in the paper is able to classify the input images with a high degree of accuracy. The system was trained and tested on 39 static sign language gestures, including 26 letters of the alphabet and 13 commonly used words. This paper includes a problem definition for building the proposed system, which acts as a sign language translator between deaf/mute and the rest of the society. It is then followed by a focus on reviewing existing knowledge in the area and work done by other researchers. It also describes the working principles behind different components of CNNs in brief. The architecture and system design specifications of the proposed system are discussed in the subsequent sections of the paper to give the reader a clear picture of the system in terms of the capability required. The design then gives the top-level details of how the proposed system meets the requirements.

Keywords: sign language, CNN, HCI, segmentation

Procedia PDF Downloads 133
8879 A Dynamic Mechanical Thermal T-Peel Test Approach to Characterize Interfacial Behavior of Polymeric Textile Composites

Authors: J. R. Büttler, T. Pham

Abstract:

Basic understanding of interfacial mechanisms is of importance for the development of polymer composites. For this purpose, we need techniques to analyze the quality of interphases, their chemical and physical interactions and their strength and fracture resistance. In order to investigate the interfacial phenomena in detail, advanced characterization techniques are favorable. Dynamic mechanical thermal analysis (DMTA) using a rheological system is a sensitive tool. T-peel tests were performed with this system, to investigate the temperature-dependent peel behavior of woven textile composites. A model system was made of polyamide (PA) woven fabric laminated with films of polypropylene (PP) or PP modified by grafting with maleic anhydride (PP-g-MAH). Firstly, control measurements were performed with solely PP matrixes. Polymer melt investigations, as well as the extensional stress, extensional viscosity and extensional relaxation modulus at -10°C, 100 °C and 170 °C, demonstrate similar viscoelastic behavior for films made of PP-g-MAH and its non-modified PP-control. Frequency sweeps have shown that PP-g-MAH has a zero phase viscosity of around 1600 Pa·s and PP-control has a similar zero phase viscosity of 1345 Pa·s. Also, the gelation points are similar at 2.42*104 Pa (118 rad/s) and 2.81*104 Pa (161 rad/s) for PP-control and PP-g-MAH, respectively. Secondly, the textile composite was analyzed. The extensional stress of PA66 fabric laminated with either PP-control or PP-g-MAH at -10 °C, 25 °C and 170 °C for strain rates of 0.001 – 1 s-1 was investigated. The laminates containing the modified PP need more stress for T-peeling. However, the strengthening effect due to the modification decreases by increasing temperature and at 170 °C, just above the melting temperature of the matrix, the difference disappears. Independent of the matrix used in the textile composite, there is a decrease of extensional stress by increasing temperature. It appears that the more viscous is the matrix, the weaker the laminar adhesion. Possibly, the measurement is influenced by the fact that the laminate becomes stiffer at lower temperatures. Adhesive lap-shear testing at room temperature supports the findings obtained with the T-peel test. Additional analysis of the textile composite at the microscopic level ensures that the fibers are well embedded in the matrix. Atomic force microscopy (AFM) imaging of a cross section of the composite shows no gaps between the fibers and matrix. Measurements of the water contact angle show that the MAH grafted PP is more polar than the virgin-PP, and that suggests a more favorable chemical interaction of PP-g-MAH with PA, compared to the non-modified PP. In fact, this study indicates that T-peel testing by DMTA is a technique to achieve more insights into polymeric textile composites.

Keywords: dynamic mechanical thermal analysis, interphase, polyamide, polypropylene, textile composite

Procedia PDF Downloads 120
8878 The Changing Landscape of Fire Safety in Covered Car Parks with the Arrival of Electric Vehicles

Authors: Matt Stallwood, Michael Spearpoint

Abstract:

In 2020, the UK government announced that sales of new petrol and diesel cars would end in 2030, and battery-powered cars made up 1 in 8 new cars sold in 2021 – more than the total from the previous five years. The guidance across the UK for the fire safety design of covered car parks is changing in response to the projected rapid growth in electric vehicle (EV) use. This paper discusses the current knowledge on the fire safety concerns posed by EVs, in particular those powered by lithium-ion batteries, when considering the likelihood of vehicle ignition, fire severity and spread of fire to other vehicles. The paper builds on previous work that has investigated the frequency of fires starting in cars powered by internal combustion engines (ICE), the hazard posed by such fires in covered car parks and the potential for neighboring vehicles to become involved in an incident. Historical data has been used to determine the ignition frequency of ICE car fires, whereas such data is scarce when it comes to EV fires. Should a fire occur, then the fire development has conventionally been assessed to match a ‘medium’ growth rate and to have a 95th percentile peak heat release of 9 MW. The paper examines recent literature in which researchers have measured the burning characteristics of EVs to assess whether these values need to be changed. These findings are used to assess the risk posed by EVs when compared to ICE vehicles. The paper examines what new design guidance is being issued by various organizations across the UK, such as fire and rescue services, insurers, local government bodies and regulators and discusses the impact these are having on the arrangement of parking bays, particularly in residential and mixed-use buildings. For example, the paper illustrates how updated guidance published by the Fire Protection Association (FPA) on the installation of sprinkler systems has increased the hazard classification of parking buildings that can have a considerable impact on the feasibility of a building to meet all its design intents when specifying water supply tanks. Another guidance on the provision of smoke ventilation systems and structural fire resistance is also presented. The paper points to where further research is needed on the fire safety risks posed by EVs in covered car parks. This will ensure that any guidance is commensurate with the need to provide an adequate level of life and property safety in the built environment.

Keywords: covered car parks, electric vehicles, fire safety, risk

Procedia PDF Downloads 64
8877 Influence of Wind Induced Fatigue Damage in the Reliability of Wind Turbines

Authors: Emilio A. Berny-Brandt, Sonia E. Ruiz

Abstract:

Steel tubular towers serving as support structures for large wind turbines are subject to several hundred million stress cycles arising from the turbulent nature of the wind. This causes high-cycle fatigue which can govern tower design. The practice of maintaining the support structure after wind turbines reach its typical 20-year design life have become common, but without quantifying the changes in the reliability on the tower. There are several studies on this topic, but most of them are based on the S-N curve approach using the Miner’s rule damage summation method, the de-facto standard in the wind industry. However, the qualitative nature of Miner’s method makes desirable the use of fracture mechanics to measure the effects of fatigue in the capacity curve of the structure, which is important in order to evaluate the integrity and reliability of these towers. Temporal and spatially varying wind speed time histories are simulated based on power spectral density and coherence functions. Simulations are then applied to a SAP2000 finite element model and step-by-step analysis is used to obtain the stress time histories for a range of representative wind speeds expected during service conditions of the wind turbine. Rainflow method is then used to obtain cycle and stress range information of each of these time histories and a statistical analysis is performed to obtain the distribution parameters of each variable. Monte Carlo simulation is used here to evaluate crack growth over time in the tower base using the Paris-Erdogan equation. A nonlinear static pushover analysis to assess the capacity curve of the structure after a number of years is performed. The capacity curves are then used to evaluate the changes in reliability of a steel tower located in Oaxaca, Mexico, where wind energy facilities are expected to grow in the near future. Results show that fatigue on the tower base can have significant effects on the structural capacity of the wind turbine, especially after the 20-year design life when the crack growth curve starts behaving exponentially.

Keywords: crack growth, fatigue, Monte Carlo simulation, structural reliability, wind turbines

Procedia PDF Downloads 506
8876 The Willingness to Pay of People in Taiwan for Flood Protection Standard of Regions

Authors: Takahiro Katayama, Hsueh-Sheng Chang

Abstract:

Due to the global climate change, it has increased the extreme rainfall that led to serious floods around the world. In recent years, urbanization and population growth also tend to increase the number of impervious surfaces, resulting in significant loss of life and property during floods especially for the urban areas of Taiwan. In the past, the primary governmental response to floods was structural flood control and the only flood protection standards in use were the design standards. However, these design standards of flood control facilities are generally calculated based on current hydrological conditions. In the face of future extreme events, there is a high possibility to surpass existing design standards and cause damages directly and indirectly to the public. To cope with the frequent occurrence of floods in recent years, it has been pointed out that there is a need for a different standard called FPSR (Flood Protection Standard of Regions) in Taiwan. FPSR is mainly used for disaster reduction and used to ensure that hydraulic facilities draining regional flood immediately under specific return period. FPSR could convey a level of flood risk which is useful for land use planning and reflect the disaster situations that a region can bear. However, little has been reported on FPSR and its impacts to the public in Taiwan. Hence, this study proposes a quantity procedure to evaluate the FPSR. This study aimed to examine FPSR of the region and public perceptions of and knowledge about FPSR, as well as the public’s WTP (willingness to pay) for FPSR. The research is conducted via literature review and questionnaire method. Firstly, this study will review the domestic and international research on the FPSR, and provide the theoretical framework of FPSR. Secondly, CVM (Contingent Value Method) has been employed to conduct this survey and using double-bounded dichotomous choice, close-ended format elicits households WTP for raising the protection level to understand the social costs. The samplings of this study are citizens living in Taichung city, Taiwan and 700 samplings were chosen in this study. In the end, this research will continue working on surveys, finding out which factors determining WTP, and provide some recommendations for adaption policies for floods in the future.

Keywords: climate change, CVM (Contingent Value Method), FPSR (Flood Protection Standard of Regions), urban flooding

Procedia PDF Downloads 231
8875 Sustainable Development of HV Substation in Urban Areas Considering Environmental Aspects

Authors: Mahdi Naeemi Nooghabi, Mohammad Tofiqu Arif

Abstract:

Gas Insulated Switchgears by using an insulation material named SF6 (Sulphur Hexafluoride) and its significant dielectric properties have been the only choice in urban areas and other polluted industries. However, the initial investment of GIS is more than conventional AIS substation, its total life cycle costs caused to reach huge amounts of electrical market share. SF6 environmental impacts on global warming, atmosphere depletion, and decomposing to toxic gases in high temperature situation, and highest rate in Global Warming Potential (GWP) with 23900 times of CO2e and a 3200-year period lifetime was the only undeniable concern of GIS substation. Efforts of international environmental institute and their politic supports have been able to lead SF6 emission reduction legislation. This research targeted to find an appropriate alternative for GIS substations to meet all advantages in land occupation area and to improve SF6 environmental impacts due to its leakage and emission. An innovative new conceptual design named Multi-Storey prepared a new AIS design similar in land occupation, extremely low Sf6 emission, and maximum greenhouse gas emission reduction. Surprisingly, by considering economic benefits due to carbon price saving, it can earn more than $675 million during the 30-year life cycle by replacing of just 25% of total annual worldly additional GIS switchgears.

Keywords: AIS substation, GIS substation, SF6, greenhouse gas, global warming potential, carbon price, emission

Procedia PDF Downloads 293
8874 Building Information Modeling and Its Application in the State of Kuwait

Authors: Michael Gerges, Ograbe Ahiakwo, Martin Jaeger, Ahmad Asaad

Abstract:

Recent advances of Building Information Modeling (BIM) especially in the Middle East have increased remarkably. Dubai has been taking a lead on this by making it mandatory for BIM to be adopted for all projects that involve complex architecture designs. This is because BIM is a dynamic process that assists all stakeholders in monitoring the project status throughout different project phases with great transparency. It focuses on utilizing information technology to improve collaboration among project participants during the entire life cycle of the project from the initial design, to the supply chain, resource allocation, construction and all productivity requirements. In view of this trend, the paper examines the extent of applying BIM in the State of Kuwait, by exploring practitioners’ perspectives on BIM, especially their perspectives on main barriers and main advantages. To this end structured interviews were carried out based on questionnaires and with a range of different construction professionals. The results revealed that practitioners perceive improved communication and mitigated project risks by encouraged collaboration between project participants. However, it was also observed that the full implementation of BIM in the State of Kuwait requires concerted efforts to make clients demanding BIM, counteract resistance to change among construction professionals and offer more training for design team members. This paper forms part of an on-going research effort on BIM and its application in the State of Kuwait and it is on this basis that further research on the topic is proposed.

Keywords: building information modeling, BIM, construction industry, Kuwait

Procedia PDF Downloads 362
8873 Relation of Cad/Cam Zirconia Dental Implant Abutments with Periodontal Health and Final Aesthetic Aspects; A Systematic Review

Authors: Amin Davoudi

Abstract:

Aim: New approaches have been introduced to improve soft tissue indices of the dental implants. This systematic review aimed to investigate the effect of computer-aided design and computer-assisted manufacture (CAD/CAM) zirconia (Zr) implant abutments on periodontal aspects. Materials and Methods: Five electronic databases were searched thoroughly based on prior defined MeSH and non-MeSH keywords. Clinical studies were collected via hand searches in English language journals up to September 2020. Interproximal papilla stability, papilla recession, pink and white esthetic score (PES, WES), bone and gingival margin levels, color, and contour of soft tissue were reviewed. Results: The initial literature search yielded 412 articles. After the evaluation of abstracts and full texts, six studies were eligible to be screened. The study design of the included studies was a prospective cohort (n=3) and randomized clinical trial (n=3). The outcome was found to be significantly better for Zr than titanium abutments, however, the studies did not show significant differences between stock and CAD/CAM abutments. Conclusion: Papilla fill, WES, PES, and the distance from the contact point to dental crest bone of adjacent tooth and inter-tooth–implant distance were not significantly different between Zr CAD/CAM and Zr stock abutments. However, soft tissue stability and recession index were better in Zr CAD/CAM abutments.

Keywords: zirconia, CADCAM, periodental, implant

Procedia PDF Downloads 87
8872 Mechanical Behavior of Recycled Mortars Manufactured from Moisture Correction Using the Halogen Light Thermogravimetric Balance as an Alternative to the Traditional ASTM C 128 Method

Authors: Diana Gomez-Cano, J. C. Ochoa-Botero, Roberto Bernal Correa, Yhan Paul Arias

Abstract:

To obtain high mechanical performance, the fresh conditions of a mortar are decisive. Measuring the absorption of aggregates used in mortar mixes is a fundamental requirement for proper design of the mixes prior to their placement in construction sites. In this sense, absorption is a determining factor in the design of a mix because it conditions the amount of water, which in turn affects the water/cement ratio and the final porosity of the mortar. Thus, this work focuses on the mechanical behavior of recycled mortars manufactured from moisture correction using the Thermogravimetric Balancing Halogen Light (TBHL) technique in comparison with the traditional ASTM C 128 International Standard method. The advantages of using the TBHL technique are favorable in terms of reduced consumption of resources such as materials, energy, and time. The results show that in contrast to the ASTM C 128 method, the TBHL alternative technique allows obtaining a higher precision in the absorption values of recycled aggregates, which is reflected not only in a more efficient process in terms of sustainability in the characterization of construction materials but also in an effect on the mechanical performance of recycled mortars.

Keywords: alternative raw materials, halogen light, recycled mortar, resources optimization, water absorption

Procedia PDF Downloads 98
8871 Introducing Transport Engineering through Blended Learning Initiatives

Authors: Kasun P. Wijayaratna, Lauren Gardner, Taha Hossein Rashidi

Abstract:

Undergraduate students entering university across the last 2 to 3 years tend to be born during the middle years of the 1990s. This generation of students has been exposed to the internet and the desire and dependency on technology since childhood. Brains develop based on environmental influences and technology has wired this generation of student to be attuned to sophisticated complex visual imagery, indicating visual forms of learning may be more effective than the traditional lecture or discussion formats. Furthermore, post-millennials perspectives on career are not focused solely on stability and income but are strongly driven by interest, entrepreneurship and innovation. Accordingly, it is important for educators to acknowledge the generational shift and tailor the delivery of learning material to meet the expectations of the students and the needs of industry. In the context of transport engineering, effectively teaching undergraduate students the basic principles of transport planning, traffic engineering and highway design is fundamental to the progression of the profession from a practice and research perspective. Recent developments in technology have transformed the discipline as practitioners and researchers move away from the traditional “pen and paper” approach to methods involving the use of computer programs and simulation. Further, enhanced accessibility of technology for students has changed the way they understand and learn material being delivered at tertiary education institutions. As a consequence, blended learning approaches, which aim to integrate face to face teaching with flexible self-paced learning resources, have become prevalent to provide scalable education that satisfies the expectations of students. This research study involved the development of a series of ‘Blended Learning’ initiatives implemented within an introductory transport planning and geometric design course, CVEN2401: Sustainable Transport and Highway Engineering, taught at the University of New South Wales, Australia. CVEN2401 was modified by conducting interactive polling exercises during lectures, including weekly online quizzes, offering a series of supplementary learning videos, and implementing a realistic design project that students needed to complete using modelling software that is widely used in practice. These activities and resources were aimed to improve the learning environment for a large class size in excess of 450 students and to ensure that practical industry valued skills were introduced. The case study compared the 2016 and 2017 student cohorts based on their performance across assessment tasks as well as their reception to the material revealed through student feedback surveys. The initiatives were well received with a number of students commenting on the ability to complete self-paced learning and an appreciation of the exposure to a realistic design project. From an educator’s perspective, blending the course made it feasible to interact and engage with students. Personalised learning opportunities were made available whilst delivering a considerable volume of complex content essential for all undergraduate Civil and Environmental Engineering students. Overall, this case study highlights the value of blended learning initiatives, especially in the context of large class size university courses.

Keywords: blended learning, highway design, teaching, transport planning

Procedia PDF Downloads 138
8870 Evaluation of Impact on Traffic Conditions Due to Electronic Toll Collection System Design in Thailand

Authors: Kankrong Suangka

Abstract:

This research explored behaviors of toll way users that impact their decision to use the Electronic Toll Collection System (ETC). It also went on to explore and evaluated the efficiency of toll plaza in terms of number of ETC booths in toll plaza and its lane location. The two main parameters selected for the scenarios analyzed were (1) the varying ration of ETC enabled users (2) the varying locations of the dedicated ETC lane. There were a total of 42 scenarios analyzed. Researched data indicated that in A.D.2013, the percentage of ETC user from the total toll user is 22%. It was found that the delay at the payment booth was reduced by increasing the ETC booth by 1 more lane under the condition that the volume of ETC users passing through the plaza less than 1,200 vehicles/hour. Meanwhile, increasing the ETC lanes by 2 lanes can accommodate an increased traffic volume to around 1,200 to 1,800 vehicles/hour. Other than that, in terms of the location of ETC lane, it was found that if for one ETC lane-plazas, installing the ETC lane at the far right are the best alternative. For toll plazas with 2 ETC lanes, the best layout is to have 1 lane in the middle and 1 lane at the far right. This layout shows the least delay when compared to other layouts. Furthermore, the results from this research showed that micro-simulator traffic models have potential for further applications and use in designing toll plaza lanes. Other than that, the results can also be used to analyze the system of the nearby area with similar traffic volume and can be used for further design improvements.

Keywords: the electronic toll collection system, average queuing delay, toll plaza configuration, bioinformatics, biomedicine

Procedia PDF Downloads 222
8869 Design, Analysis and Optimization of Space Frame for BAJA SAE Chassis

Authors: Manoj Malviya, Shubham Shinde

Abstract:

The present study focuses on the determination of torsional stiffness of a space frame chassis and comparison of elements used in the Finite Element Analysis of frame. The study also discusses various concepts and design aspects of a space frame chassis with the emphasis on their applicability in BAJA SAE vehicles. Torsional stiffness is a very important factor that determines the chassis strength, vehicle control, and handling. Therefore, it is very important to determine the torsional stiffness of the vehicle before designing an optimum chassis so that it should not fail during extreme conditions. This study determines the torsional stiffness of frame with respect to suspension shocks, roll-stiffness and anti-roll bar rates. A spring model is developed to study the effects of suspension parameters. The engine greatly contributes to torsional stiffness, and therefore, its effects on torsional stiffness need to be considered. Deflections in the tire have not been considered in the present study. The proper element shape should be selected to analyze the effects of various loadings on chassis while implementing finite element methods. The study compares the accuracy of results and computational time for different element types. Shape functions of these elements are also discussed. Modelling methodology is discussed for the multibody analysis of chassis integrated with suspension arms and engine. Proper boundary conditions are presented so as to replicate the real life conditions.

Keywords: space frame chassis, torsional stiffness, multi-body analysis of chassis, element selection

Procedia PDF Downloads 340
8868 Unfolding Architectural Assemblages: Mapping Contemporary Spatial Objects' Affective Capacity

Authors: Panagiotis Roupas, Yota Passia

Abstract:

This paper aims at establishing an index of design mechanisms - immanent in spatial objects - based on the affective capacity of their material formations. While spatial objects (design objects, buildings, urban configurations, etc.) are regarded as systems composed of interacting parts, within the premises of assemblage theory, their ability to affect and to be affected has not yet been mapped or sufficiently explored. This ability lies in excess, a latent potentiality they contain, not transcendental but immanent in their pre-subjective aesthetic power. As spatial structures are theorized as assemblages - composed of heterogeneous elements that enter into relations with one another - and since all assemblages are parts of larger assemblages, their components' ability to engage is contingent. We thus seek to unfold the mechanisms inherent in spatial objects that allow to the constituent parts of design assemblages to perpetually enter into new assemblages. To map architectural assemblage's affective ability, spatial objects are analyzed in two axes. The first axis focuses on the relations that the assemblage's material and expressive components develop in order to enter the assemblages. Material components refer to those material elements that an assemblage requires in order to exist, while expressive components includes non-linguistic (sense impressions) as well as linguistic (beliefs). The second axis records the processes known as a-signifying signs or a-signs, which are the triggering mechanisms able to territorialize or deterritorialize, stabilize or destabilize the assemblage and thus allow it to assemble anew. As a-signs cannot be isolated from matter, we point to their resulting effects, which without entering the linguistic level they are expressed in terms of intensity fields: modulations, movements, speeds, rhythms, spasms, etc. They belong to a molecular level where they operate in the pre-subjective world of perceptions, effects, drives, and emotions. A-signs have been introduced as intensities that transform the object beyond meaning, beyond fixed or known cognitive procedures. To that end, from an archive of more than 100 spatial objects by contemporary architects and designers, we have created an effective mechanisms index is created, where each a-sign is now connected with the list of effects it triggers and which thoroughly defines it. And vice versa, the same effect can be triggered by different a-signs, allowing the design object to lie in a perpetual state of becoming. To define spatial objects, A-signs are categorized in terms of their aesthetic power to affect and to be affected on the basis of the general categories of form, structure and surface. Thus, different part's degree of contingency are evaluated and measured and finally, we introduce as material information that is immanent in the spatial object while at the same time they confer no meaning; they only convey some information without semantic content. Through this index, we are able to analyze and direct the final form of the spatial object while at the same time establishing the mechanism to measure its continuous transformation.

Keywords: affective mechanisms index, architectural assemblages, a-signifying signs, cartography, virtual

Procedia PDF Downloads 108
8867 A Learning Effects Research Applied a Mobile Guide System with Augmented Reality for Education Center

Authors: Y. L. Chang, Y. H. Huang

Abstract:

This study designed a mobile guide system that integrates the design principles of guidance and interpretation with augmented reality (AR) as an auxiliary tool for National Taiwan Science Education Center guidance and explored the learning performance of participants who were divided into two visiting groups: AR-guided mode and non-guided mode (without carrying any auxiliary devices). The study included 96 college students as participants and employed a quasi-experimental research design. This study evaluated the learning performance of education center students aided with different guided modes, including their flow experience, activity involvement, learning effects, as well as their attitude and acceptance of using the guide systems. The results showed that (a) the AR guide promoted visitors’ flow experience; (b) the AR-guidance activity involvement and flow experience having a significant positive effect; (c) most of the visitors of mobile guide system with AR elicited a positive response and acceptance attitude. These results confirm the necessity of human–computer–context interaction. Future research can continue exploring the advantages of enhanced learning effectiveness, activity involvement, and flow experience through application of the results of this study.

Keywords: augmented reality, mobile guide system, informal learning, flow experience, activity involvement

Procedia PDF Downloads 214
8866 Design, Analysis and Simulation of a Lightweight Fire-Resistant Door

Authors: Zainab Fadhil Al Toki, Nader Ghareeb

Abstract:

This study investigates how lightweight a fire resistance door will perform with under types of insulation materials. Data is initially collected from various websites, scientific books and research papers. Results show that different layers of insulation in a single door can perform better than one insulator. Furthermore, insulation materials that are lightweight, high strength and low thermal conductivity are the most preferred for fire-rated doors. Whereas heavy weight, low strength, and high thermal conductivity are least preferred for fire resistance doors. Fire-rated door specifications, theoretical test methodology, structural analysis, and comparison between five different models with diverse layers insulations are presented. Five different door models are being investigated with different insulation materials and arrangements. Model 1 contains an air gap between door layers. Model 2 includes phenolic foam, mild steel and polyurethane. Model 3 includes phenolic foam and glass wool. Model 4 includes polyurethane and glass wool. Model 5 includes only rock wool between the door layers. It is noticed that model 5 is the most efficient model, and its design is simple compared to other models. For this model, numerical calculations are performed to check its efficiency and the results are compared to data from experiments for validation. Good agreement was noticed.

Keywords: fire resistance, insulation, strength, thermal conductivity, lightweight, layers

Procedia PDF Downloads 24