Search results for: Problem solving courts
3986 Modelling the Art Historical Canon: The Use of Dynamic Computer Models in Deconstructing the Canon
Authors: Laura M. F. Bertens
Abstract:
There is a long tradition of visually representing the art historical canon, in schematic overviews and diagrams. This is indicative of the desire for scientific, ‘objective’ knowledge of the kind (seemingly) produced in the natural sciences. These diagrams will, however, always retain an element of subjectivity and the modelling methods colour our perception of the represented information. In recent decades visualisations of art historical data, such as hand-drawn diagrams in textbooks, have been extended to include digital, computational tools. These tools significantly increase modelling strength and functionality. As such, they might be used to deconstruct and amend the very problem caused by traditional visualisations of the canon. In this paper, the use of digital tools for modelling the art historical canon is studied, in order to draw attention to the artificial nature of the static models that art historians are presented with in textbooks and lectures, as well as to explore the potential of digital, dynamic tools in creating new models. To study the way diagrams of the canon mediate the represented information, two modelling methods have been used on two case studies of existing diagrams. The tree diagram Stammbaum der neudeutschen Kunst (1823) by Ferdinand Olivier has been translated to a social network using the program Visone, and the famous flow chart Cubism and Abstract Art (1936) by Alfred Barr has been translated to an ontological model using Protégé Ontology Editor. The implications of the modelling decisions have been analysed in an art historical context. The aim of this project has been twofold. On the one hand the translation process makes explicit the design choices in the original diagrams, which reflect hidden assumptions about the Western canon. Ways of organizing data (for instance ordering art according to artist) have come to feel natural and neutral and implicit biases and the historically uneven distribution of power have resulted in underrepresentation of groups of artists. Over the last decades, scholars from fields such as Feminist Studies, Postcolonial Studies and Gender Studies have considered this problem and tried to remedy it. The translation presented here adds to this deconstruction by defamiliarizing the traditional models and analysing the process of reconstructing new models, step by step, taking into account theoretical critiques of the canon, such as the feminist perspective discussed by Griselda Pollock, amongst others. On the other hand, the project has served as a pilot study for the use of digital modelling tools in creating dynamic visualisations of the canon for education and museum purposes. Dynamic computer models introduce functionalities that allow new ways of ordering and visualising the artworks in the canon. As such, they could form a powerful tool in the training of new art historians, introducing a broader and more diverse view on the traditional canon. Although modelling will always imply a simplification and therefore a distortion of reality, new modelling techniques can help us get a better sense of the limitations of earlier models and can provide new perspectives on already established knowledge.Keywords: canon, ontological modelling, Protege Ontology Editor, social network modelling, Visone
Procedia PDF Downloads 1333985 Dynamical Analysis of the Fractional-Order Mathematical Model of Hashimoto’s Thyroiditis
Authors: Neelam Singha
Abstract:
The present work intends to analyze the system dynamics of Hashimoto’s thyroiditis with the assistance of fractional calculus. Hashimoto’s thyroiditis or chronic lymphocytic thyroiditis is an autoimmune disorder in which the immune system attacks the thyroid gland, which gradually results in interrupting the normal thyroid operation. Consequently, the feedback control of the system gets disrupted due to thyroid follicle cell lysis. And, the patient perceives life-threatening clinical conditions like goiter, hyperactivity, euthyroidism, hyperthyroidism, etc. In this work, we aim to obtain the approximate solution to the posed fractional-order problem describing Hashimoto’s thyroiditis. We employ the Adomian decomposition method to solve the system of fractional-order differential equations, and the solutions obtained shall be useful to provide information about the effect of medical care. The numerical technique is executed in an organized manner to furnish the associated details of the progression of the disease and to visualize it graphically with suitable plots.Keywords: adomian decomposition method, fractional derivatives, Hashimoto's thyroiditis, mathematical modeling
Procedia PDF Downloads 2153984 Strengthening of Bridges by Additional Prestressing
Authors: A. Bouhaloufa, T. Kadri, S. Zouaoui, A. Belhacene
Abstract:
To put more durable bridges, it is important to maintain existing structures, rather than investing in new structures. Instead of demolishing the old bridge and replace them with new, we must preserve and upgrade using better methods of diagnosis, auscultation and repair, the interest of this work is to increase the bearing capacity bridges damaged by additional prestressing, this type of reinforcement is growing continuously. In addition to excellent static strength, prestressing also has a very high resistance to fatigue, so it is suitable to solve the problem of failure of the bearing capacity of the bridges. This failure often comes to the development of overloads in quantity and quality, that is our daily traffic has increased and become very complicated, on the other hand its constituents are advanced in weight and speed and therefore almost all old bridges became unable to support the movement of the latter and remain disabled to all these problems. The main purpose of this work includes the following three aspects: - Determination of the main diseases and factors affecting the deterioration of bridges in Algeria, - Evaluation of the bearing capacity of bridges, - Proposal technical reinforcement to improve the bearing capacity of a degraded structure.Keywords: bridges, repair, auscultation, diagnosis, pathology, additional prestressing
Procedia PDF Downloads 6173983 Simulation of Acoustic Properties of Borate and Tellurite Glasses
Authors: M. S. Gaafar, S. Y. Marzouk, I. S. Mahmoud, S. Al-Zobaidi
Abstract:
Makishima and Mackenzie model was used to simulation of acoustic properties (longitudinal and shear ultrasonic wave velocities, elastic moduli theoretically for many tellurite and borate glasses. The model was proposed mainly depending on the values of the experimentally measured density, which are obtained before. In this search work, we are trying to obtain the values of densities of amorphous glasses (as the density depends on the geometry of the network structure of these glasses). In addition, the problem of simulating the slope of linear regression between the experimentally determined bulk modulus and the product of packing density and experimental Young's modulus, were solved in this search work. The results showed good agreement between the experimentally measured values of densities and both ultrasonic wave velocities, and those theoretically determined.Keywords: glasses, ultrasonic wave velocities, elastic modulus, Makishima & Mackenzie Model
Procedia PDF Downloads 3923982 Students Dropout in the Plantation settlement: A Case Study in Sri Lanka
Authors: Irshana Muhamadhu Razmy
Abstract:
Education is one of the main necessities for a modern society to access wealth as well as to achieve social well-being. Education contributes to enhancing as well as developing the social and economic status of an individual and building a vibrant community within a strong nation. The student dropout problem refers to students who enrolled in a school and are later unable to complete their grade education due to multiple factors). In Sri Lanka, the tea plantation sector is a prominent sector. The tea plantation sector is different from other plantation sectors such as palm oil, rubber, and coconut. Therefore, the present study particularly focuses on the influencing factors of student dropout in the tea plantation sector in Sri Lanka by conducting research in the Labookellie estate in Nuwera Eliya District. this research has opted to use both qualitative and quantitative methods. This study examines the factors associated with student dropout namely the family, school, and the social by the characteristic (gender, grade, and ethnicity) in the plantation area in the Labookellie estate.Keywords: student dropout, school, plantation settlement, social environmental
Procedia PDF Downloads 1873981 Low-Cost Embedded Biometric System Based on Fingervein Modality
Authors: Randa Boukhris, Alima Damak, Dorra Sellami
Abstract:
Fingervein biometric authentication is one of the most popular and accurate technologies. However, low cost embedded solution is still an open problem. In this paper, a real-time implementation of fingervein recognition process embedded in Raspberry-Pi has been proposed. The use of Raspberry-Pi reduces overall system cost and size while allowing an easy user interface. Implementation of a target technology has guided to opt some specific parallel and simple processing algorithms. In the proposed system, we use four structural directional kernel elements for filtering finger vein images. Then, a Top-Hat and Bottom-Hat kernel filters are used to enhance the visibility and the appearance of venous images. For feature extraction step, a simple Local Directional Code (LDC) descriptor is applied. The proposed system presents an Error Equal Rate (EER) and Identification Rate (IR), respectively, equal to 0.02 and 98%. Furthermore, experimental results show that real-time operations have good performance.Keywords: biometric, Bottom-Hat, Fingervein, LDC, Rasberry-Pi, ROI, Top-Hat
Procedia PDF Downloads 2073980 Criticality of Adiabatic Length for a Single Branch Pulsating Heat Pipe
Authors: Utsav Bhardwaj, Shyama Prasad Das
Abstract:
To meet the extensive requirements of thermal management of the circuit card assemblies (CCAs), satellites, PCBs, microprocessors, any other electronic circuitry, pulsating heat pipes (PHPs) have emerged in the recent past as one of the best solutions technically. But industrial application of PHPs is still unexplored up to a large extent due to their poor reliability. There are several systems as well as operational parameters which not only affect the performance of an operating PHP, but also decide whether the PHP can operate sustainably or not. Functioning may completely be halted for some particular combinations of the values of system and operational parameters. Among the system parameters, adiabatic length is one of the important ones. In the present work, a simplest single branch PHP system with an adiabatic section has been considered. It is assumed to have only one vapour bubble and one liquid plug. First, the system has been mathematically modeled using film evaporation/condensation model, followed by the steps of recognition of equilibrium zone, non-dimensionalization and linearization. Then proceeding with a periodical solution of the linearized and reduced differential equations, stability analysis has been performed. Slow and fast variables have been identified, and averaging approach has been used for the slow ones. Ultimately, temporal evolution of the PHP is predicted by numerically solving the averaged equations, to know whether the oscillations are likely to sustain/decay temporally. Stability threshold has also been determined in terms of some non-dimensional numbers formed by different groupings of system and operational parameters. A combined analytical and numerical approach has been used, and it has been found that for each combination of all other parameters, there exists a maximum length of the adiabatic section beyond which the PHP cannot function at all. This length has been called as “Critical Adiabatic Length (L_ac)”. For adiabatic lengths greater than “L_ac”, oscillations are found to be always decaying sooner or later. Dependence of “L_ac” on some other parameters has also been checked and correlated at certain evaporator & condenser section temperatures. “L_ac” has been found to be linearly increasing with increase in evaporator section length (L_e), whereas the condenser section length (L_c) has been found to have almost no effect on it upto a certain limit. But at considerably large condenser section lengths, “L_ac” is expected to decrease with increase in “L_c” due to increased wall friction. Rise in static pressure (p_r) exerted by the working fluid reservoir makes “L_ac” rise exponentially whereas it increases cubically with increase in the inner diameter (d) of PHP. Physics of all such variations has been given a good insight too. Thus, a methodology for quantification of the critical adiabatic length for any possible set of all other parameters of PHP has been established.Keywords: critical adiabatic length, evaporation/condensation, pulsating heat pipe (PHP), thermal management
Procedia PDF Downloads 2293979 Optimization Model for Support Decision for Maximizing Production of Mixed Fresh Fruit Farms
Authors: Andrés I. Ávila, Patricia Aros, César San Martín, Elizabeth Kehr, Yovana Leal
Abstract:
Planning models for fresh products is a very useful tool for improving the net profits. To get an efficient supply chain model, several functions should be considered to get a complete simulation of several operational units. We consider a linear programming model to help farmers to decide if it is convenient to choose what area should be planted for three kinds of export fruits considering their future investment. We consider area, investment, water, productivity minimal unit, and harvest restrictions to develop a monthly based model to compute the average income in five years. Also, conditions on the field as area, water availability, and initial investment are required. Using the Chilean costs and dollar-peso exchange rate, we can simulate several scenarios to understand the possible risks associated to this market. Also, this tool help to support decisions for government and individual farmers.Keywords: mixed integer problem, fresh fruit production, support decision model, agricultural and biosystems engineering
Procedia PDF Downloads 4423978 Optimal Analysis of Structures by Large Wing Panel Using FEM
Authors: Byeong-Sam Kim, Kyeongwoo Park
Abstract:
In this study, induced structural optimization is performed to compare the trade-off between wing weight and induced drag for wing panel extensions, construction of wing panel and winglets. The aerostructural optimization problem consists of parameters with strength condition, and two maneuver conditions using residual stresses in panel production. The results of kinematic motion analysis presented a homogenization based theory for 3D beams and 3D shells for wing panel. This theory uses a kinematic description of the beam based on normalized displacement moments. The displacement of the wing is a significant design consideration as large deflections lead to large stresses and increased fatigue of components cause residual stresses. The stresses in the wing panel are small compared to the yield stress of aluminum alloy. This study describes the implementation of a large wing panel, aerostructural analysis and structural parameters optimization framework that couples a three-dimensional panel method.Keywords: wing panel, aerostructural optimization, FEM, structural analysis
Procedia PDF Downloads 5963977 Enunciation on Complexities of Selected Tree Searching Algorithms
Authors: Parag Bhalchandra, S. D. Khamitkar
Abstract:
Searching trees is a most interesting application of Artificial Intelligence. Over the period of time, many innovative methods have been evolved to better search trees with respect to computational complexities. Tree searches are difficult to understand due to the exponential growth of possibilities when increasing the number of nodes or levels in the tree. Usually it is understood when we traverse down in the tree, traverse down to greater depth, in the search of a solution or a goal. However, this does not happen in reality as explicit enumeration is not a very efficient method and there are many algorithmic speedups that will find the optimal solution without the burden of evaluating all possible trees. It was a common question before all researchers where they often wonder what algorithms will yield the best and fastest result The intention of this paper is two folds, one to review selected tree search algorithms and search strategies that can be applied to a problem space and the second objective is to stimulate to implement recent developments in the complexity behavior of search strategies. The algorithms discussed here apply in general to both brute force and heuristic searches.Keywords: trees search, asymptotic complexity, brute force, heuristics algorithms
Procedia PDF Downloads 3093976 A Ratio-Weighted Decision Tree Algorithm for Imbalance Dataset Classification
Authors: Doyin Afolabi, Phillip Adewole, Oladipupo Sennaike
Abstract:
Most well-known classifiers, including the decision tree algorithm, can make predictions on balanced datasets efficiently. However, the decision tree algorithm tends to be biased towards imbalanced datasets because of the skewness of the distribution of such datasets. To overcome this problem, this study proposes a weighted decision tree algorithm that aims to remove the bias toward the majority class and prevents the reduction of majority observations in imbalance datasets classification. The proposed weighted decision tree algorithm was tested on three imbalanced datasets- cancer dataset, german credit dataset, and banknote dataset. The specificity, sensitivity, and accuracy metrics were used to evaluate the performance of the proposed decision tree algorithm on the datasets. The evaluation results show that for some of the weights of our proposed decision tree, the specificity, sensitivity, and accuracy metrics gave better results compared to that of the ID3 decision tree and decision tree induced with minority entropy for all three datasets.Keywords: data mining, decision tree, classification, imbalance dataset
Procedia PDF Downloads 1433975 Mechanical Tension Control of Winding Systems for Paper Webs
Authors: Glaoui Hachemi
Abstract:
In this paper, a scheme based on multi-input multi output Fuzzy Sliding Mode control (MIMO-FSMC) for linear speed regulation of winding system is proposed. Once the uncoupled model of the winding system was obtained, a smooth control function with a threshold was selected to indicate how far away the case was from the sliding surface. nevertheless, this control function depends closely on the higher bound of the uncertainties, which generates overlap. So, this size has to be chosen with broad care to obtain high performances. Usually, the upper bound of uncertainties is difficult to know before motor operation, so, a Fuzzy Sliding Mode controller is investigated to resolve this problem, a simple Fuzzy inference mechanism is used to decrease the chattering phenomenon by simple adjustments. A simulation study is achieved and that the indicate fuzzy sliding mode controllers have great potential for use as an alternative to the conventional sliding mode control.Keywords: Winding system, induction machine, Mechanical tension, Proportional-integral (PI), sliding mode control, Fuzzy logic
Procedia PDF Downloads 1013974 Passive Neutralization of Acid Mine Drainage Using Locally Produced Limestone
Authors: Reneiloe Seodigeng, Malwandla Hanabe, Haleden Chiririwa, Hilary Rutto, Tumisang Seodigeng
Abstract:
Neutralisation of acid-mine drainage (AMD) using limestone is cost effective, and good results can be obtained. However, this process has its limitations; it cannot be used for highly acidic water which consists of Fe(III). When Fe(III) reacts with CaCO3, it results in armoring. Armoring slows the reaction, and additional alkalinity can no longer be generated. Limestone is easily accessible, so this problem can be easily dealt with. Experiments were carried out to evaluate the effect of PVC pipe length on ferric and ferrous ions. It was found that the shorter the pipe length the more these dissolved metals precipitate. The effect of the pipe length on the hydrogen ions was also studied, and it was found that these two have an inverse relationship. Experimental data were further compared with the model prediction data to see if they behave in a similar fashion. The model was able to predict the behaviour of 1.5m and 2 m pipes in ferric and ferrous ion precipitation.Keywords: acid mine drainage, neutralisation, limestone, mathematical modelling
Procedia PDF Downloads 3693973 Effect of a Stepwise Discontinuity on a 65 Degree Delta Wing
Authors: Nishit L. Sanil, Raza M. Khan
Abstract:
Increasing lift effectively at higher angles of attack has always been a daunting challenge in aviation especially on a delta wing. These are used on military jet fighter planes and has some undesirable characteristics, notably flow separation at high angles of attack and high drag at low speeds. In order to solve this problem, a design modification is modeled on a delta wing which would increase the lift so that we can improve maneuverability. To attain an increase in the lift of a 65 degree delta wing at higher angles of attack, a step-wise discontinuity is created at the upper surface of the delta wing. A normal delta wing is validated for comparison which would thereby give us a measure of flow separation and coefficient of lift affected by the modification. The results obtained deliver a significant increase in lift at higher angles of attack thereby delaying stall. Hence the benefits of the modification would aid the potential designs of aircraft’s in the time to come.Keywords: coefficient of lift, delta wing, flow separation, step-wise discontinuity
Procedia PDF Downloads 3143972 Back Stepping Sliding Mode Control of Blood Glucose for Type I Diabetes
Authors: N. Tadrisi Parsa, A. R. Vali, R. Ghasemi
Abstract:
Diabetes is a growing health problem in worldwide. Especially, the patients with Type 1 diabetes need strict glycemic control because they have deficiency of insulin production. This paper attempts to control blood glucose based on body mathematical body model. The Bergman minimal mathematical model is used to develop the nonlinear controller. A novel back-stepping based sliding mode control (B-SMC) strategy is proposed as a solution that guarantees practical tracking of a desired glucose concentration. In order to show the performance of the proposed design, it is compared with conventional linear and fuzzy controllers which have been done in previous researches. The numerical simulation result shows the advantages of sliding mode back stepping controller design to linear and fuzzy controllers.Keywords: bergman model, nonlinear control, back stepping, sliding mode control
Procedia PDF Downloads 3843971 Object Tracking in Motion Blurred Images with Adaptive Mean Shift and Wavelet Feature
Authors: Iman Iraei, Mina Sharifi
Abstract:
A method for object tracking in motion blurred images is proposed in this article. This paper shows that object tracking could be improved with this approach. We use mean shift algorithm to track different objects as a main tracker. But, the problem is that mean shift could not track the selected object accurately in blurred scenes. So, for better tracking result, and increasing the accuracy of tracking, wavelet transform is used. We use a feature named as blur extent, which could help us to get better results in tracking. For calculating of this feature, we should use Harr wavelet. We can look at this matter from two different angles which lead to determine whether an image is blurred or not and to what extent an image is blur. In fact, this feature left an impact on the covariance matrix of mean shift algorithm and cause to better performance of tracking. This method has been concentrated mostly on motion blur parameter. transform. The results reveal the ability of our method in order to reach more accurately tracking.Keywords: mean shift, object tracking, blur extent, wavelet transform, motion blur
Procedia PDF Downloads 2163970 BigCrypt: A Probable Approach of Big Data Encryption to Protect Personal and Business Privacy
Authors: Abdullah Al Mamun, Talal Alkharobi
Abstract:
As data size is growing up, people are became more familiar to store big amount of secret information into cloud storage. Companies are always required to need transfer massive business files from one end to another. We are going to lose privacy if we transmit it as it is and continuing same scenario repeatedly without securing the communication mechanism means proper encryption. Although asymmetric key encryption solves the main problem of symmetric key encryption but it can only encrypt limited size of data which is inapplicable for large data encryption. In this paper we propose a probable approach of pretty good privacy for encrypt big data using both symmetric and asymmetric keys. Our goal is to achieve encrypt huge collection information and transmit it through a secure communication channel for committing the business and personal privacy. To justify our method an experimental dataset from three different platform is provided. We would like to show that our approach is working for massive size of various data efficiently and reliably.Keywords: big data, cloud computing, cryptography, hadoop, public key
Procedia PDF Downloads 3243969 Detection Method of Federated Learning Backdoor Based on Weighted K-Medoids
Authors: Xun Li, Haojie Wang
Abstract:
Federated learning is a kind of distributed training and centralized training mode, which is of great value in the protection of user privacy. In order to solve the problem that the model is vulnerable to backdoor attacks in federated learning, a backdoor attack detection method based on a weighted k-medoids algorithm is proposed. First of all, this paper collates the update parameters of the client to construct a vector group, then uses the principal components analysis (PCA) algorithm to extract the corresponding feature information from the vector group, and finally uses the improved k-medoids clustering algorithm to identify the normal and backdoor update parameters. In this paper, the backdoor is implanted in the federation learning model through the model replacement attack method in the simulation experiment, and the update parameters from the attacker are effectively detected and removed by the defense method proposed in this paper.Keywords: federated learning, backdoor attack, PCA, k-medoids, backdoor defense
Procedia PDF Downloads 1173968 Optimization of Switched Reluctance Motor for Drive System in Automotive Applications
Authors: A. Peniak, J. Makarovič, P. Rafajdus, P. Dúbravka
Abstract:
The purpose of this work is to optimize a Switched Reluctance Motor (SRM) for an automotive application, specifically for a fully electric car. A new optimization approach is proposed. This unique approach transforms automotive customer requirements into an optimization problem, based on sound knowledge of a SRM theory. The approach combines an analytical and a finite element analysis of the motor to quantify static nonlinear and dynamic performance parameters, as phase currents and motor torque maps, an output power and power losses in order to find the optimal motor as close to the reality as possible, within reasonable time. The new approach yields the optimal motor which is competitive with other types of already proposed motors for automotive applications. This distinctive approach can also be used to optimize other types of electrical motors, when parts specifically related to the SRM are adjusted accordingly.Keywords: automotive, drive system, electric car, finite element method, hybrid car, optimization, switched reluctance motor
Procedia PDF Downloads 5253967 Flow Conservation Framework for Monitoring Software Defined Networks
Authors: Jesús Antonio Puente Fernández, Luis Javier Garcia Villalba
Abstract:
New trends on streaming videos such as series or films require a high demand of network resources. This fact results in a huge problem within traditional IP networks due to the rigidity of its architecture. In this way, Software Defined Networks (SDN) is a new concept of network architecture that intends to be more flexible and it simplifies the management in networks with respect to the existing ones. These aspects are possible due to the separation of control plane (controller) and data plane (switches). Taking the advantage of this separated control, it is easy to deploy a monitoring tool independent of device vendors since the existing ones are dependent on the installation of specialized and expensive hardware. In this paper, we propose a framework that optimizes the traffic monitoring in SDN networks that decreases the number of monitoring queries to improve the network traffic and also reduces the overload. The performed experiments (with and without the optimization) using a video streaming delivery between two hosts demonstrate the feasibility of our monitoring proposal.Keywords: optimization, monitoring, software defined networking, statistics, query
Procedia PDF Downloads 3363966 Predicting Seoul Bus Ridership Using Artificial Neural Network Algorithm with Smartcard Data
Authors: Hosuk Shin, Young-Hyun Seo, Eunhak Lee, Seung-Young Kho
Abstract:
Currently, in Seoul, users have the privilege to avoid riding crowded buses with the installation of Bus Information System (BIS). BIS has three levels of on-board bus ridership level information (spacious, normal, and crowded). However, there are flaws in the system due to it being real time which could provide incomplete information to the user. For example, a bus comes to the station, and on the BIS it shows that the bus is crowded, but on the stop that the user is waiting many people get off, which would mean that this station the information should show as normal or spacious. To fix this problem, this study predicts the bus ridership level using smart card data to provide more accurate information about the passenger ridership level on the bus. An Artificial Neural Network (ANN) is an interconnected group of nodes, that was created based on the human brain. Forecasting has been one of the major applications of ANN due to the data-driven self-adaptive methods of the algorithm itself. According to the results, the ANN algorithm was stable and robust with somewhat small error ratio, so the results were rational and reasonable.Keywords: smartcard data, ANN, bus, ridership
Procedia PDF Downloads 1703965 Study of Management of Waste Construction Materials in Civil Engineering Projects
Authors: Jalindar R. Patil, Harish P. Gayakwad
Abstract:
The increased economic growth across the globe as well as urbanization in developing countries have led into extensive construction activities that generate large amounts of wastes. Material wastage in construction projects resulted into huge financial setbacks to builders and contractors. In addition to this, it may also cause significant effects over aesthetics, health, and the general environment. However in many cities across the globe where construction wastes material management is still a problem. In this paper, the discussion is all about the method for the management of waste construction materials. The objectives of this seminar are to identify the significant source of construction waste globally, to improve the performance of by extracting the major barriers construction waste management and to determine the cost impact on the construction project. These wastes needs to be managed as well as their impacts needs to be ascertained to pave way for their proper management. The seminar includes the details of construction waste management with the reference to construction project. The application of construction waste management in the civil engineering projects is to describe the reduction in the construction wastes.Keywords: civil engineering, construction materials, waste management, construction activities
Procedia PDF Downloads 5403964 Exploring the Possibility of Islamic Banking as a Viable Alternative to the Conventional Banking Model
Authors: Lavan Vickneson
Abstract:
In today’s modern economy, the conventional banking model is the primary banking system used around the world. A significant problem faced by the conventional banking model is the recurring nature of banking crises. History’s record of the various banking crises, ranging from the Great Depression to the 2008 subprime mortgage crisis, is testament to the fact that banking crises continue to strike despite the preventive measures in place, such as bank’s minimum capital requirements and deposit guarantee schemes. If banking crises continue to occur despite these preventive measures, it necessarily follows that there are inherent flaws with the conventional banking model itself. In light of this, a possible alternative banking model to the conventional banking model is Islamic banking. To date, Islamic banking has been a niche market, predominantly serving Muslim investors. This paper seeks to explore the possibility of Islamic banking being more than just a niche market and playing a greater role in banking sectors around the world, by being a viable alternative to the conventional banking model.Keywords: bank crises, conventional banking model, Islamic banking, niche market
Procedia PDF Downloads 2873963 Clothes Identification Using Inception ResNet V2 and MobileNet V2
Authors: Subodh Chandra Shakya, Badal Shrestha, Suni Thapa, Ashutosh Chauhan, Saugat Adhikari
Abstract:
To tackle our problem of clothes identification, we used different architectures of Convolutional Neural Networks. Among different architectures, the outcome from Inception ResNet V2 and MobileNet V2 seemed promising. On comparison of the metrices, we observed that the Inception ResNet V2 slightly outperforms MobileNet V2 for this purpose. So this paper of ours proposes the cloth identifier using Inception ResNet V2 and also contains the comparison between the outcome of ResNet V2 and MobileNet V2. The document here contains the results and findings of the research that we performed on the DeepFashion Dataset. To improve the dataset, we used different image preprocessing techniques like image shearing, image rotation, and denoising. The whole experiment was conducted with the intention of testing the efficiency of convolutional neural networks on cloth identification so that we could develop a reliable system that is good enough in identifying the clothes worn by the users. The whole system can be integrated with some kind of recommendation system.Keywords: inception ResNet, convolutional neural net, deep learning, confusion matrix, data augmentation, data preprocessing
Procedia PDF Downloads 1923962 Cyber Victimization: School Experience of Malaysian Cyberbullied Teenagers
Authors: Shireen Simon
Abstract:
Cyberbullying among schoolchildren and teenagers became a hot issue discussed by Malaysian society. Cyberbullying is a new age of bullying because it uses the modern digital technology intentionally to hurt and degrade someone in the cyber world. Cyberbullying is a problem affecting many teenagers as they embrace online communication and interaction whereby virtual world with no borders. By adopting a qualitative approach, this study has captured 8 cyberbullied victims’ school experience. Even years after leaving school, these 8 cyberbullied victims remember how it feels to be bullied in the cyber world. The principal investigator also tries to identify the possibility factors that contribute to cyberbullying among these 8 victims. The result shows that these victims were bullied differently in cyber world. This study not just primarily focuses on cyberbullying issues among schoolchildren and teenagers; it also addresses the motives and causes of cyberbullying. Lastly, this article will be served as guidance for school teachers, parents and teenagers to prepare to tackle cyberbullying together. Cyberbullying is no laughing matter in our community, and it is time to spread the seeds of peace inspires others to do the same.Keywords: cyberbullying, cyber victimization, internet, school experience, teenagers
Procedia PDF Downloads 2903961 Landslide Hazard a Gigantic Problem in Indian Himalayan Region: Needs In-Depth Research to Minimize Disaster
Authors: Varun Joshi, M. S. Rawat
Abstract:
The Indian Himalayan Region (IHR) is inherently fragile and susceptible to landslide hazard due to its extremely weak geology, highly rugged topography and heavy monsoonal rainfall. One of the most common hazards in the IHR is landslide, and this event is particularly frequent in Himalayan states of India i.e. Jammu & Kashmir, Himachal Pradesh, Uttarakhand, Sikkim, Manipur and Arunachal Pradesh. Landslides are mostly triggered by extreme rainfall events but the incidence increases during monsoon months (June to September). Natural slopes which are otherwise stable but they get destabilized due to anthropogenic activities like construction of various developmental activities and deforestation. These activities are required to fulfill the developmental needs and upliftment of societal status in the region. Landslides also trigger during major earthquakes and reported most observable and damaging phenomena. Studies indicate that the landslide phenomenon has increased many folds due to developmental activities in Himalayan region. Gradually increasing and devastating consequences of landslides turned into one of the most important hydro-geological hazards in Himalayan states especially in Uttarakhand and Sikkim states of India. The recent most catastrophic rainfall in June 2013 in Uttarakhand lead to colossal loss of life and property. The societal damage due to this incident is still to be recovered even after three years. Sikkim earthquake of September 2011 is witnessed for triggering of large number of coseismic landslides. The rescue and relief team faced huge problem in helping the trapped villagers in remote locations of the state due to road side blockade by landslides. The recent past incidences of landslides in Uttarakhand, as well as Sikkim states, created a new domain of research in terms of understanding the phenomena of landslide and management of disaster in such situation. Every year at many locations landslides trigger which force dwellers to either evacuate their dwelling or lose their life and property. The communication and transportation networks are also severely affected by landslides at several locations. Many times the drinking water supply disturbed and shortage of daily need household items reported during monsoon months. To minimize the severity of landslide in IHR requires in-depth research and developmental planning. For most of the areas in the present study, landslide hazard zonation is done on 1:50,000 scale. The land use planning maps on extensive basis are not available. Therefore, there is a need of large-scale landslide hazard zonation and land use planning maps. If the scientist conduct research on desired aspects and their outcome of research is utilized by the government in developmental planning then the incidents of landslide could be minimized, subsequent impact on society, life and property would be reduced. Along with the scientific research, there is another need of awareness generation in the region for stake holders and local dwellers to combat with the landslide hazard, if triggered in their location.Keywords: coseismic, Indian Himalayan Region, landslide hazard zonation, Sikkim, societal, Uttarakhand
Procedia PDF Downloads 2533960 Nonlinear Analysis with Failure Using the Boundary Element Method
Authors: Ernesto Pineda Leon, Dante Tolentino Lopez, Janis Zapata Lopez
Abstract:
The current paper shows the application of the boundary element method for the analysis of plates under shear stress causing plasticity. In this case, the shear deformation of a plate is considered by means of the Reissner’s theory. The probability of failure of a Reissner’s plate due to a proposed index plastic behavior is calculated taken into account the uncertainty in mechanical and geometrical properties. The problem is developed in two dimensions. The classic plasticity’s theory is applied and a formulation for initial stresses that lead to the boundary integral equations due to plasticity is also used. For the plasticity calculation, the Von Misses criteria is used. To solve the non-linear equations an incremental method is employed. The results show a relatively small failure probability for the ranges of loads between 0.6 and 1.0. However, for values between 1.0 and 2.5, the probability of failure increases significantly. Consequently, for load bigger than 2.5 the plate failure is a safe event. The results are compared to those that were found in the literature and the agreement is good.Keywords: boundary element method, failure, plasticity, probability
Procedia PDF Downloads 3133959 A Brief Review of Urban Green Vegetation (Green Wall) in Reduction of Air Pollution
Authors: Masoumeh Pirhadi
Abstract:
Air pollution is becoming a major health problem affecting millions. In support of this observation, the world health organization estimates that many people feel unhealthy due to pollution. This is a coupled fact that one of the main global sources of air pollution in cities is greenhouse gas emissions due heavy traffic. Green walls are developed as a sustainable strategy to reduce pollution by increasing vegetation in developed areas without occupying space in the city. This concept an offer advantageous environmental benefits and they can also be proposed for aesthetic purposes, and today they are used to preserve the urban environment. Green walls can also create environments that can promote a healthy lifestyle. Findings of multiple studies also indicate that Green infrastructure in cities is a strategy for improving air quality and increasing the sustainability of cities. Since these green solutions (green walls) act as porous materials that affect the diffusion of air pollution they can also act as a removing air vents that clean the air. Therefore, implementation of this strategy can be considered as a prominent factor in achieving a cleaner environment.Keywords: green vegetation, air pollution, green wall, urban area
Procedia PDF Downloads 1593958 Addressing the Exorbitant Cost of Labeling Medical Images with Active Learning
Authors: Saba Rahimi, Ozan Oktay, Javier Alvarez-Valle, Sujeeth Bharadwaj
Abstract:
Successful application of deep learning in medical image analysis necessitates unprecedented amounts of labeled training data. Unlike conventional 2D applications, radiological images can be three-dimensional (e.g., CT, MRI), consisting of many instances within each image. The problem is exacerbated when expert annotations are required for effective pixel-wise labeling, which incurs exorbitant labeling effort and cost. Active learning is an established research domain that aims to reduce labeling workload by prioritizing a subset of informative unlabeled examples to annotate. Our contribution is a cost-effective approach for U-Net 3D models that uses Monte Carlo sampling to analyze pixel-wise uncertainty. Experiments on the AAPM 2017 lung CT segmentation challenge dataset show that our proposed framework can achieve promising segmentation results by using only 42% of the training data.Keywords: image segmentation, active learning, convolutional neural network, 3D U-Net
Procedia PDF Downloads 1603957 Data Quality Enhancement with String Length Distribution
Authors: Qi Xiu, Hiromu Hota, Yohsuke Ishii, Takuya Oda
Abstract:
Recently, collectable manufacturing data are rapidly increasing. On the other hand, mega recall is getting serious as a social problem. Under such circumstances, there are increasing needs for preventing mega recalls by defect analysis such as root cause analysis and abnormal detection utilizing manufacturing data. However, the time to classify strings in manufacturing data by traditional method is too long to meet requirement of quick defect analysis. Therefore, we present String Length Distribution Classification method (SLDC) to correctly classify strings in a short time. This method learns character features, especially string length distribution from Product ID, Machine ID in BOM and asset list. By applying the proposal to strings in actual manufacturing data, we verified that the classification time of strings can be reduced by 80%. As a result, it can be estimated that the requirement of quick defect analysis can be fulfilled.Keywords: string classification, data quality, feature selection, probability distribution, string length
Procedia PDF Downloads 321