Search results for: microbial fuel cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5864

Search results for: microbial fuel cell

1934 Fabrication and Properties of Al2O3/Si Quantum Well-Structured Silicon Solar Cells

Authors: Kwang-Ho Kim, Kwan-Hong Min, Pyungwoo Jang, Chisup Jung, Kyu Seomoon

Abstract:

By restricting the dimensions of silicon to less than Bohr radius of bulk crystalline silicon (∼5 nm), quantum confinement causes its effective bandgap to increase. Therefore, silicon quantum wells (QWs) using these quantum phenomena could be a good candidate to achieve high performance silicon solar cells. The Al2O3/Si QW structures were fabricated by using the successive deposition technique, as a quantum confinement device to increase the effective energy bandgap and passivation effect in Si surface for the 3rd generation solar cell applications. In Si/Al2O3 QWs, the thicknesses of Si layers and Al2O3 layers were varied between 1 to 5 nm, respectively. The roughness of deposited Si on Al2O3 was less than 4 Å in the thickness of 2 nm. By using the Al2O3/Si QW structures on Si surfaces, the lifetime measured by u-PCD technique increased as a result of passivated surface effects. The discussion about the other properties such as electrical and optical properties of the QWs structures as well as the fabricated solar cells will be presented in this paper.

Keywords: Al2O3/Si quantum well, quantum confinement, solar cells, third generation, successive deposition technique

Procedia PDF Downloads 343
1933 Active Learning in Engineering Courses Using Excel Spreadsheet

Authors: Promothes Saha

Abstract:

Recently, transportation engineering industry members at the study university showed concern that students lacked the skills needed to solve real-world engineering problems using spreadsheet data analysis. In response to the concerns shown by industry members, this study investigated how to engage students in a better way by incorporating spreadsheet analysis during class - also, help them learn the course topics. Helping students link theoretical knowledge to real-world problems can be a challenge. In this effort, in-class activities and worksheets were redesigned to integrate with Excel to solve example problems using built-in tools including cell referencing, equations, data analysis tool pack, solver tool, conditional formatting, charts, etc. The effectiveness of this technique was investigated using students’ evaluations of the course, enrollment data, and students’ comments. Based on the data of those criteria, it is evident that the spreadsheet activities may increase student learning.

Keywords: civil, engineering, active learning, transportation

Procedia PDF Downloads 140
1932 Mobile Microscope for the Detection of Pathogenic Cells Using Image Processing

Authors: P. S. Surya Meghana, K. Lingeshwaran, C. Kannan, V. Raghavendran, C. Priya

Abstract:

One of the most basic and powerful tools in all of science and medicine is the light microscope, the fundamental device for laboratory as well as research purposes. With the improving technology, the need for portable, economic and user-friendly instruments is in high demand. The conventional microscope fails to live up to the emerging trend. Also, adequate access to healthcare is not widely available, especially in developing countries. The most basic step towards the curing of a malady is the diagnosis of the disease itself. The main aim of this paper is to diagnose Malaria with the most common device, cell phones, which prove to be the immediate solution for most of the modern day needs with the development of wireless infrastructure allowing to compute and communicate on the move. This opened up the opportunity to develop novel imaging, sensing, and diagnostics platforms using mobile phones as an underlying platform to address the global demand for accurate, sensitive, cost-effective, and field-portable measurement devices for use in remote and resource-limited settings around the world.

Keywords: cellular, hand-held, health care, image processing, malarial parasites, microscope

Procedia PDF Downloads 268
1931 Conflicts and Similarities among Energy Law, Environmental Law and Economic Aspects

Authors: Bahareh Arghand, Seyed Abbas Poorhashemi, Ramin Roshandel

Abstract:

Nowadays, Economic growth and the increasing use of fossil fuel have caused major damages to environment. Therefore, international law has tried to codify the rules and regulations and identify legal principles to decrease conflict of interests between energy law and environmental law. The open relationship between energy consumption and the law of nature has been ignored for years, because the focus of energy law has been on an affordable price of a reliable supply of energy; while the focus of environmental law was on protection of the nature. In fact, the legal and overall policies of energy are based on Sic Omnes and inter part for governments whereas environmental law is based on common interests and Erga Omnes. The relationship between energy law, environmental law and economic aspects is multilateral, complex and important. Moreover, they influence each other. There are similarities in the triangle of energy, environment and economic aspects and in some cases there are conflict of interest but their conflicts are in goals not in practice and their legal jurisdiction is in international law. The development of national and international rules and regulations relevant to energy-environment has been done by separate sectors, whereas sustainable development principle, especially in the economic sector, requires environmental considerations. It is an important turning point to integrate and decrease conflict of interest among energy law, environmental law and economic aspects. The present study examines existing legal principles on energy and the environment and identifies the similarities and conflicts based on the descriptive-analytic study. The purpose of investigating these legal principles is to integrate and decrease conflict of interest between energy law and environmental law.

Keywords: energy law, environmental law, erga omnes, sustainable development

Procedia PDF Downloads 386
1930 Visual Detection of Escherichia coli (E. coli) through Formation of Beads Aggregation in Capillary Tube by Rolling Circle Amplification

Authors: Bo Ram Choi, Ji Su Kim, Juyeon Cho, Hyukjin Lee

Abstract:

Food contaminated by bacteria (E.coli), causes food poisoning, which occurs to many patients worldwide annually. We have introduced an application of rolling circle amplification (RCA) as a versatile biosensor and developed a diagnostic platform composed of capillary tube and microbeads for rapid and easy detection of Escherichia coli (E. coli). When specific mRNA of E.coli is extracted from cell lysis, rolling circle amplification (RCA) of DNA template can be achieved and can be visualized by beads aggregation in capillary tube. In contrast, if there is no bacterial pathogen in sample, no beads aggregation can be seen. This assay is possible to detect visually target gene without specific equipment. It is likely to the development of a genetic kit for point of care testing (POCT) that can detect target gene using microbeads.

Keywords: rolling circle amplification (RCA), Escherichia coli (E. coli), point of care testing (POCT), beads aggregation, capillary tube

Procedia PDF Downloads 371
1929 The Five Aggregates in Buddhism and Natural Sciences: A Revolutionary Perspective of Nature

Authors: Choo Fatt Foo

Abstract:

The Five Aggregates is core to Buddhism teaching. According to Buddhism, human beings and all sentient beings are made up of nothing but the Five Aggregates. If that is the case, the Five Aggregates must be found in all natural sciences. So far, there has not been any systematic connection between the Five Aggregates and natural sciences. This study aims at identifying traces of the Five Aggregates in various levels of natural sciences and pointing possible directions for future research. The following areas are briefly explored to identify the connection with the Five Aggregates: physics, chemistry, organic chemistry, DNA, cell, and human body and brain. Traces of the Five Aggregates should be found in each level of this hierarchy of natural sciences for human and sentient beings to be said to be made up of the Five Aggregates. This study proposes a hierarchical structure of nature cutting every level with the Five Aggregates and the Four Great Elements as its basis. The structure proposed by this study would revolutionize how we look at nature. Hopefully, better understanding of sciences in this manner will steer the application of scientific methods and technology towards a brighter future with compassion and tolerance.

Keywords: the five aggregates, Buddhism, four great elements, physics, calabi-yau manifold

Procedia PDF Downloads 196
1928 Modification Of Rubber Swab Tool With Brush To Reduce Rubber Swab Fraction Fishing Time

Authors: T. R. Hidayat, G. Irawan, F. Kurniawan, E. H. I. Prasetya, Suharto, T. F. Ridwan, A. Pitoyo, A. Juniantoro, R. T. Hidayat

Abstract:

Swab activities is an activity to lift fluid from inside the well with the use of a sand line that aims to find out fluid influx after conducting perforation or to reduce the level of fluid as an effort to get the difference between formation pressure with hydrostatic pressure in the well for underbalanced perforation. During the swab activity, problems occur frequent problems occur with the rubber swab. The rubber swab often breaks and becomes a fish inside the well. This rubber swab fishing activity caused the rig operation takes longer, the swab result data becomes too late and create potential losses of well operation for the company. The average time needed for fishing the fractions of rubber swab plus swab work is 42 hours. Innovation made for such problems is to modify the rubber swab tool. The rubber swab tool is modified by provided a series of brushes at the end part of the tool with a thread of connection in order to improve work safety, so when the rubber swab breaks, the broken swab will be lifted by the brush underneath; therefore, it reduces the loss time for rubber swab fishing. This tool has been applied, it and is proven that with this rubber swab tool modification, the rig operation becomes more efficient because it does not carry out the rubber swab fishing activity. The fish fractions of the rubber swab are lifted up to the surface. Therefore, it saves the fuel cost, and well production potentials are obtained. The average time to do swab work after the application of this modified tool is 8 hours.

Keywords: rubber swab, modifikasi swab, brush, fishing rubber swab, saving cost

Procedia PDF Downloads 170
1927 Fermentation of Pretreated Herbaceous Cellulosic Wastes to Ethanol by Anaerobic Cellulolytic and Saccharolytic Thermophilic Clostridia

Authors: Lali Kutateladze, Tamar Urushadze, Tamar Dudauri, Besarion Metreveli, Nino Zakariashvili, Izolda Khokhashvili, Maya Jobava

Abstract:

Lignocellulosic waste streams from agriculture, paper and wood industry are renewable, plentiful and low-cost raw materials that can be used for large-scale production of liquid and gaseous biofuels. As opposed to prevailing multi-stage biotechnological processes developed for bioconversion of cellulosic substrates to ethanol where high-cost cellulase preparations are used, Consolidated Bioprocessing (CBP) offers to accomplish cellulose and xylan hydrolysis followed by fermentation of both C6 and C5 sugars to ethanol in a single-stage process. Syntrophic microbial consortium comprising of anaerobic, thermophilic, cellulolytic, and saccharolytic bacteria in the genus Clostridia with improved ethanol productivity and high tolerance to fermentation end-products had been proposed for achieving CBP. 65 new strains of anaerobic thermophilic cellulolytic and saccharolytic Clostridia were isolated from different wetlands and hot springs in Georgia. Using new isolates, fermentation of mechanically pretreated wheat straw and corn stalks was done under oxygen-free nitrogen environment in thermophilic conditions (T=550C) and pH 7.1. Process duration was 120 hours. Liquid and gaseous products of fermentation were analyzed on a daily basis using Perkin-Elmer gas chromatographs with flame ionization and thermal detectors. Residual cellulose, xylan, xylose, and glucose were determined using standard methods. Cellulolytic and saccharolytic bacteria strains degraded mechanically pretreated herbaceous cellulosic wastes and fermented glucose and xylose to ethanol, acetic acid and gaseous products like hydrogen and CO2. Specifically, maximum yield of ethanol was reached at 96 h of fermentation and varied between 2.9 – 3.2 g/ 10 g of substrate. The content of acetic acid didn’t exceed 0.35 g/l. Other volatile fatty acids were detected in trace quantities.

Keywords: anaerobic bacteria, cellulosic wastes, Clostridia sp, ethanol

Procedia PDF Downloads 301
1926 Collagen/Hydroxyapatite Compositions Doped with Transitional Metals for Bone Tissue Engineering Applications

Authors: D. Ficai, A. Ficai, D. Gudovan, I. A. Gudovan, I. Ardelean, R. Trusca, E. Andronescu, V. Mitran, A. Cimpean

Abstract:

In the last years, scientists struggled hardly to mimic bone structures to develop implants and biostructures which present higher biocompatibility and reduced rejection rate. One way to obtain this goal is to use similar materials as that of bone, namely collagen/hydroxyapatite composite materials. However, it is very important to tailor both compositions but also the microstructure of the bone that would ensure both the optimal osteointegartion and the mechanical properties required by the application. In this study, new collagen/hydroxyapatites composite materials doped with Cu, Li, Mn, Zn were successfully prepared. The synthesis method is described below: weight the Ca(OH)₂ mass, i.e., 7,3067g, and ZnCl₂ (0.134g), CuSO₄ (0.159g), LiCO₃ (0.133g), MnCl₂.4H₂O (0.1971g), and suspend in 100ml distilled water under magnetic stirring. The solution thus obtained is added a solution of NaH₂PO₄*H2O (8.247g dissolved in 50ml distilled water) under slow dropping of 1 ml/min followed by adjusting the pH to 9.5 with HCl and finally filter and wash until neutral pH. The as-obtained slurry was dried in the oven at 80°C and then calcined at 600°C in order to ensure a proper purification of the final product of organic phases, also inducing a proper sterilization of the mixture before insertion into the collagen matrix. The collagen/hydroxyapatite composite materials are tailored from morphological point of view to optimize their biocompatibility and bio-integration against mechanical properties whereas the addition of the dopants is aimed to improve the biological activity of the samples. The addition of transitional metals can improve the biocompatibility and especially the osteoblasts adhesion (Mn²⁺) or to induce slightly better osteoblast differentiation of the osteoblast, Zn²⁺ being a cofactor for many enzymes including those responsible for cell differentiation. If the amount is too high, the final material can become toxic and lose all of its biocompatibility. In order to achieve a good biocompatibility and not reach the cytotoxic effect, the amount of transitional metals added has to be maintained at low levels (0.5% molar). The amount of transitional metals entering into the elemental cell of HA will be verified using inductively-coupled plasma mass spectrometric system. This highly sensitive technique is necessary, because, at such low levels of transitional metals, the difference between biocompatible and cytotoxic is a very thin line, thus requiring proper and thorough investigation using a precise technique. In order to determine the structure and morphology of the obtained composite materials, IR spectroscopy, X-Ray diffraction (XRD), scanning electron microscopy (SEM), and Energy Dispersive X-Ray Spectrometry (EDS) were used. Acknowledgment: The present work was possible due to the EU-funding grant POSCCE-A2O2.2.1-2013-1, Project No. 638/12.03.2014, code SMIS-CSNR 48652. The financial contribution received from the national project “Biomimetic porous structures obtained by 3D printing developed for bone tissue engineering (BIOGRAFTPRINT), No. 127PED/2017 is also highly acknowledged.

Keywords: collagen, composite materials, hydroxyapatite, bone tissue engineering

Procedia PDF Downloads 209
1925 Large Eddy Simulations for Flow Blurring Twin-Fluid Atomization Concept Using Volume of Fluid Method

Authors: Raju Murugan, Pankaj S. Kolhe

Abstract:

The present study is mainly focusing on the numerical simulation of Flow Blurring (FB) twin fluid injection concept was proposed by Ganan-Calvo, which involves back flow atomization based on global bifurcation of liquid and gas streams, thus creating two-phase flow near the injector exit. The interesting feature of FB injector spray is an insignificant effect of variation in atomizing air to liquid ratio (ALR) on a spray cone angle. Besides, FB injectors produce a nearly uniform spatial distribution of mean droplet diameter and are least susceptible to variation in thermo-physical properties of fuels, making it a perfect candidate for fuel flexible combustor development. The FB injector working principle has been realized through experimental flow visualization techniques only. The present study explores potential of ANSYS Fluent based Large Eddy Simulation(LES) with volume of fluid (VOF) method to investigate two-phase flow just upstream of injector dump plane and spray quality immediate downstream of injector dump plane. Note that, water and air represent liquid and gas phase in all simulations and ALR is varied by changing the air mass flow rate alone. Preliminary results capture two phase flow just upstream of injector dump plane and qualitative agreement is observed with the available experimental literature.

Keywords: flow blurring twin fluid atomization, large eddy simulation, volume of fluid, air to liquid ratio

Procedia PDF Downloads 214
1924 Catalytic Hydrodesulfurization of Dibenzothiophene Coupled with Ionic Liquids over Low Pd Incorporated Co-Mo@Al₂O₃ and Ni-Mo@Al₂O₃ Catalysts at Mild Operating Conditions

Authors: Yaseen Muhammad, Zhenxia Zhao, Zhangfa Tong

Abstract:

A key problem with hydrodesulfurization (HDS) process of fuel oils is the application of severe operating conditions. In this study, we proposed the catalytic HDS of dibenzothiophene (DBT) integrated with ionic liquids (ILs) application at mild temperature and pressure over low loaded (0.5 wt.%) Pd promoted Co-Mo@Al₂O₃ and Ni-Mo@Al₂O₃ catalysts. Among the thirteen ILs tested, [BMIM]BF₄, [(CH₃)₄N]Cl, [EMIM]AlCl₄, and [(C₈H₁₇)(C₃H₇)₃P]Br enhanced the catalytic HDS efficiency while the latest ranked the top of activity list as confirmed by DFT studies as well. Experimental results revealed that Pd incorporation greatly enhanced the HDS activity of classical Co or Ni based catalysts. At mild optimized experimental conditions of 1 MPa H₂ pressure, 120 oC, IL:oil ratio of 1:3 and 4 h reaction time, the % DBT conversion (21 %) by Ni-Mo@Al₂O₃ was enhanced to 69 % (over Pd-Ni-Mo@ Al₂O₃) using [(C₈H₁₇) (C₃H₇)₃P]Br. The fresh and spent catalysts were characterized for textural properties using XPS, SEM, EDX, XRD and BET surface area techniques. An overall catalytic HDS activity followed the order of: Pd-Ni-Mo@Al₂O₃ > Pd-Co-Mo@Al₂O₃ > Ni-Mo@Al₂O₃ > Co-Mo@Al₂O₃. [(C₈H₁₇) (C₃H₇)₃P]Br.could be recycled four times with minimal decrease in HDS activity. Reaction products were analyzed by GC-MS which helped in proposing reaction mechanism for the IL coupled HDS process. The present approach attributed to its cost-effective nature, ease of operation with less mechanical requirements in terms of mild operating conditions, and high efficiency could be deemed as an alternative approach for the HDS of DBT on industrial level applications.

Keywords: DFT simulation, GC-MS and reaction mechanism, Ionic liquid coupled HDS of DBT, low Pd loaded catalyst, mild operating condition

Procedia PDF Downloads 157
1923 Numerical Model for Investigation of Recombination Mechanisms in Graphene-Bonded Perovskite Solar Cells

Authors: Amir Sharifi Miavaghi

Abstract:

It is believed recombination mechnisms in graphene-bonded perovskite solar cells based on numerical model in which doped-graphene structures are employed as anode/cathode bonding semiconductor. Moreover, th‌‌‌‌e da‌‌‌‌‌rk-li‌‌‌‌‌ght c‌‌‌‌urrent d‌‌‌‌ens‌‌‌‌ity-vo‌‌‌‌‌‌‌ltage density-voltage cu‌‌‌‌‌‌‌‌‌‌‌rves are investigated by regression analysis. L‌‌‌oss m‌‌‌‌echa‌‌‌‌nisms suc‌‌‌h a‌‌‌‌‌‌s ba‌‌‌‌ck c‌‌‌ontact b‌‌‌‌‌arrier, d‌‌‌‌eep surface defect i‌‌‌‌n t‌‌‌‌‌‌‌he adsorbent la‌‌‌yer is det‌‌‌‌‌ermined b‌‌‌y adapting th‌‌‌e sim‌‌‌‌‌ulated ce‌‌‌‌‌ll perfor‌‌‌‌‌mance to t‌‌‌‌he measure‌‌‌‌ments us‌‌‌‌ing the diffe‌‌‌‌‌‌rential evolu‌‌‌‌‌tion of th‌‌‌‌e global optimization algorithm. T‌‌‌‌he performance of t‌‌‌he c‌‌‌‌ell i‌‌‌‌n the connection proc‌‌‌‌‌ess incl‌‌‌‌‌‌udes J-V cur‌‌‌‌‌‌ves that are examined at di‌‌‌‌‌fferent tempe‌‌‌‌‌‌‌ratures an‌‌‌d op‌‌‌‌en cir‌‌‌‌cuit vol‌‌‌‌tage (V) und‌‌‌‌er differ‌‌‌‌‌ent light intensities as a function of temperature. Ba‌‌‌‌sed o‌‌‌n t‌‌‌he prop‌‌‌‌osed nu‌‌‌‌‌merical mod‌‌‌‌el a‌‌‌‌nd the acquired lo‌‌‌‌ss mecha‌‌‌‌‌‌nisms, our approach can be used to improve the efficiency of the solar cell further. Due to the high demand for alternative energy sources, solar cells are good alternatives for energy storage using the photovoltaic phenomenon.

Keywords: numerical model, recombination mechanism, graphen, perovskite solarcell

Procedia PDF Downloads 74
1922 Effect of Biostimulants to Control the Phelipanche ramosa L. Pomel in Processing Tomato Crop

Authors: G. Disciglio, G. Gatta, F. Lops, A. Libutti, A. Tarantino, E. Tarantino

Abstract:

The experimental trial was carried out in open field at Foggia district (Apulia Region, Southern Italy), during the spring-summer season 2014, in order to evaluate the effect of four biostimulant products (RadiconÒ, Viormon plusÒ, LysodinÒ and SiaptonÒ 10L), compared with a control (no biostimulant), on the infestation of processing tomato crop (cv Dres) by the chlorophyll-lacking root parasite Phelipanche ramosa. Biostimulants consist in different categories of products (microbial inoculants, humic and fulvic acids, hydrolyzed proteins and aminoacids, seaweed extracts) which play various roles in plant growing, including the improvement of crop resistance and quali-quantitative characteristics of yield. The experimental trial was arranged according to a complete randomized block design with five treatments, each of one replicated three times. The processing tomato seedlings were transplanted on 5 May 2014. Throughout the crop cycle, P. ramosa infestation was assessed according to the number of emerged shoots (branched plants) counted in each plot, at 66, 78 and 92 day after transplanting. The tomato fruits were harvested at full-stage of maturity on 8 August 2014. From each plot, the marketable yield was measured and the quali-quantitative yield parameters (mean weight, dry matter content, colour coordinate, colour index and soluble solids content of the fruits) were determined. The whole dataset was tested according to the basic assumptions for the analysis of variance (ANOVA) and the differences between the means were determined using Tukey’s tests at the 5% probability level. The results of the study showed that none of the applied biostimulants provided a whole control of Phelipanche, although some positive effects were obtained from their application. To this respect, the RadiconÒ appeared to be the most effective in reducing the infestation of this root-parasite in tomato crop. This treatment also gave the higher tomato yield.

Keywords: biostimulant, control methods, Phelipanche ramosa, tomato crop

Procedia PDF Downloads 302
1921 Production Performance, Gut Microbial Count, Antibody Titer and Selected Welfare Indices of Broiler Birds Fed Higher Level of Animal Protein Concentrate With or Without Organic Acids Blend and Microencapsulated Phyto-Essential Oil

Authors: Ziaul Islam, Asad Sultan, Sarzamin Khan

Abstract:

Organic acids and micro encapsulated phyto essential oils have revealed great potential as an antibiotic replacement and as an additive to work tremendously for the health maintenance of broiler chicken. To explore more about organic acids, a total of 600 day-old broiler chicks (Cobb-500) were procured from a local hatchery and distributed into 5 treatment groups having 6 replicates of 20 birds each; the duration of the biological trial was of 35 days. Group T1 served as a control group that were fed on corn soy-based diet only. T2 were fed with a diet having 6% poultry by-product meal (PBM) diet, T3, T4, and T5 were served as the same diet as T2 but supplemented with an organic acid, phyto essential oils alone, and a combination, respectively. The findings declared significant improvement (p<0.05) in body weight gain and FCR in groups T3, T4, and T5 while feed intake was not affected. European broiler performance indicators like production efficiency factor (EPEF) and broiler index (EBI) were improved significantly (p<0.05) by the treatments T3, T4, and T5 compared with T1 and T2. Carcass evaluation depicted significantly better (p<0.05) dressed and eviscerated weight along with carcass yield (T3, T4, T5). Broilers fed organic acid and phyto essential oils supplemented diet had significantly lower (p<0.05) Clostridium perfringens, Escherichia coliand Salmonella and increased Lactobacillus counts. Likewise, antibody titer against ND, IB, and IBD were also significantly (p<0.05) improved by the treatments T3, T4 and T5compared with the T1and T2. Litter moisture content was significantly (p<0.05) reduced by treatmentsT3, T4, and T5 on day 28 and 35 compared with the T1 and T2. These findings of the present study revealed that supplementation of organic acids blend and phyto-essential oils as an as an substitute to improve the performance of broilers without the use of feed antibiotics in broilers fed with 6% poultry by-product meal based diet.

Keywords: organic acid, phyto essential oils, growth performance, PBM, gut health, microbiota, immunity

Procedia PDF Downloads 131
1920 Ultrasound Disintegration as a Potential Method for the Pre-Treatment of Virginia Fanpetals (Sida hermaphrodita) Biomass before Methane Fermentation Process

Authors: Marcin Dębowski, Marcin Zieliński, Mirosław Krzemieniewski

Abstract:

As methane fermentation is a complex series of successive biochemical transformations, its subsequent stages are determined, to a various extent, by physical and chemical factors. A specific state of equilibrium is being settled in the functioning fermentation system between environmental conditions and the rate of biochemical reactions and products of successive transformations. In the case of physical factors that influence the effectiveness of methane fermentation transformations, the key significance is ascribed to temperature and intensity of biomass agitation. Among the chemical factors, significant are pH value, type, and availability of the culture medium (to put it simply: the C/N ratio) as well as the presence of toxic substances. One of the important elements which influence the effectiveness of methane fermentation is the pre-treatment of organic substrates and the mode in which the organic matter is made available to anaerobes. Out of all known and described methods for organic substrate pre-treatment before methane fermentation process, the ultrasound disintegration is one of the most interesting technologies. Investigations undertaken on the ultrasound field and the use of installations operating on the existing systems result principally from very wide and universal technological possibilities offered by the sonication process. This physical factor may induce deep physicochemical changes in ultrasonicated substrates that are highly beneficial from the viewpoint of methane fermentation processes. In this case, special role is ascribed to disintegration of biomass that is further subjected to methane fermentation. Once cell walls are damaged, cytoplasm and cellular enzymes are released. The released substances – either in dissolved or colloidal form – are immediately available to anaerobic bacteria for biodegradation. To ensure the maximal release of organic matter from dead biomass cells, disintegration processes are aimed to achieve particle size below 50 μm. It has been demonstrated in many research works and in systems operating in the technical scale that immediately after substrate supersonication the content of organic matter (characterized by COD, BOD5 and TOC indices) was increasing in the dissolved phase of sedimentation water. This phenomenon points to the immediate sonolysis of solid substances contained in the biomass and to the release of cell material, and consequently to the intensification of the hydrolytic phase of fermentation. It results in a significant reduction of fermentation time and increased effectiveness of production of gaseous metabolites of anaerobic bacteria. Because disintegration of Virginia fanpetals biomass via ultrasounds applied in order to intensify its conversion is a novel technique, it is often underestimated by exploiters of agri-biogas works. It has, however, many advantages that have a direct impact on its technological and economical superiority over thus far applied methods of biomass conversion. As for now, ultrasound disintegrators for biomass conversion are not produced on the mass-scale, but by specialized groups in scientific or R&D centers. Therefore, their quality and effectiveness are to a large extent determined by their manufacturers’ knowledge and skills in the fields of acoustics and electronic engineering.

Keywords: ultrasound disintegration, biomass, methane fermentation, biogas, Virginia fanpetals

Procedia PDF Downloads 373
1919 An AFM Approach of RBC Micro and Nanoscale Topographic Features During Storage

Authors: K. Santacruz-Gomez, E. Silva-Campa, S. Álvarez-García, V. Mata-Haro, D. Soto-Puebla, M. Pedroza-Montero

Abstract:

Blood gamma irradiation is the only available method to prevent transfusion-associated graft versus host disease (TA-GVHD). However, when blood is irradiated, determine blood shelf time is crucial. Non-irradiated blood has a self-time from 21 to 35 days when is preserved with an anticoagulated solution and stored at 4°C. During their storage, red blood cells (RBC) undergo a series of biochemical, biomechanical and molecular changes involving what is known as storage lesion (SL). SL include loss of structural integrity of RBC, a decrease of 2,3-diphosphatidylglyceric acid levels, and an increase of both ion potassium concentration and hemoglobin (Hb). On the other hand, Atomic force Microscopy (AFM) represents a versatile tool for a nano-scale high-resolution topographic analysis in biological systems. In order to evaluate SL in irradiated and non-irradiated blood, RBC topography and morphometric parameters were obtained from an AFM XE-BIO system. Cell viability was followed using flow cytometry. Our results showed that early markers as nanoscale roughness, allow us to evaluate blood quality since another perspective.

Keywords: AFM, blood γ-irradiation, roughness, storage lesion

Procedia PDF Downloads 535
1918 Enhanced Methane Yield from Organic Fraction of Municipal Solid Waste with Coconut Biochar as Syntrophic Metabolism Biostimulant

Authors: Maria Altamirano, Alfonso Duran

Abstract:

Biostimulation has recently become important in order to improve the stability and performance of the anaerobic digestion (AD) process. This strategy involves the addition of nutrients or supplements to improve the rate of degradation of a native microbial consortium. With the aim of biostimulate sytrophism between secondary fermenting bacteria and methanogenic archaea, improving metabolite degradation and efficient conversion to methane, the addition of conductive materials, mainly carbon based have been studied. This research seeks to highlight the effect that coconut biochar (CBC) has on the metanogenic conversion of the organic fraction of municipal solid waste (OFMSW), analyzing the surface chemistry properties that give biochar its capacity to serve as a redox mediator in the anaerobic digestion process. The biochar characterization techniques were electrical conductivity (EC) scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier Transform Infrared Transmission Spectroscopy (FTIR) and Cyclic Voltammetry (CV). Effect of coconut biochar addition was studied using Authomatic Methane Potential Test System (AMPTS II) applying a one-way variance analysis to determine the dose that leads to higher methane performance. The surface chemistry of the CBC could confer properties that enhance the AD process, such as the presence of alkaline and alkaline earth metals and their hydrophobicity that may be related to their buffering capacity and the adsorption of polar and non-polar compounds, such as NH4+ and CO2. It also has aromatic functional groups, just as quinones, whose potential as a redox mediator has been demonstrated and its morphology allows it to form an immobilizing matrix that favors a closer activity among the syntrophic microorganisms, which directly contributed in the oxidation of secondary metabolites and the final reduction to methane, whose yield is increased by 39% compared to controls, with a CBC dose of 1 g/L.

Keywords: anaerobic digestion, biochar, biostimulation, syntrophic metabolism

Procedia PDF Downloads 193
1917 The Effect of Pre-Cracks on Structural Strength of the Nextel Fibers: A Multiscale Modeling Approach

Authors: Seyed Mohammad Mahdi Zamani, Kamran Behdinan

Abstract:

In this study, a multiscale framework is performed to model the strength of Nextel fibers in presence of an atomistic scale pre-crack at finite temperatures. The bridging cell method (BCM) is the multiscale technique applied in this study, which decomposes the system into the atomistic, bridging and continuum domains; solves the whole system in a finite element framework; and incorporates temperature dependent calculations. Since Nextel is known to be structurally stable and retain 70% of its initial strength up to 1100°C; simulations are conducted at both of the room temperatures, 25°C, and fire temperatures, 1200°C. Two cases are modeled for a pre-crack present in either phases of alumina or mullite of the Nextel structure. The materials’ response is studied with respect to deformation behavior and ultimate tensile strength. Results show different crack growth trends for the two cases, and as the temperature increases, the crack growth resistance and material’s strength decrease.

Keywords: Nextel fibers, multiscale modeling, pre-crack, ultimate tensile strength

Procedia PDF Downloads 424
1916 Hafnium Doped Zno Nanostructures: An Eco-Friendly Synthesis for Optoelectronic Applications

Authors: Mohamed Achehboune, Mohammed Khenfouch, Issam Boukhoubza, Bakang Mothudi, Izeddine Zorkani, Anouar Jorio

Abstract:

Zinc Oxide (ZnO) nanostructures have been attracting growing interest in recent years; their optical and electrical properties make them useful as attractive and promising materials for optoelectronic applications. In this study, pure and Hafnium doped ZnO nanostructures were synthesized using a green processing method. The structural, optical and electrical properties of samples were investigated structural and optical spectroscopies and electrical measurements. The synthesis and chemical composition of pure and Hafnium doped ZnO were confirmed by SEM observation. The XRD studies of Hafnium doped ZnO demonstrate the formation of wurtzite structure with preferred c-axis orientation. Moreover, the optical and electrical properties of doped material have improved after the doping process. The experimental results obtained for our material show that Hf doped ZnO nanostructures could be a promising material in optoelectronic applications such as photovoltaic cell and light emitting diode devices.

Keywords: green synthesis, hafnium-doped-zinc oxide, nanostructures, optoelectronic

Procedia PDF Downloads 275
1915 Simulation of Red Blood Cells in Complex Micro-Tubes

Authors: Ting Ye, Nhan Phan-Thien, Chwee Teck Lim, Lina Peng, Huixin Shi

Abstract:

In biofluid flow systems, often the flow problems of fluids of complex structures, such as the flow of red blood cells (RBCs) through complex capillary vessels, need to be considered. In this paper, we aim to apply a particle-based method, Smoothed Dissipative Particle Dynamics (SDPD), to simulate the motion and deformation of RBCs in complex micro-tubes. We first present the theoretical models, including SDPD model, RBC-fluid interaction model, RBC deformation model, RBC aggregation model, and boundary treatment model. After that, we show the verification and validation of these models, by comparing our numerical results with the theoretical, experimental and previously-published numerical results. Finally, we provide some simulation cases, such as the motion and deformation of RBCs in rectangular, cylinder, curved, bifurcated, and constricted micro-tubes, respectively.

Keywords: aggregation, deformation, red blood cell, smoothed dissipative particle dynamics

Procedia PDF Downloads 176
1914 Role of GM1 in the Interaction between Amyloid Prefibrillar Oligomers of Salmon Calcitonin and Model Membranes

Authors: Cristiano Giordani, Marco Diociaiuti, Cecilia Bombelli, Laura Zanetti-Polzi, Marcello Belfiore, Raoul Fioravanti, Gianfranco Macchia

Abstract:

We investigated induced functional effects by evaluating Ca2+-influx in liposomes and cell viability in HT22-DIFF neurons. Only solutions rich in unstructured Prefibrillar-Oligomers (PFOs) were able, in the presence of Monosialoganglioside-GM1 (GM1), to induce Ca2+-influx and were also neurotoxic, suggesting a correlation between the two phenomena. Thus, in the presence of GM1, we investigated the protein conformation and liposome modification due to the interaction. Circular Dichroism showed that GM1 fostered the formation of β-structures and Energy Filtered-Transmission Electron Microscopy that PFOs formed “amyloid-channels” as reported for Aβ. We speculate that electrostatic forces occurring between the positive PFOs and negative GM1 drive the initial binding, while the hydrophobic profile of the flexible PFO is responsible for the subsequent pore formation. Conversely, the rigid β-structured mature/fibers (MFs) and proto-fibers (PFs) were unable to induce membrane damage and Ca2+- influx.

Keywords: amyloid proteins, neurotoxicity, lipid-rafts, GM1

Procedia PDF Downloads 193
1913 Harnessing Nature's Fury: Hyptis Suaveolens Loaded Bioactive Liposome for Photothermal Therapy of Lung Cancer

Authors: Sajmina Khatun, Monika Pebam, Aravind Kumar Rengan

Abstract:

Photothermal therapy, a subset of nanomedicine, takes advantage of light-absorbing agents to generate localized heat, selectively eradicating cancer cells. This innovative approach minimizes damage to healthy tissues and offers a promising avenue for targeted cancer treatment. Unlike conventional therapies, photothermal therapy harnesses the power of light to combat malignancies precisely and effectively, showcasing its potential to revolutionize cancer treatment paradigms. The combined strengths of nanomedicine and photothermal therapy signify a transformative shift toward more effective, targeted, and tolerable cancer treatments in the medical landscape. Utilizing natural products becomes instrumental in formulating diverse bioactive medications owing to their various pharmacological properties attributed to the existence of phenolic structures, triterpenoids, and similar compounds. Hyptis suaveolens, commonly known as pignut, stands as an aromatic herb within the Lamiaceae family and represents a valuable therapeutic plant. Flourishing in swamps and alongside tropical and subtropical roadsides, these noxious weeds impede the development of adjacent plants. Hyptis suaveolens ranks among the most globally distributed alien invasive species. The present investigation revealed that a versatile, biodegradable liposome nanosystem (HIL NPs), incorporating bioactive molecules from Hyptis suaveolens, exhibits effective bioavailability to cancer cells, enabling tumor ablation upon near-infrared (NIR) laser exposure. The components within the nanosystem, specifically the bioactive molecules from Hyptis, function as anticancer agents, aiding in the photothermal ablation of highly metastatic lung cancer cells. Despite being a prolific weed impeding neighboring plant growth, Hyptis suaveolens showcases therapeutic benefits through its bioactive compounds. The obtained HIL NPs, characterized as a photothermally active liposome nanosystem, demonstrate a pronounced fluorescence absorption peak in the NIR range and achieve a high photothermal conversion efficiency under NIR laser irradiation. Transmission electron microscopy (TEM) and particle size analysis reveal that HIL NPs possess a spherical shape with a size of 141 ± 30 nm. Moreover, in vitro assessments of HIL NPs against lung cancer cell lines (A549) indicate effective anticancer activity through a combined cytotoxic effect and hyperthermia. Tumor ablation is facilitated by apoptosis induced by the overexpression of ɣ-H2AX, arresting cancer cell proliferation. Consequently, the multifunctional and biodegradable nanosystem (HIL NPs), incorporating bioactive compounds from Hyptis, provides valuable perspectives for developing an innovative therapeutic strategy originating from a challenging weed. This approach holds promise for potential applications in both bioimaging and the combined use of phyto-photothermal therapy for cancer treatment.

Keywords: bioactive liposome, hyptis suaveolens, photothermal therapy, lung cancer

Procedia PDF Downloads 100
1912 Electro-Mechanical Response and Engineering Properties of Piezocomposite with Imperfect Interface

Authors: Rattanan Tippayaphalapholgul, Yasothorn Sapsathiarn

Abstract:

Composites of piezoelectric materials are widely use in practical applications such as nondestructive testing devices, smart adaptive structures and medical devices. A thorough understanding of coupled electro-elastic response and properties of piezocomposite are crucial for the development and design of piezoelectric composite materials used in advanced applications. The micromechanics analysis is employed in this paper to determine the response and engineering properties of the piezocomposite. A mechanical imperfect interface bonding between piezoelectric inclusion and polymer matrix is taken into consideration in the analysis. The micromechanics analysis is based on the Boundary Element Method (BEM) together with the periodic micro-field micromechanics theory. A selected set of numerical results is presented to investigate the influence of volume ratio and interface bonding condition on effective piezocomposite material coefficients and portray basic features of coupled electroelastic response within the domain of piezocomposite unit cell.

Keywords: effective engineering properties, electroelastic response, imperfect interface, piezocomposite

Procedia PDF Downloads 234
1911 Applications of Nanoparticles via Laser Ablation in Liquids: A Review

Authors: Fawaz M. Abdullah, Abdulrahman M. Al-Ahmari, Madiha Rafaqat

Abstract:

Laser ablation of any solid target in the liquid leads to fabricate nanoparticles (NPs) with metal or different compositions of materials such as metals, alloys, oxides, carbides, hydroxides. The fabrication of NPs in liquids based on laser ablation has grown up rapidly in the last decades compared to other techniques. Nowadays, laser ablation has been improved to prepare different types of NPs with special morphologies, microstructures, phases, and sizes, which can be applied in various fields. The paper reviews and highlights the different sizes, shapes and application field of nanoparticles that are produced by laser ablation under different liquids and materials. Also, the paper provides a case study for producing a titanium NPs produced by laser ablation submerged in distilled water. The size of NPs is an important parameter, especially for their usage and applications. The size and shape have been analyzed by SEM, (EDAX) was applied to evaluate the oxidation and elements of titanium NPs and the XRD was used to evaluate the phase composition and the peaks of both titanium and some element. SEM technique showed that the synthesized NPs size ranges were between 15-35 nm which can be applied in various field such as annihilator for cancerous cell etc.

Keywords: nanoparticles, laser ablation, titanium NPs, applications

Procedia PDF Downloads 144
1910 Selective Oxidation of 6Mn-2Si Advanced High Strength Steels during Intercritical Annealing Treatment

Authors: Maedeh Pourmajidian, Joseph R. McDermid

Abstract:

Advanced High Strength Steels are revolutionizing both the steel and automotive industries due to their high specific strength and ability to absorb energy during crash events. This allows manufacturers to design vehicles with significantly increased fuel efficiency without compromising passenger safety. To maintain the structural integrity of the fabricated parts, they must be protected from corrosion damage through continuous hot-dip galvanizing process, which is challenging due to selective oxidation of Mn and Si on the surface of this AHSSs. The effects of process atmosphere oxygen partial pressure and small additions of Sn on the selective oxidation of a medium-Mn C-6Mn-2Si advanced high strength steel was investigated. Intercritical annealing heat treatments were carried out at 690˚C in an N2-5%H2 process atmosphere under dew points ranging from –50˚C to +5˚C. Surface oxide chemistries, morphologies, and thicknesses were determined at a variety of length scales by several techniques, including SEM, TEM+EELS, and XPS. TEM observations of the sample cross-sections revealed the transition to internal oxidation at the +5˚C dew point. EELS results suggested that the internal oxides network was composed of a multi-layer oxide structure with varying chemistry from oxide core towards the outer part. The combined effect of employing a known surface active element as a function of process atmosphere on the surface structure development and the possible impact on reactive wetting of the steel substrates by the continuous galvanizing zinc bath will be discussed.

Keywords: 3G AHSS, hot-dip galvanizing, oxygen partial pressure, selective oxidation

Procedia PDF Downloads 401
1909 Green Synthesis of Zinc Oxide Nano Particles Using Tomato (Lycopersicon esculentum) Extract and Its Application for Solar Cell

Authors: Prasanta Sutradhar, Mitali Saha

Abstract:

With an increasing awareness of green and clean energy, zinc oxide based solar cells were found to be suitable candidates for cost-effective and environmentally friendly energy conversion devices. In this work, we have reported the green synthesis of zinc oxide nanoparticles (ZnO) by thermal method and under microwave irradiation using the aqueous extract of tomatoes as non-toxic and ecofriendly reducing material. The synthesized ZnO nanoparticles were characterised by UV-Visible spectroscopy (UV-Vis), infra-red spectroscopy (IR), particle size analyser (DLS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and X- ray diffraction study (XRD). A series of ZnO nanocomposites with titanium dioxide nanoparticles (TiO2) and graphene oxide (GO) were prepared for photovoltaic application. Structural and morphological studies of these nanocomposites were carried out using UV-vis, SEM, XRD, and AFM. The current-voltage measurements of the nanocomposites demonstrated enhanced power conversion efficiency of 6.18% in case of ZnO/GO/TiO2 nanocomposite.

Keywords: ZnO, green synthesis, microwave, nanocomposites, I-V characteristics

Procedia PDF Downloads 405
1908 An Integration of Genetic Algorithm and Particle Swarm Optimization to Forecast Transport Energy Demand

Authors: N. R. Badurally Adam, S. R. Monebhurrun, M. Z. Dauhoo, A. Khoodaruth

Abstract:

Transport energy demand is vital for the economic growth of any country. Globalisation and better standard of living plays an important role in transport energy demand. Recently, transport energy demand in Mauritius has increased significantly, thus leading to an abuse of natural resources and thereby contributing to global warming. Forecasting the transport energy demand is therefore important for controlling and managing the demand. In this paper, we develop a model to predict the transport energy demand. The model developed is based on a system of five stochastic differential equations (SDEs) consisting of five endogenous variables: fuel price, population, gross domestic product (GDP), number of vehicles and transport energy demand and three exogenous parameters: crude birth rate, crude death rate and labour force. An interval of seven years is used to avoid any falsification of result since Mauritius is a developing country. Data available for Mauritius from year 2003 up to 2009 are used to obtain the values of design variables by applying genetic algorithm. The model is verified and validated for 2010 to 2012 by substituting the values of coefficients obtained by GA in the model and using particle swarm optimisation (PSO) to predict the values of the exogenous parameters. This model will help to control the transport energy demand in Mauritius which will in turn foster Mauritius towards a pollution-free country and decrease our dependence on fossil fuels.

Keywords: genetic algorithm, modeling, particle swarm optimization, stochastic differential equations, transport energy demand

Procedia PDF Downloads 372
1907 A Model for Helicopter Routing Problem

Authors: Aydin Sipahioglu, Gokhan Celik

Abstract:

Helicopter routing problem (HRP) is finding good tours for helicopter so as to pick up and deliver personnel or material among specified nodes, mutually. It can be encountered in case of being lots of supply and demand points for different commodities and requiring delivering commodities with helicopter. For instance, to deliver personnel or material from shore to oil rig is a good example. In fact, HRP is a branch of vehicle routing problem with pickup and delivery (VRPPD). However, it has additional constraints such that fuel capacity, performance of helicopter in different altitude and temperature, and the number of maximum takeoff and landing allowed. This kind of pickup and delivery problems can be classified into 3 groups, basically. 1-1 (one to one), M-M (many to many) and 1-M-1 (one to many to one). 1-1 means each commodity has only one supply and one demand point. M-M means there can be more than one supply and demand points for each kind of commodity. 1-M-1 means commodities at depot are delivered to demand points and commodities at customers are delivered to depot. In this case helicopter takes off from its own base, complete its tour and return to its own base. In this study, we define 1-M-M-1 type HRP. That means helicopter takes off from its home base, deliver commodities among the nodes as well as between depot and customers and return to its home base. These problems have NP-hard nature. Therefore, obtaining a good solution in a reasonable time is not easy. In this study, a model is offered for 1-M-M-1 type HRP. It is shown on small scale test instances that the model can find the optimal solution.

Keywords: helicopter routing problem, vehicle routing with pickup and delivery, integer programming

Procedia PDF Downloads 434
1906 Protein and Lipid Extraction from Microalgae with Ultrasound Assisted Osmotic Shock Method

Authors: Nais Pinta Adetya, H. Hadiyanto

Abstract:

Microalgae has a potential to be utilized as food and natural colorant. The microalgae components consists of three main parts, these are lipid, protein, and carbohydrate. Crucial step in producing lipid and protein from microalgae is extraction. Microalgae has high water level (70-90%), it causes drying process of biomass needs much more energy and also has potential to distract lipid and protein from microalgae. Extraction of lipid from wet biomass is able to take place efficiently with cell disruption of microalgae by osmotic shock method. In this study, osmotic shock method was going to be integrated with ultrasound to maximalize the extraction yield of lipid and protein from wet biomass Spirulina sp. with osmotic shock method assisted ultrasound. This study consisted of two steps, these were osmotic shock process toward wet biomass and ultrasound extraction assisted. NaCl solution was used as osmotic agent, with the variation of concentrations were 10%, 20%, and 30%. Extraction was conducted in 40°C for 20 minutes with frequency of ultrasound wave was 40kHz. The optimal yield of protein (2.7%) and (lipid 38%) were achieved at 20% osmotic agent concentration.

Keywords: extraction, lipid, osmotic shock, protein, ultrasound

Procedia PDF Downloads 363
1905 Smartphone Based Wound Assessment System for Diabetes Patients

Authors: Vaibhav V. Dixit, Shubham Ajay Karwa

Abstract:

Diabetic foot ulcers speak to a critical medical problem. Right now, clinicians and medical caretakers primarily construct their injury evaluation in light of visual examination of wound size and mending status, while the patients themselves rarely have a chance to play a dynamic part. Henceforth, love quantitative and practical examination technique that empowers the patients and their parental figures to take a more dynamic part in every day wound care possibly can quicken wound recuperating, spare travel cost and diminish human services costs. Considering the commonness of cell phones with a high-determination computerized camera, evaluating wounds by breaking down pictures of ceaseless foot ulcers is an alluring choice. In this paper, we propose a novel injury picture examination framework actualized using feature extraction and color segmentation. Here we are using the Normalized minimum distance classifier for classifying the output.

Keywords: diabetic, Gabor wavelet, normalized minimum distance classifier, quantiable parameters

Procedia PDF Downloads 272