Search results for: sampling algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4990

Search results for: sampling algorithms

1090 Debris Flow Mapping Using Geographical Information System Based Model and Geospatial Data in Middle Himalayas

Authors: Anand Malik

Abstract:

The Himalayas with high tectonic activities poses a great threat to human life and property. Climate change is another reason which triggering extreme events multiple fold effect on high mountain glacial environment, rock falls, landslides, debris flows, flash flood and snow avalanches. One such extreme event of cloud burst along with breach of moraine dammed Chorabri Lake occurred from June 14 to June 17, 2013, triggered flooding of Saraswati and Mandakini rivers in the Kedarnath Valley of Rudraprayag district of Uttrakhand state of India. As a result, huge volume of water with its high velocity created a catastrophe of the century, which resulted into loss of large number of human/animals, pilgrimage, tourism, agriculture and property. Thus a comprehensive assessment of debris flow hazards requires GIS-based modeling using numerical methods. The aim of present study is to focus on analysis and mapping of debris flow movements using geospatial data with flow-r (developed by team at IGAR, University of Lausanne). The model is based on combined probabilistic and energetic algorithms for the assessment of spreading of flow with maximum run out distances. Aster Digital Elevation Model (DEM) with 30m x 30m cell size (resolution) is used as main geospatial data for preparing the run out assessment, while Landsat data is used to analyze land use land cover change in the study area. The results of the study area show that model can be applied with great accuracy as the model is very useful in determining debris flow areas. The results are compared with existing available landslides/debris flow maps. ArcGIS software is used in preparing run out susceptibility maps which can be used in debris flow mitigation and future land use planning.

Keywords: debris flow, geospatial data, GIS based modeling, flow-R

Procedia PDF Downloads 275
1089 The Use of a Miniature Bioreactor as Research Tool for Biotechnology Process Development

Authors: Muhammad Zainuddin Arriafdi, Hamudah Hakimah Abdullah, Mohd Helmi Sani, Wan Azlina Ahmad, Muhd Nazrul Hisham Zainal Alam

Abstract:

The biotechnology process development demands numerous experimental works. In laboratory environment, this is typically carried out using a shake flask platform. This paper presents the design and fabrication of a miniature bioreactor system as an alternative research tool for bioprocessing. The working volume of the reactor is 100 ml, and it is made of plastic. The main features of the reactor included stirring control, temperature control via the electrical heater, aeration strategy through a miniature air compressor, and online optical cell density (OD) sensing. All sensors and actuators integrated into the reactor was controlled using an Arduino microcontroller platform. In order to demonstrate the functionality of such miniature bioreactor concept, series of batch Saccharomyces cerevisiae fermentation experiments were performed under various glucose concentrations. Results attained from the fermentation experiments were utilized to solve the Monod equation constants, namely the saturation constant, Ks, and cells maximum growth rate, μmax as to further highlight the usefulness of the device. The mixing capacity of the reactor was also evaluated. It was found that the results attained from the miniature bioreactor prototype were comparable to results achieved using a shake flask. The unique features of the device as compared to shake flask platform is that the reactor mixing condition is much more comparable to a lab-scale bioreactor setup. The prototype is also integrated with an online OD sensor, and as such, no sampling was needed to monitor the progress of the reaction performed. Operating cost and medium consumption are also low and thus, making it much more economical to be utilized for biotechnology process development compared to lab-scale bioreactors.

Keywords: biotechnology, miniature bioreactor, research tools, Saccharomyces cerevisiae

Procedia PDF Downloads 118
1088 Effect of Gamma Radiation, Age of Paddy, Rice Variety and Packaging Materials on the Surface Free Fatty Acid Content of Brown Rice

Authors: Zenaida M. De Guzman, Davison T. Baldos, Gilberto T. Diano, Jeff Darren G. Valdez, Levelyn Mitos Tolentino, Gina B. Abrera, Ma. Lucia Cobar, Cristina Gragasin

Abstract:

One of the factors affecting the quality of brown rice is the free fatty acid produced from surface lipids. It is the purpose of the study to determine the effect of gamma radiation, packaging materials and age and variety of paddy on the surface free fatty acid content using two different brown rice variety, namely, RC-160 and SL-7, packed in two different packaging materials, namely, regular polyethylene bag and Super bag irradiated at 0.5 and 1.0 kGy. Brown rice was produced from 2-week old (Lot 1) and two months old paddy (Lot 2) and irradiated at the Co-60 Multipurpose Irradiation Facility, PNRI. The surface Free Fatty Acid (FFA) content was obtained following the AOCS Official Method (1982) with some modifications. The experiment was laid out using Split-Plot Randomized Control Block Design. Analysis of variance (ANOVA) showed that the effects of variety, age of paddy and interactions of both were both significant. The surface FFA of SL-7 variety was found to be significantly higher than the RC-160 variety for all radiation doses. Likewise, Lot 2 was observed to have higher surface FFA than Lot 1 regardless of packaging material and radiation dose. It was observed that the surface FFA of both varieties packed in both packaging materials increased significantly up to the 2nd or 3rd month of storage and remains the same until the 5th month. On the other hand, radiation dose did not significantly affect the surface free fatty acid content for all storage/sampling time while the packaging material significantly interacts with the type of variety and radiation dose. Gamma radiation was proven to have no significant effect on the surface free fatty acid at 0.5 and 1.0 kGy and further analyses are needed to determine the action of gamma radiation to the activity of enzyme (lipase-induced and microbial) responsible for the production of other lipolytic products and the effect of gamma radiation on the integrity of the packaging materials.

Keywords: brown rice, free fatty acid, gamma radiation, polyethylene bag

Procedia PDF Downloads 389
1087 Approaches to Reduce the Complexity of Mathematical Models for the Operational Optimization of Large-Scale Virtual Power Plants in Public Energy Supply

Authors: Thomas Weber, Nina Strobel, Thomas Kohne, Eberhard Abele

Abstract:

In context of the energy transition in Germany, the importance of so-called virtual power plants in the energy supply continues to increase. The progressive dismantling of the large power plants and the ongoing construction of many new decentralized plants result in great potential for optimization through synergies between the individual plants. These potentials can be exploited by mathematical optimization algorithms to calculate the optimal application planning of decentralized power and heat generators and storage systems. This also includes linear or linear mixed integer optimization. In this paper, procedures for reducing the number of decision variables to be calculated are explained and validated. On the one hand, this includes combining n similar installation types into one aggregated unit. This aggregated unit is described by the same constraints and target function terms as a single plant. This reduces the number of decision variables per time step and the complexity of the problem to be solved by a factor of n. The exact operating mode of the individual plants can then be calculated in a second optimization in such a way that the output of the individual plants corresponds to the calculated output of the aggregated unit. Another way to reduce the number of decision variables in an optimization problem is to reduce the number of time steps to be calculated. This is useful if a high temporal resolution is not necessary for all time steps. For example, the volatility or the forecast quality of environmental parameters may justify a high or low temporal resolution of the optimization. Both approaches are examined for the resulting calculation time as well as for optimality. Several optimization models for virtual power plants (combined heat and power plants, heat storage, power storage, gas turbine) with different numbers of plants are used as a reference for the investigation of both processes with regard to calculation duration and optimality.

Keywords: CHP, Energy 4.0, energy storage, MILP, optimization, virtual power plant

Procedia PDF Downloads 179
1086 Selective Recovery and Molecular Identification of Laccase-Producing Bacteria from Selected Terrestrial and Aquatic Milieu in the Eastern Cape, South Africa: Toward the Production of Environmentally Relevant Biocatalysts

Authors: John Onolame Unuofin, Uchechukuw U. Nwodo, Anthony I. Okoh

Abstract:

Laccase is constantly gaining status as important biocatalyst in biotechnology. The illimitable potential of its industrial applications and the corresponding aggressive need for phenomenal volumes of extracellularly secreted laccases have called for its interminable production from sources which are able to meet this demand within a relatively short period of time, preferably bacteria. In response to this call, this study was designed to source for laccase-producing bacteria from different environmental matrices. Three sampling environments were chosen such as wastewater treatment plants, University of Fort Hare vicinity and the Hogback woodland, all within the Eastern Cape, South Africa. Samples such as effluents, sediments, leaf litters, degrading wood and rock scrapings were selectively enriched with some model aromatic compounds and were further screened qualitatively and quantitatively on five phenolic substrates ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), Guaiacol, 1-Naphthol, Potassium Ferric Cyanide and Syringaldazine). Basis for selection was their ability to elicit a colour change on at least three of the above mentioned agar based assay substrates. The choice isolates were further identified based on 16S rRNA molecular identification techniques. 33 isolates were screened out of the 40 representative distinct colonies during the qualitative plate screens, while quantitative screens selected out 11 bacterial isolates. They were, based on molecular identification, desginated as members of the genera Pseudomonas, Stenotrophomonas and Citrobacter of the gammaproteobacteria and Bordetalla and Achromobacter of the betaproteobacteria respectively. We therefore conclude based on our outcomes that we may have isolated efficient laccase-producing bacteria, which might be of beneficial significance in catalysis and biotechnology.

Keywords: beta proteobacteria, catalysis, gammaproteobacteria, laccase

Procedia PDF Downloads 174
1085 The Impact of a Model's Skin Tone and Ethnic Identification on Consumer Decision Making

Authors: Shanika Y. Koreshi

Abstract:

Sri Lanka housed the lingerie product development and manufacturing subsidiary to renowned brands such as La Senza, Marks & Spencer, H&M, Etam, Lane Bryant, and George. Over the last few years, they have produced local brands such as Amante to cater to the local and regional customers. Past research has identified factors such as quality, price, and design to be vital when marketing lingerie to consumers. However, there has been minimum research that looks into the ethnically targeted market and skin colour within the Asian population. Therefore, the main aim of the research was to identify whether consumer preference for lingerie is influenced by the skin tone of the model wearing it. Moreover, the secondary aim was to investigate if the consumer preference for lingerie is influenced by the consumer’s ethnic identification with the skin tone of the model. An experimental design was used to explore the above aims. The participants constituted of 66 females residing in the western province of Sri Lanka and were gathered via convenience sampling. Six computerized images of a real model were used in the study, and her skin tone was digitally manipulated to express three different skin tones (light, tan and dark). Consumer preferences were measured through a ranking order scale that was constructed via a focus group discussion and ethnic identity was measured by the Multigroup Ethnic Identity Measure-Revised. Wilcoxon signed-rank test, Friedman test, and chi square test of independence were carried out using SPSS version 20. The results indicated that majority of the consumers ethnically identified and preferred the tan skin over the light and dark skin tones. The findings support the existing literature that states there is a preference among consumers when models have a medium skin tone over a lighter skin tone. The preference for a tan skin tone in a model is consistent with the ethnic identification of the Sri Lankan sample. The study implies that lingerie brands should consider the model's skin tones when marketing the brand to different ethnic backgrounds.

Keywords: consumer preference, ethnic identification, lingerie, skin tone

Procedia PDF Downloads 262
1084 Students with Hearing Impairment and Their Access to Inclusive Education in Nagpur City, India: An Exploratory Study

Authors: Avanika Gupta

Abstract:

Education plays a significant and remedial role in balancing the socio-economic fabric of a country. Inclusive education is considered as the most appropriate mode of teaching students with hearing impairment (SwHI) by various national and international legislations. But inclusive education is still an evolving concept among the disability studies scholars and policy makers in India. The study aimed to examine accessibility of SwHI in mainstream schools if there are special provisions for SwHI. The study also intended to identify if the provisions are same for deaf and hard-of-hearing students. Using stratified random sampling technique, a school was selected from each of the six administrative zones of Nagpur city. All the selected schools had primary and secondary level education and were co-educational in nature. Interview with principals of these schools and focused-group- observation method showcased lack of accessibility for SwHI in attending schools. Not even a single school had a hearing impaired student, either deaf or hard-of-hearing depicting the double marginalization of SwHI. This is despite the fact that the right to education is a fundamental right in India, and national legislation on disability has special provisions for ensuring educational opportunities to SwHI. None of the schools even had an Indian Sign Language (ISL) instructor. Both observations seemed cause and effect of one another. One of the principals informed that they have seats for all students with disabilities but they usually lie vacant due to lack of awareness among the parents. One school had 2 students with locomotive impairment while another had a student with visual impairment. Principals of two special schools were also interviewed to understand the reason behind the low enrollment rate of SwHI in mainstream schools. Guardian preference, homogeneity, relatable faculty, familiar environment were some of the chief reasons mentioned. Few suggestions for the policymakers, teachers, guardians and the students are also recommended so that Indian education system could become inclusive in true sense.

Keywords: deaf, hard-of-hearing, inclusive education, India, Nagpur, students with hearing impairment

Procedia PDF Downloads 107
1083 Awareness and Utilization of Social Network Tools among Agricultural Science Students in Colleges of Education in Ogun State, Nigeria

Authors: Adebowale Olukayode Efunnowo

Abstract:

This study was carried out to assess the awareness and utilization of Social Network Tools (SNTs) among agricultural science students in Colleges of Education in Ogun State, Nigeria. Simple random sampling techniques were used to select 280 respondents from the study area. Descriptive statistics was used to describe the objectives while Pearson Product Moment Correlation was used to test the hypothesis. The result showed that the majority (71.8%) of the respondents were single, with a mean age of 20 years. Almost all (95.7%) the respondents were aware of Facebook and 2go as a Social Network Tools (SNTs) while 85.0% of the respondents were not aware of Blackplanet, LinkedIn, MyHeritage and Bebo. Many (41.1%) of the respondents had views that using SNTs can enhance extensive literature survey, increase internet browsing potential, promote teaching proficiency, and update on outcomes of researches. However, 51.4% of the respondents perceived that SNTs usage as what is meant for the lecturers/adults only while 16.1% considered it as mainly used by internet fraudsters. Findings revealed that about 50.0% of the respondents browsed Facebook and 2go daily while more than 80% of the respondents used Blackplanet, MyHeritage, Skyrock, Bebo, LinkedIn and My YearBook as the need arise. Major constraints to the awareness and utilization of SNTs were high cost and poor quality of ICTs facilities (77.1%), epileptic power supply (75.0%), inadequate telecommunication infrastructure (71.1%), low technical know-how (62.9%) and inadequate computer knowledge (61.1%). The result of PPMC analysis showed that there was an inverse relationship between constraints and utilization of SNTs at p < 0.05. It can be concluded that constraints affect efficient and effective utilization of SNTs in the study area. It is hereby recommended that management of colleges of education and agricultural institutes should provide good internet connectivity, computer facilities, and alternative power supply in order to increase the awareness and utilization of SNTs among students.

Keywords: awareness, utilization, social network tools, constraints, students

Procedia PDF Downloads 354
1082 Psychological Resilience Factors Associated with Climate Change Adaptations by Subsistence Farmers in a Rural Community, South Africa

Authors: Kgopa Bontle, Tholen Sodi

Abstract:

Climate change poses a major threat to the well-being of both people and the environment, with subsistence farmers most affected as they rely on local supply systems that are sensitive to climate variation. This study documented psychological resilience factors associated with climate change adaptations by subsistence farmers in Maruleng Municipality, Limpopo Province. A qualitative study was conducted to examine the notions of climate change by subsistence farmers, the psychological resilience factors, the strategies to cope with climate change, adaptation methods, and the development of subsistence farmers’ psychological resilience factors model. Data were collected through direct interactions with participants using a grounded theory research design. An open-ended interview was used to collect data with a sample of 15 participants selected through theoretical sampling in Maruleng Municipality. The participants were both Sepedi and Xitsonga speaking from 2 villages, mostly unemployed, pensioners and dependent on social grants. The study included both males and females who were predominately the elderly. The research findings indicate that farmers have limited knowledge of what climate change is and what causes it. Furthermore, the research reflects that although their responses were non-scientific but sensible enough to know what they were dealing with. They mentioned extreme weather, which includes hot days and less rainfall and changes in seasons, as some of the impacts brought by climate change. The results also indicated that participants have learned to adapt through several adaptation strategies, including mulching, changes in irrigation time slots and being innovative. The resilience factors that emerged from the study were a passion for farming, hope, enthusiasm, courage, acceptance/tolerance, livelihood and belief systems. Looking at the socio-economic factors of the current study setting argumentation leads to the conclusion that it is important that government should assist the subsistence farmers as it was observed from the participants that they felt neglected by the government and policymakers as they are small scale farmers and are not included like commercial farmers.

Keywords: climate change, psychological resilience factors, human adaptation, subsistence farmers

Procedia PDF Downloads 124
1081 The Alarming Caesarean-Section Delivery Rate in Addis Ababa, Ethiopia

Authors: Yibeltal T. Bayou, Yohana S. Mashalla, Gloria Thupayagale-Tshweneagae

Abstract:

Background: According to the World Health Organization, caesarean section delivery rates of more than 10-15% caesarean section deliveries in any specific geographic region in the world are not justifiable. The aim of the study was to describe the level and analyse determinants of caesarean section delivery in Addis Ababa. Methods: Data was collected in Addis Ababa using a structured questionnaire administered to 901 women aged 15-49 years through a stratified two-stage cluster sampling technique. Binary logistic regression model was employed to identify predictors of caesarean section delivery. Results: Among the 835 women who delivered their last birth at healthcare facilities, 19.2% of them gave birth by caesarean section. About 9.0% of the caesarean section births were due to mother’s request or service provider’s influence without any medical indication. The caesarean section delivery rate was much higher than the recommended rate particularly among the non-slum residents (27.2%); clients of private healthcare facilities (41.1%); currently married women (20.6%); women with secondary (22.2%) and tertiary (33.6%) level of education; and women belonging to the highest wealth quintile household (28.2%). The majority (65.8%) of the caesarean section clients were not informed about the consequences of caesarean section delivery by service providers. The logistic regression model shows that older age (30-49), secondary and above education, non-slum residence, high-risk pregnancy and receiving adequate antenatal care were significantly positively associated with caesarean section delivery. Conclusion: Despite the unreserved effort towards achieving MDG 5 through safe skilled delivery assistance among others, the high caesarean section rate beyond the recommend limit, and the finding that caesarean sections done without medical indications were also alarming. The government and city administration should take appropriate measures before the problems become setbacks in healthcare provision. Further investigations should focus on the effect of caesarean section delivery on maternal and child health outcomes in the study area.

Keywords: Addis Ababa, caesarean section, mode of delivery, slum residence

Procedia PDF Downloads 405
1080 Enhancing ERP Implementation Processes in South African Retail SMEs: A Study on Operational Efficiency and Customer-Centric Approaches

Authors: Tshepo Mabotja

Abstract:

Purpose: The purpose of this study is to identify and analyse the factors influencing ERP implementation in South African SMEs in the textile & apparel retail sector, with the goal of providing insights that improve decision-making, enhance operational efficiency, and meet customer expectations. Design/Methodology/Approach: A quantitative research methodology was employed, utilising a probability (random) sampling technique to ensure equal opportunity for sample selection. The researcher conducted an extensive review of current literature to identify knowledge gaps and applied data analysis methods, including descriptive statistics, reliability tests, exploratory factor analysis, and normality testing. Findings/Results: The study revealed that South African SMEs in the textile & apparel retail industry must evaluate critical factors before implementing an ERP model. These factors include assessing client requirements, examining the experiences of existing ERP system users, understanding system maintenance needs, and forecasting expected performance outcomes. Practical Implications: The findings provide actionable recommendations for textile and apparel retail SMEs aiming to adopt ERP systems. By focusing on the identified critical factors, businesses can enhance their ERP adoption processes, reduce operational inefficiencies, and better align with customer and sustainability demands. Originality/Value: This study contributes to the limited body of knowledge on ERP implementation challenges in South African textile and apparel retail SMEs. It provides a unique perspective on how strategic ERP adoption can drive operational improvements and support sustainable development practices within the industry.

Keywords: retail SMEs, enterprise resource planning, operational efficiency, customer centricity

Procedia PDF Downloads 14
1079 Assessment of Bioaerosol and Microbial Volatile Organic Compounds in Different Sections of Library

Authors: Himanshu Lal, Bipasha Ghosh, Arun Srivastava

Abstract:

A pilot study of indoor air quality in terms of bioaerosol (fungus and bacteria) and few selective microbial volatile organic compounds (MVOCs) was carried out in different indoor sections of a library for two seasons, namely monsoon and post monsoon. Bioaerosol sampling was carried out using Anderson six stage viable sampler at a flow rate of 28.3 L/min while MVOCs were collected on activated charcoal tubes ORBOTM 90 Carboxen 564.Collected MVOCs were desorbed using carbon disulphide (CS2) and analysed by GC-FID. Microscopic identification for fungus was only carried out. Surface dust was collected by sterilised buds and cultured to identify fungal contaminants. Unlike bacterial size distribution, fungal bioaerosol concentration was found to be highest in the fourth stage in different sections of the library. In post monsoon season both fungal bioaerosol (710 to 3292cfu/m3) and bacterial bioaerosol (298 to 1475cfu/m3) were fund at much greater concentration than in monsoon. In monsoon season unlike post monsoon, I/O ratio for both the bioaerosol fractions was more than one. Rain washout could be the reason of lower outdoor concentration in monsoon season. On the contrary most of the MVOCs namely 1-hexene, 1-pentanol and 1-octen-3-ol were found in the monsoon season instead of post monsoon season with the highest being 1-hexene with 7.09µg/m3 concentration. Among the six identified fungal bioaerosol Aspergillus, Cladosporium and Penicillium were found in maximum concentration while Aspergillus niger, Curvuleria lunata, Cladosporium cladosporioides and Penicillium sp., was indentified in surface dust samples. According to regression analysis apart from environmental factors other factors also played an important role. Thus apart from outdoor infiltration and human sources, accumulated surface dust mostly on organic materials like books, wooden furniture and racks can be attributed to being one of the major sources of both fungal bioaerosols as well as MVOCs found in the library.

Keywords: bacteria, Fungi, indoor air, MVOCs

Procedia PDF Downloads 319
1078 The Competitive Power of Supply Chain Quality Management in Manufacturing Companies in Cameroon

Authors: Nicodemus Tiendem, Arrey Mbayong Napoleon

Abstract:

The heightening of competition and the quest for market share has left business persons and research communities re-examining and reinventing their competitive practices. A case in point is Porter’s generic strategy which has received a lot of criticism lately regarding its inability to maintain a company’s competitive power. This is because it focuses more on the organisation and ignores her external partners, who have a strong bearing on the company’s performance. This paper, therefore, sought to examine Porter’s generic strategies alongside supply chain quality management practices in terms of their effectiveness in building the competitive power of manufacturing companies in Cameroon. This was done with the use of primary data captured from a survey study across the supply chains of 20 manufacturing companies in Cameroon using a five-point Likert scale questionnaire. For each company, four 1st tier suppliers and four 1st tier distributors were carefully chosen to participate in the study alongside the companies themselves. In each case, attention was directed to persons involved in the supply chains of the companies. This gave a total of 180 entities comprising the supply chains of the 20 manufacturing companies involved in the study, making a total of 900 participants. The data was analysed using three multiple regression models to assess the effect of Porter’s generic strategy and supply chain quality management on the marketing performance of the companies. The findings proved that in such a competitive atmosphere, supply chain quality management is a better tool for marketing performance over Porter’s generic strategies and hence building the competitive power of the companies at all levels of the study. Although the study made use of convenience sampling, where sample selectivity biases the results, the findings aligned with many other recent developments in line with building the competitive power of manufacturing companies and thereby made the findings suitable for generalisation.

Keywords: supply chain quality management, Porter’s generic strategies, competitive power, marketing performance, manufacturing companies, Cameroon

Procedia PDF Downloads 89
1077 Monitoring Spatial Distribution of Blue-Green Algae Blooms with Underwater Drones

Authors: R. L. P. De Lima, F. C. B. Boogaard, R. E. De Graaf-Van Dinther

Abstract:

Blue-green algae blooms (cyanobacteria) is currently a relevant ecological problem that is being addressed by most water authorities in the Netherlands. These can affect recreation areas by originating unpleasant smells and toxins that can poison humans and animals (e.g. fish, ducks, dogs). Contamination events usually take place during summer months, and their frequency is increasing with climate change. Traditional monitoring of this bacteria is expensive, labor-intensive and provides only limited (point sampling) information about the spatial distribution of algae concentrations. Recently, a novel handheld sensor allowed water authorities to quicken their algae surveying and alarm systems. This study converted the mentioned algae sensor into a mobile platform, by combining it with an underwater remotely operated vehicle (also equipped with other sensors and cameras). This provides a spatial visualization (mapping) of algae concentrations variations within the area covered with the drone, and also in depth. Measurements took place in different locations in the Netherlands: i) lake with thick silt layers at the bottom, very eutrophic former bottom of the sea and frequent / intense mowing regime; ii) outlet of waste water into large reservoir; iii) urban canal system. Results allowed to identify probable dominant causes of blooms (i), provide recommendations for the placement of an outlet, day-night differences in algae behavior (ii), or the highlight / pinpoint higher algae concentration areas (iii). Although further research is still needed to fully characterize these processes and to optimize the measuring tool (underwater drone developments / improvements), the method here presented can already provide valuable information about algae behavior and spatial / temporal variability and shows potential as an efficient monitoring system.

Keywords: blue-green algae, cyanobacteria, underwater drones / ROV / AUV, water quality monitoring

Procedia PDF Downloads 208
1076 The Approach to Develop Value Chain to Enhance the Management Efficiency of Thai Tour Operators in Order to Support Free Trade within the Framework of ASEAN Cooperation

Authors: Yalisa Tonsorn

Abstract:

The objectives of this study are 1) to study the readiness of Thai tour operators in order to prepare for being ASEAN members, 2) to study opportunity and obstacles of the management of Thai tour operators, and 3) to find approach for developing value chain in order to enhance the management efficiency of Thai tour operators in order to support free trade within the framework of ASEAN cooperation. The research methodology is mixed between qualitative method and quantitative method. In-depth interview was done with key informants, including management supervisors, medium managers, and officers of the travel agencies. The questionnaire was conducted with 300 sampling. According to the study, it was found that the approach for developing value chain to enhance the management efficiency of Thai travel agencies in order to support free trade within the framework of ASEAN cooperation, the tour operators must give priority to the customer and deliver the service exceeding the customer’s expectation. There are 2 groups of customers: 1) external customers referring to tourist, and 2) internal customers referring to staff who deliver the service to the customers, including supervisors, colleagues, or subordinates. There are 2 issues which need to be developed: 1) human resource development in order to cultivate the working concept by focusing on importance of customers, and excellent service providing, and 2) working system development by building value and innovation in operational process including services to the company in order to deliver the highest impressive service to both internal and external customers. Moreover, the tour operators could support the increased number of tourists significantly. This could enhance the capacity of the business and affect the increase of competition capability in the economic dimension of the country.

Keywords: AEC (ASEAN Economic Eommunity), core activities, support activities, values chain

Procedia PDF Downloads 353
1075 Exploring the Healthcare Leader's Perception of Their Role and Leadership Behaviours - Looking Through an Adult Developmental Lens

Authors: Shannon Richards-Green, Suzanne Gough, Sharon Mickan

Abstract:

Background: Healthcare leaders work in highly complex and rapidly changing environments. Consequently, they need both flexibility and the capacity to hold multiple perspectives simultaneously. My research explored how healthcare leaders understand and make sense (meaning) of their leadership experiences and how this understanding was manifested in their leadership behaviours. Methods: This grounded theory study was conducted via 2 x 1-hour interviews with healthcare leaders within acute care hospitals. A total of 33 hours of interviews were conducted with 17 participants. Participants were recruited using a combination of purposive and snowball sampling. Interviews were recorded, transcribed, and coded to explore emergent patterns and relationships within the data, utilising constant comparative analysis. Adult developmental stage was defined through a subject-object interview with each participant, in alignment with the tenets of constructive development theory. Findings: Participants from acute care hospitals within Australia have participated in the study, with the majority representing the executive leadership level. Broad categories emerging from the data include; Broadening perspectives and abilities as a leader, Dealing with and experiencing conflict within the workplace, Experiencing rewarding times as a leader, and Leading in alignment with a strong personal values system. Discussion: Successfully dealing with complex challenges requires an ability to engage with nuanced perspectives and responses, an integral part of adult developmental growth. In dealing with conflict, for example, leaders at various levels of adult development approached the situation quite differently. Understanding how healthcare leaders make sense of their experiences can assist in providing insights into the value of supporting adult developmental growth in healthcare leadership.

Keywords: leadership, adult development, complexity, growth

Procedia PDF Downloads 81
1074 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks

Authors: Mst Shapna Akter, Hossain Shahriar

Abstract:

One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.

Keywords: cyber security, vulnerability detection, neural networks, feature extraction

Procedia PDF Downloads 91
1073 Alcohol Rituals and Active Ageing: A Thematic Analysis of Semi-Structured Interviews with Retirees in the West of Scotland

Authors: Deborah Nicholson, Fiona McCormack, Pete Seaman, Karen Bell

Abstract:

This paper explores alcohol consumption amongst retirees in the West of Scotland in the context of active and healthy ageing discourses. The public health consequences of alcohol use are well documented and of growing concern to policy makers in Scotland and elsewhere. However, alcohol occupies a prominent position in a range of cultural and social practices and has associated meanings for users related to conviviality, leisure, sociability, and inclusion- features closely tied to active and healthy ageing. These perceived positive and negative meanings place alcohol in an ambiguous and contradictory position in relation to the Scottish Government’s key health policy initiatives aimed at healthy ageing and the reduction of alcohol-related ill-health. This paper explores these positive and negative associations through an examination of the meanings which retirees attach to alcohol and the routines and rituals they develop to navigate wider health concerns. Methods: participants were recruited from the West of Scotland area using a quota sampling design based around gender, age, and socioeconomic position. Forty participants were interviewed using a semi-structured interview schedule and qualitative techniques. The interviews were transcribed and thematic analysis of the data was conducted. Results: Alcohol use amongst retirees in Scotland was widely varied with marked differences noted in terms of gender and age group, but with less clear variance by socioeconomic position. A range of strategies was employed to limit alcohol use by time, context, location and/or volume and these strategies clearly drew on a perception of alcohol use in retirement as potentially more problematic than at earlier stage of life. Thus, the retirees in the sample used these limiting strategies to navigate the positive and negative meanings they attached to alcohol use.

Keywords: alcohol, health, retirement, routines

Procedia PDF Downloads 153
1072 Applying EzRAD Method for SNPs Discovery in Population Genetics of Freshwater and Marine Fish in the South of Vietnam

Authors: Quyen Vu Dang Ha, Oanh Truong Thi, Thuoc Tran Linh, Kent Carpenter, Thinh Doan Vu, Binh Dang Thuy

Abstract:

Enzyme restriction site associated DNA (EzRAD) has recently emerged as a promising genomic approach for exploring fish genetic diversity on a genome-wide scale. This is a simplified method for genomic genotyping in non-model organisms and applied for SNPs discovery in the population genetics of freshwater and marine fish in the South of Vietnam. The observations of regional-scale differentiation of commercial freshwater fish (smallscale croakers Boesemania microlepis) and marine fish (emperor Lethrinus lentjan) are clarified. Samples were collected along Hau River and coastal area in the south and center Vietnam. 52 DNA samples from Tra Vinh, An Giang Province for Boesemania microlepis and 34 DNA samples of Lethrinus lentjan from Phu Quoc, Nha Trang, Da Nang Province were used to prepare EzRAD libraries from genomic DNA digested with MboI and Sau3AI. A pooled sample of regional EzRAD libraries was sequenced using the HiSeq 2500 Illumina platform. For Boesemania microlepis, the small scale population different from upstream to downstream of Hau river were detected, An Giang population exhibited less genetic diversity (SNPs per individual from 14 to 926), in comparison to Tra Vinh population (from 11 to 2172). For Lethrinus lentjan, the result showed the minor difference between populations in the Northern and the Southern Mekong River. The numbers of contigs and SNPs vary from 1315 to 2455 and from 7122 to 8594, respectively (P ≤ 0.01). The current preliminary study reveals regional scale population disconnection probably reflecting environmental changing. Additional sampling and EzRad libraries need to be implemented for resource management in the Mekong Delta.

Keywords: Boesemania microlepis, EzRAD, Lethrinus lentjan, SNPs

Procedia PDF Downloads 512
1071 Preferred Service Delivery options for Female Sex Workers in the Riverine Area of lome, Togo

Authors: Gbone Akou Sophie

Abstract:

Lome state in Togo is considered to have the highest HIV prevalence in Togo according to NAIIS 2023, with the prevalence of 5.5%, Female Sex Workers (FSW) are one of the most vulnerable population, and they are vital in HIV programming. They have the highest HIV prevalence compared to others such as HRM, PWID and Transgender in lome State, Togo. Evidence from Integrated Biological Behavioral Surveillance Survey shows increasing burden of HIV infection from 13.7% in 20018 to 17.2% in 2020 and now 22.9% in 2021 among Female Sex Workers (FSW). This shows their HIV prevalence has been rising over time. The vulnerability status of the FSW in the riverine areas of lome is heightened because of cultural and economic issues where there is exchange of sex for commodities with cross border traders as well as limited access to HIV prevention information. Methods:A cross sectional study which recruited 120 FSW from two Riverine LGAs of Agoe and Kpehenou LGA of Lome State using both snowballing and simple random sampling technique. While semi-structured questionnaire was used as an instrument for data collection among the 120 FSW respondents. Additional information was also elicited from 10 FSW key opinion leaders and community members through in-depth interviews (IDI). Results: 44(36%) of respondents were willing to receive regular HIV care and services as well as visit for STI check-ups at any service point. However, 47(40%) were willing to receive services at private facilities alone, 10 (8%) were willing to receive services at public facilities, 6 (5%) were willing to access services in their homes rather than in the health facility. 13 (11%) were also willing to have peers assist in getting HIV testing services. Conclusion: integrated differentiated model of care for HIV services helps improve HIV services uptake among FSW community especially in the hard- to reach riverine areas which will further lead to epidemic control. Also targeted HIV information should be designed to suit the learning needs of the hard-to reach communities like the riverine areas. More peer educators should be engaged to ensure information and other HIV services reach the riverine communities.

Keywords: female sex workers ( FSW), human immuno-deficiency virus(HIV), prevanlence, service delivery

Procedia PDF Downloads 73
1070 Optimizing Wind Turbine Blade Geometry for Enhanced Performance and Durability: A Computational Approach

Authors: Nwachukwu Ifeanyi

Abstract:

Wind energy is a vital component of the global renewable energy portfolio, with wind turbines serving as the primary means of harnessing this abundant resource. However, the efficiency and stability of wind turbines remain critical challenges in maximizing energy output and ensuring long-term operational viability. This study proposes a comprehensive approach utilizing computational aerodynamics and aeromechanics to optimize wind turbine performance across multiple objectives. The proposed research aims to integrate advanced computational fluid dynamics (CFD) simulations with structural analysis techniques to enhance the aerodynamic efficiency and mechanical stability of wind turbine blades. By leveraging multi-objective optimization algorithms, the study seeks to simultaneously optimize aerodynamic performance metrics such as lift-to-drag ratio and power coefficient while ensuring structural integrity and minimizing fatigue loads on the turbine components. Furthermore, the investigation will explore the influence of various design parameters, including blade geometry, airfoil profiles, and turbine operating conditions, on the overall performance and stability of wind turbines. Through detailed parametric studies and sensitivity analyses, valuable insights into the complex interplay between aerodynamics and structural dynamics will be gained, facilitating the development of next-generation wind turbine designs. Ultimately, this research endeavours to contribute to the advancement of sustainable energy technologies by providing innovative solutions to enhance the efficiency, reliability, and economic viability of wind power generation systems. The findings have the potential to inform the design and optimization of wind turbines, leading to increased energy output, reduced maintenance costs, and greater environmental benefits in the transition towards a cleaner and more sustainable energy future.

Keywords: computation, robotics, mathematics, simulation

Procedia PDF Downloads 60
1069 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models

Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu

Abstract:

Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.

Keywords: DTM, Unmanned Aerial Vehicle (UAV), uniform, random, kriging

Procedia PDF Downloads 159
1068 Advances in Mathematical Sciences: Unveiling the Power of Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid advancements in data collection, storage, and processing capabilities have led to an explosion of data in various domains. In this era of big data, mathematical sciences play a crucial role in uncovering valuable insights and driving informed decision-making through data analytics. The purpose of this abstract is to present the latest advances in mathematical sciences and their application in harnessing the power of data analytics. This abstract highlights the interdisciplinary nature of data analytics, showcasing how mathematics intersects with statistics, computer science, and other related fields to develop cutting-edge methodologies. It explores key mathematical techniques such as optimization, mathematical modeling, network analysis, and computational algorithms that underpin effective data analysis and interpretation. The abstract emphasizes the role of mathematical sciences in addressing real-world challenges across different sectors, including finance, healthcare, engineering, social sciences, and beyond. It showcases how mathematical models and statistical methods extract meaningful insights from complex datasets, facilitating evidence-based decision-making and driving innovation. Furthermore, the abstract emphasizes the importance of collaboration and knowledge exchange among researchers, practitioners, and industry professionals. It recognizes the value of interdisciplinary collaborations and the need to bridge the gap between academia and industry to ensure the practical application of mathematical advancements in data analytics. The abstract highlights the significance of ongoing research in mathematical sciences and its impact on data analytics. It emphasizes the need for continued exploration and innovation in mathematical methodologies to tackle emerging challenges in the era of big data and digital transformation. In summary, this abstract sheds light on the advances in mathematical sciences and their pivotal role in unveiling the power of data analytics. It calls for interdisciplinary collaboration, knowledge exchange, and ongoing research to further unlock the potential of mathematical methodologies in addressing complex problems and driving data-driven decision-making in various domains.

Keywords: mathematical sciences, data analytics, advances, unveiling

Procedia PDF Downloads 95
1067 Neural Network and Support Vector Machine for Prediction of Foot Disorders Based on Foot Analysis

Authors: Monireh Ahmadi Bani, Adel Khorramrouz, Lalenoor Morvarid, Bagheri Mahtab

Abstract:

Background:- Foot disorders are common in musculoskeletal problems. Plantar pressure distribution measurement is one the most important part of foot disorders diagnosis for quantitative analysis. However, the association of plantar pressure and foot disorders is not clear. With the growth of dataset and machine learning methods, the relationship between foot disorders and plantar pressures can be detected. Significance of the study:- The purpose of this study was to predict the probability of common foot disorders based on peak plantar pressure distribution and center of pressure during walking. Methodologies:- 2323 participants were assessed in a foot therapy clinic between 2015 and 2021. Foot disorders were diagnosed by an experienced physician and then they were asked to walk on a force plate scanner. After the data preprocessing, due to the difference in walking time and foot size, we normalized the samples based on time and foot size. Some of force plate variables were selected as input to a deep neural network (DNN), and the probability of any each foot disorder was measured. In next step, we used support vector machine (SVM) and run dataset for each foot disorder (classification of yes or no). We compared DNN and SVM for foot disorders prediction based on plantar pressure distributions and center of pressure. Findings:- The results demonstrated that the accuracy of deep learning architecture is sufficient for most clinical and research applications in the study population. In addition, the SVM approach has more accuracy for predictions, enabling applications for foot disorders diagnosis. The detection accuracy was 71% by the deep learning algorithm and 78% by the SVM algorithm. Moreover, when we worked with peak plantar pressure distribution, it was more accurate than center of pressure dataset. Conclusion:- Both algorithms- deep learning and SVM will help therapist and patients to improve the data pool and enhance foot disorders prediction with less expense and error after removing some restrictions properly.

Keywords: deep neural network, foot disorder, plantar pressure, support vector machine

Procedia PDF Downloads 360
1066 Derivation of Bathymetry Data Using Worldview-2 Multispectral Images in Shallow, Turbid and Saline Lake Acıgöl

Authors: Muhittin Karaman, Murat Budakoglu

Abstract:

In this study, derivation of lake bathymetry was evaluated using the high resolution Worldview-2 multispectral images in the very shallow hypersaline Lake Acıgöl which does not have a stable water table due to the wet-dry season changes and industrial usage. Every year, a great part of the lake water budget has been consumed for the industrial salt production in the evaporation ponds, which are generally located on the south and north shores of Lake Acıgöl. Therefore, determination of the water level changes from a perspective of remote sensing-based lake water by bathymetry studies has a great importance in the sustainability-control of the lake. While the water table interval is around 1 meter between dry and wet season, dissolved ion concentration, salinity and turbidity also show clear differences during these two distinct seasonal periods. At the same time, with the satellite data acquisition (June 9, 2013), a field study was conducted to collect the salinity values, Secchi disk depths and turbidity levels. Max depth, Secchi disk depth and salinity were determined as 1,7 m, 0,9 m and 43,11 ppt, respectively. Eight-band Worldview-2 image was corrected for atmospheric effects by ATCOR technique. For each sampling point in the image, mean reflectance values in 1*1, 3*3, 5*5, 7*7, 9*9, 11*11, 13*13, 15*15, 17*17, 19*19, 21*21, 51*51 pixel reflectance neighborhoods were calculated separately. A unique image has been derivated for each matrix resolution. Spectral values and depth relation were evaluated for these distinct resolution images. Correlation coefficients were determined for the 1x1 matrix: 0,98, 0,96, 0,95 and 0,90 for the 724 nm, 831 nm, 908 nm and 659 nm, respectively. While 15x5 matrix characteristics with 0,98, 0,97 and 0,97 correlation values for the 724 nm, 908 nm and 831 nm, respectively; 51x51 matrix shows 0,98, 0,97 and 0,96 correlation values for the 724 nm, 831 nm and 659 nm, respectively. Comparison of all matrix resolutions indicates that RedEdge band (724 nm) of the Worldview-2 satellite image has the best correlation with the saline shallow lake of Acıgöl in-situ depth.

Keywords: bathymetry, Worldview-2 satellite image, ATCOR technique, Lake Acıgöl, Denizli, Turkey

Procedia PDF Downloads 448
1065 Discovery of Exoplanets in Kepler Data Using a Graphics Processing Unit Fast Folding Method and a Deep Learning Model

Authors: Kevin Wang, Jian Ge, Yinan Zhao, Kevin Willis

Abstract:

Kepler has discovered over 4000 exoplanets and candidates. However, current transit planet detection techniques based on the wavelet analysis and the Box Least Squares (BLS) algorithm have limited sensitivity in detecting minor planets with a low signal-to-noise ratio (SNR) and long periods with only 3-4 repeated signals over the mission lifetime of 4 years. This paper presents a novel precise-period transit signal detection methodology based on a new Graphics Processing Unit (GPU) Fast Folding algorithm in conjunction with a Convolutional Neural Network (CNN) to detect low SNR and/or long-period transit planet signals. A comparison with BLS is conducted on both simulated light curves and real data, demonstrating that the new method has higher speed, sensitivity, and reliability. For instance, the new system can detect transits with SNR as low as three while the performance of BLS drops off quickly around SNR of 7. Meanwhile, the GPU Fast Folding method folds light curves 25 times faster than BLS, a significant gain that allows exoplanet detection to occur at unprecedented period precision. This new method has been tested with all known transit signals with 100% confirmation. In addition, this new method has been successfully applied to the Kepler of Interest (KOI) data and identified a few new Earth-sized Ultra-short period (USP) exoplanet candidates and habitable planet candidates. The results highlight the promise for GPU Fast Folding as a replacement to the traditional BLS algorithm for finding small and/or long-period habitable and Earth-sized planet candidates in-transit data taken with Kepler and other space transit missions such as TESS(Transiting Exoplanet Survey Satellite) and PLATO(PLAnetary Transits and Oscillations of stars).

Keywords: algorithms, astronomy data analysis, deep learning, exoplanet detection methods, small planets, habitable planets, transit photometry

Procedia PDF Downloads 226
1064 Analysis of the Effect of Farmers’ Socio-Economic Factors on Net Farm Income of Catfish Farmers in Kwara State, Nigeria

Authors: Olanike A. Ojo, Akindele M. Ojo, Jacob H. Tsado, Ramatu U. Kutigi

Abstract:

The study was carried out on analysis of the effect of farmers’ socio-economic factors on the net farm income of catfish farmers in Kwara State, Nigeria. Primary data were collected from selected catfish farmers with the aid of well-structured questionnaire and a multistage sampling technique was used to select 102 catfish farmers in the area. The analytical techniques involved the use of descriptive statistics and multiple regression analysis. The findings of the analysis of socio-economic characteristics of catfish farmers reveal that 60% of the catfish farmers in the study area were male gender which implied the existence of gender inequality in the area. The mean age of 47 years was an indication that they were at their economically productive age and could contribute positively to increased production of catfish in the area. Also, the mean household size was five while the mean year of experience was five. The latter implied that the farmers were experienced in fishing techniques, breeding and fish culture which would assist in generating more revenue, reduce cost of production and eventual increase in profit levels of the farmers. The result also revealed that stock capacity (X3), accessibility to credit (X7) and labour (X4) were the main determinants of catfish production in the area. In addition, farmer’s sex, household size, no of ponds, distance of the farm from market, access to credit were the main socio-economic factors influencing the net farm income of the catfish farmers in the area. The most serious constraints militating against catfish production in the study area were high mortality rate, insufficient market, inadequate credit facilities/ finance and inadequate skilled labour needed for daily production routine. Based on the findings, it is therefore recommended that, to reduce the mortality rate of catfish extension agents should organize training workshops on improved methods and techniques of raising catfish right from juvenile to market size.

Keywords: credit, income, stock, mortality

Procedia PDF Downloads 333
1063 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions

Authors: Oscar E. Cariceo, Claudia V. Casal

Abstract:

Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.

Keywords: cyberbullying, evidence based practice, machine learning, social work research

Procedia PDF Downloads 169
1062 Sports Preferente Intervention as a Predictor of Sustainable Participation at Risk Teenagers in Ibadan Metropolis, Ibadan Nigerian

Authors: Felix Olajide Ibikunle

Abstract:

Introductory Statement: Sustainable participation of teenagers in sport requires deliberate and concerted plan and managerial policy rooted in the “philosophy of catch them young”. At risk, teenagers need proper integration into societal aspiration: This direction will go a long way to streamline them into the security breach and attractive nuisance free lifestyles. Basic Methodology: The population consists of children within 13-19 years old. A proportionate sampling size technique of 60% was adopted to select seven zones out of 11 geo-political zones in the Ibadan metropolis. Qualitative information and interview were used to collect needed information. Majority of the teenagers were out of school, street hawkers, motor pack, touts, and unserious vocation apprentices. These groups have the potentials of security breaches in the metropolis and beyond. Five hundred and thirty-four (534) respondents were used for the study. They were drawn from Ojoo, Akingbile, and Moniya axis = 72, Agbowo, Ajibode, and Apete axis = 74; Akobo, Basorun, and Idi-ape axis 79; Wofun, Monatan, and Iyana-Church axis = 78; Molete, Oke-ado and Oke-Bola axis = 75; Beere, Odinjo, Elekuro axis = 77; Eleyele, Ologuneru, and Alesinloye axis = 79. Major Findings: Multiple regression was used to analyze the independent variables and percentage. The respondents average age was 15.6 years old, and with 100% male. The instrument(questionnaire) used yielded; sport preference (r = 0.72); intervention (r = 0.68) and the sustainable participation (r = 0.70).The relative contributions of sport preference on participation of at risk teenagers was (F-ratio = 1.067); Intervention contribution of sport on participation of at risk teenagers = produced (F-ratio of 12.095) was significant while sustainable participation of at risk teenager produced (F-ratio = 1.062) was significant. Closing Statement: The respondents’ sport preference stimulated their participation in sport. The intervention exposed at risk-teenagers to coaching, which activated their interest and participation in sport. While sustainable participation contributed positively to evolve at risk teenagers participation in their preferred sport.

Keywords: sport, preference, intervention, teenagers, sustainable, participation and risk teenagers

Procedia PDF Downloads 113
1061 Determinants of Cessation of Exclusive Breastfeeding in Ankesha Guagusa Woreda, Awi Zone, Northwest Ethiopia: A Cross-Sectional Study

Authors: Tebikew Yeneabat, Tefera Belachew, Muluneh Haile

Abstract:

Background: Exclusive breast-feeding (EBF) is the practice of feeding only breast milk (including expressed breast milk) during the first six months and no other liquids and solid foods except medications. The time to cessation of exclusive breast-feeding, however, is different in different countries depending on different factors. Studies showed the risk of diarrhea morbidity and mortality is higher among none exclusive breast-feeding infants, common during starting other foods. However, there is no study that evaluated the time to cessation of exclusive breast-feeding in the study area. The aim of this study was to show time to cessation of EBF and its predictors among mothers of index infants less than twelve months old. Methods: We conducted a community-based cross-sectional study from February 13 to March 3, 2012 using both quantitative and qualitative methods. This study included a total of 592 mothers of index infant using multi-stage sampling method. Data were collected by using interviewer administered structured questionnaire. Bivariate and multivariate Cox regression analyses were performed. Results: Cessation of exclusive breast-feeding occurred in 392 (69.63%) cases. Among these, 224 (57.1%) happened before six months, while 145 (37.0%) and 23 (5.9%) occurred at six months and after six months of age of the index infant respectively. The median time for infants to stay on exclusive breast-feeding was 6.36 months in rural and 5.13 months in urban, and this difference was statistically significant on a Log rank (Cox-mantel) test. Maternal and paternal occupation, place of residence, postnatal counseling on exclusive breast-feeding, mode of delivery, and birth order of the index infant were significant predictors of cessation of exclusive breast-feeding. Conclusion: Providing postnatal care counseling on EBF, routine follow-up and support of those mothers having infants stressing for working mothers can bring about implementation of national strategy on infant and young child feeding.

Keywords: exclusive breastfeeding, cessation, median duration, Ankesha Guagusa Woreda

Procedia PDF Downloads 320