Search results for: forensic investigation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4942

Search results for: forensic investigation

1042 An Empirical Study of the Moderation Effects of Commitment, Trust, and Relationship Value in the Relation of Goods and Services Related to Business to Business Brand Images on Customer Loyalty

Authors: Jorge Luis Morales Romero, Enrique Murillo Othón

Abstract:

Business to business (B2B) relationships generally go beyond a purely profit-based result, with firms seeking to maintain a relationship for many years because a breakup or getting a new supplier can be very costly. Therefore, identifying the factors which determine a successful relationship in the long term is of great interest to companies. That is why their reputation and the brand image that customers have of them are among the main factors that can achieve a successful relationship; Because of the positive effect which is driven by the client’s loyalty. Additionally, the perception that a customer may have about a brand is different when it is related to goods or to services. Thereby, they create in their minds their own brand image of it based on the past experiences they have had; Thus, a positive relationship is established between goods-related brand image, service-related brand image, and customer loyalty. The present investigation examines the boundary conditions of said relationship by testing the moderating effects of trust, commitment, and relationship value in a B2B environment. All the variables were tested independently as moderators for service-related brand image/loyalty and for goods-related brand image/loyalty, as they are assumed to be separate variables. Survey data was collected through interviews with customers that have both a product-buying relationship and a service relationship with a global B2B brand of healthcare equipment operating in the Mexican healthcare market. Interviewed respondents were either the user or the purchasing manager and/or the responsible for the equipment maintenance for the customer organization. Hence, they were appropriate informants regarding the B2B relationship with this healthcare brand. The moderation models were estimated using the PROCESS macro for the Statistical Package for the Social Sciences Software (SPSS). Results show statistical evidence that both Relationship Value and Trust are significant moderators for the service-related brand image/loyalty relation but not significant for the goods-related brand/loyalty relation. On the other hand, Commitment results in a significant moderator for the goods-related brand/loyalty relation but is not significant for the service-related brand image/loyalty relation.

Keywords: commitment, trust, relationship value, loyalty, B2B, moderator

Procedia PDF Downloads 65
1041 Impact of Social Media in Shaping Perceptions on Filipino Muslim Identity

Authors: Anna Rhodora A. Solar, Jan Emil N. Langomez

Abstract:

Social Media plays a crucial role in influencing Philippine public opinion with regard to a variety of socio-political issues. This became evident in the massacre of 44 members of the Special Action Force (SAF 44) tasked by the Philippine government to capture one of the US Federal Bureau of Investigation’s most wanted terrorists. The incident was said to be perpetrated by members of the Moro Islamic Liberation Front and the Bangsamoro Islamic Freedom Fighters. Part of the online discourse within Philippine cyberspace sparked intense debates on Filipino Muslim identity, with several Facebook viral posts linking Islam as a factor to the tragic event. Facebook is considered to be the most popular social media platform in the Philippines. As such, this begs the question of the extent to which social media, specifically Facebook, shape the perceptions of Filipinos on Filipino Muslims. This study utilizes Habermas’ theory of communicative action as it offers an explanation on how public sphere such as social media could be a network for communicating information and points of view through free and open dialogue among equal citizens to come to an understanding or common perception. However, the paper argues that communicative action which is aimed at reaching understanding free from force, and strategic action which is aimed at convincing someone through argumentation may not necessarily be mutually exclusive since reaching an understanding can also be considered as a result of convincing someone through argumentation. Moreover, actors may clash one another in their ideas before reaching common understanding, hence the presence of force. Utilizing content analysis on the Facebook posts with Islamic component that went viral after the massacre of the SAF 44, this paper argues that framing the image of Filipino Muslims through Facebook reflects both communicative and strategic actions. Moreover, comment threads on viral posts manifest force albeit implicit.

Keywords: communication, Muslim, Philippines, social media

Procedia PDF Downloads 375
1040 Microscopic Analysis of Interfacial Transition Zone of Cementitious Composites Prepared by Various Mixing Procedures

Authors: Josef Fládr, Jiří Němeček, Veronika Koudelková, Petr Bílý

Abstract:

Mechanical parameters of cementitious composites differ quite significantly based on the composition of cement matrix. They are also influenced by mixing times and procedure. The research presented in this paper was aimed at identification of differences in microstructure of normal strength (NSC) and differently mixed high strength (HSC) cementitious composites. Scanning electron microscopy (SEM) investigation together with energy dispersive X-ray spectroscopy (EDX) phase analysis of NSC and HSC samples was conducted. Evaluation of interfacial transition zone (ITZ) between the aggregate and cement matrix was performed. Volume share, thickness, porosity and composition of ITZ were studied. In case of HSC, samples obtained by several different mixing procedures were compared in order to find the most suitable procedure. In case of NSC, ITZ was identified around 40-50% of aggregate grains and its thickness typically ranged between 10 and 40 µm. Higher porosity and lower share of clinker was observed in this area as a result of increased water-to-cement ratio (w/c) and the lack of fine particles improving the grading curve of the aggregate. Typical ITZ with lower content of Ca was observed only in one HSC sample, where it was developed around less than 15% of aggregate grains. The typical thickness of ITZ in this sample was similar to ITZ in NSC (between 5 and 40 µm). In the remaining four HSC samples, no ITZ was observed. In general, the share of ITZ in HSC samples was found to be significantly smaller than in NSC samples. As ITZ is the weakest part of the material, this result explains to large extent the improved mechanical properties of HSC compared to NSC. Based on the comparison of characteristics of ITZ in HSC samples prepared by different mixing procedures, the most suitable mixing procedure from the point of view of properties of ITZ was identified.

Keywords: electron diffraction spectroscopy, high strength concrete, interfacial transition zone, normal strength concrete, scanning electron microscopy

Procedia PDF Downloads 271
1039 Experimental Investigation of Nucleate Pool Boiling Heat Transfer on Laser-Structured Copper Surfaces of Different Patterns

Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil

Abstract:

With reference to Energy Roadmap 2050, the minimization of greenhouse gas emissions and the enhancement of energy efficiency are the two key factors that could facilitate a radical change in the world's energy infrastructure. However, the energy demands of electronic devices skyrocketed with the advent of the digital age. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but finding the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-structured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-structured copper surfaces is superior to the bare copper surface in all aspects.

Keywords: heat transfer coefficient, laser structuring, micro structured surface, pool boiling

Procedia PDF Downloads 50
1038 Experimental Investigation of Nucleate Pool Boiling Heat Transfer on Laser-Structured Copper Surfaces of Different Patterns

Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil

Abstract:

With reference to Energy Roadmap 2050, the minimization of greenhouse gas emissions, and the enhancement of energy efficiency are the two key factors that could facilitate a radical change in the world's energy infrastructure. However, the energy demands of electronic devices skyrocketed with the advent of the digital age. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but to find the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-structured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-structured copper surfaces is superior to the bare copper surface in all aspects.

Keywords: heat transfer coefficient, laser structuring, micro structured surface, pool boiling

Procedia PDF Downloads 54
1037 Experimental Investigation of Nucleate Pool Boiling Heat Transfer on Laser-Structured Copper Surfaces of Different Patterns

Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md. Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil

Abstract:

With reference to Energy Roadmap 2050, the minimization of greenhouse gas emissions and the enhancement of energy efficiency are the two key factors that could facilitate a radical change in the world's energy infrastructure. However, the energy demands of electronic devices skyrocketed with the advent of the digital age. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but to find the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-structured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser-machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-structured copper surfaces is superior to the bare copper surface in all aspects.

Keywords: heat transfer coefficient, laser structuring, micro structured surface, pool boiling

Procedia PDF Downloads 57
1036 Smart Transportation: Bringing Back Sunshine City Harare

Authors: R. Shayamapiki

Abstract:

This study explores the applicability of applying new urbanism principles in cities of developing countries as a panacea towards building sustainable cities through implementing smart transportation. Smart transportation approach to planning has been growing remarkably around the globe in the past decade. In conquest to curb traffic congestion and reducing automobile dependency in the inner-city Harare, Smart Transportation has been a strong drive towards building sustainable cities. Conceptually, Smart Transportation constitutes of principles which include walking, cycling and mass transit. The Smart Transportation approach has been a success story in the cities of developing world but its application in the cities of developing countries has been doubtful. Cities of developing countries being multifaceted with several urban sustainability challenges, the study consolidates that there are no robust policy, legislative and institutional frameworks to govern the application of Smart Transportation in urban planning hence no clear roadway towards its success story. Questions regarding this investigation proliferate to; how capable are cities of developing countries to transform Smart Transportation principles to a success story? What victory can Smart Transportation bring to sustainable urban development? What are constraints of embracing the principles and how can they be manipulated? Methodologically the case study of urban syntax in Harare Central Business District and arterial roads of the city, legislation and institutional settings underpins various research outcomes. The study finds out the hindrances of policy, legislative and institutional incapacities cooked with economic constraints, lack of political will and technically inflexible zoning regulations. The study also elucidates that there is need to adopt a localized approach to Smart Transportation. The paper then calls for strengthening of institutional and legal reform in conquest to embrace the concept, policy and legislative support, feasible financial mechanism, coordination of responsible stakeholders, planning standards and regulatory frameworks reform to celebrate the success story of Smart Transportation in the developing world.

Keywords: inner-city Harare, new urbanism, smart transportation, sustainable cities

Procedia PDF Downloads 450
1035 Performance of Reinforced Concrete Beams under Different Fire Durations

Authors: Arifuzzaman Nayeem, Tafannum Torsha, Tanvir Manzur, Shaurav Alam

Abstract:

Performance evaluation of reinforced concrete (RC) beams subjected to accidental fire is significant for post-fire capacity measurement. Mechanical properties of any RC beam degrade due to heating since the strength and modulus of concrete and reinforcement suffer considerable reduction under elevated temperatures. Moreover, fire-induced thermal dilation and shrinkage cause internal stresses within the concrete and eventually result in cracking, spalling, and loss of stiffness, which ultimately leads to lower service life. However, conducting full-scale comprehensive experimental investigation for RC beams exposed to fire is difficult and cost-intensive, where the finite element (FE) based numerical study can provide an economical alternative for evaluating the post-fire capacity of RC beams. In this study, an attempt has been made to study the fire behavior of RC beams using FE software package ABAQUS under different durations of fire. The damaged plasticity model of concrete in ABAQUS was used to simulate behavior RC beams. The effect of temperature on strength and modulus of concrete and steel was simulated following relevant Eurocodes. Initially, the result of FE models was validated using several experimental results from available scholarly articles. It was found that the response of the developed FE models matched quite well with the experimental outcome for beams without heat. The FE analysis of beams subjected to fire showed some deviation from the experimental results, particularly in terms of stiffness degradation. However, the ultimate strength and deflection of FE models were similar to that of experimental values. The developed FE models, thus, exhibited the good potential to predict the fire behavior of RC beams. Once validated, FE models were then used to analyze several RC beams having different strengths (ranged between 20 MPa and 50 MPa) exposed to the standard fire curve (ASTM E119) for different durations. The post-fire performance of RC beams was investigated in terms of load-deflection behavior, flexural strength, and deflection characteristics.

Keywords: fire durations, flexural strength, post fire capacity, reinforced concrete beam, standard fire

Procedia PDF Downloads 117
1034 Evaluation and Control of Cracking for Bending Rein-forced One-way Concrete Voided Slab with Plastic Hollow Inserts

Authors: Mindaugas Zavalis

Abstract:

Analysis of experimental tests data of bending one-way reinforced concrete slabs from various articles of science revealed that voided slabs with a grid of hollow plastic inserts inside have smaller mechani-cal and physical parameters compared to continuous cross-section slabs (solid slabs). The negative influence of a reinforced concrete slab is impacted by hollow plastic inserts, which make a grid of voids in the middle of the cross-sectional area of the reinforced concrete slab. A formed grid of voids reduces the slab’s stiffness, which influences the slab’s parameters of serviceability, like deflection and cracking. Prima-ry investigation of data established during experiments illustrates that cracks occur faster in the tensile surface of the voided slab under bend-ing compared to bending solid slab. It means that the crack bending moment force for the voided slab is smaller than the solid slab and the reduction can variate in the range of 14 – 40 %. Reduce of resistance to cracking can be controlled by changing a lot of factors: the shape of the plastic hallow insert, plastic insert height, steps between plastic in-serts, usage of prestressed reinforcement, the diameter of reinforcement bar, slab effective depth, the bottom cover thickness of concrete, effec-tive cross-section of the concrete area about reinforcement and etc. Mentioned parameters are used to evaluate crack width and step of cracking, but existing analytical calculation methods for cracking eval-uation of voided slab with plastic inserts are not so exact and the re-sults of cracking evaluation in this paper are higher than the results of analyzed experiments. Therefore, it was made analytically calculations according to experimental bending tests of voided reinforced concrete slabs with hollow plastic inserts to find and propose corrections for the evaluation of cracking for reinforced concrete voided slabs with hollow plastic inserts.

Keywords: voided slab, cracking, hallow plastic insert, bending, one-way reinforced concrete, serviceability

Procedia PDF Downloads 46
1033 Medicinal Plants Supply Chain Innovations for Producer Surplus: Relationship Integration to Benefit the Rural Agrientrepreneurs in Bangladesh

Authors: Akm Shahidullah

Abstract:

This paper assessed the medicinal plants production and related entrepreneurial and management aspects with a focus to understand the present medicinal plants-based supply chain of Bangladesh. It delineated the overall supply chain and the extent of benefit that the plant-producingagrientrepreneursderive out of the existing system of the chain. The key objective was to put forward innovative supply chain strategiesthatcan leverage the benefit of the rural farmer-entrepreneur of medicinal plants. A field-based investigation was carried out in the Natore district of northwest Bangladesh, where a total of 225 farmers and households from eight villages were engaged in the production of medicinal plant species. The research had a survey with the agrientrepreneurs of two of those villages and focus group discussions at a union level to gather information about the price, buyers, seasonality, and overall supply infrastructure and trading mechanisms of the plant products. The research also gathered explanations on the overall supply chain system of the plants and plant-based processed products through key informant interviews with the local and regional selling agents, stockists, wholesalers, and secondary processors. The findings revealed that, in the existing supply chain system, the primary and wholesale secondary markets were mostly dominated by middlemen who cause market distortions and inflated prices due to a lack of coordination between the primary producers and secondary processors. The discoordination and inefficiencies in the supply chain system could be offset by the producer-processor relationship integration that could result in a multitude of benefits to both the parties in terms of price, quality, lead time, and overall control of the supply chain. Therefore, to ensure the growth of medicinal plants production, the industry users, secondary processors, and policy stakeholders should ensure that the primary producers get the fair share of the benefit; the producer-processor relationship integration in the supply chain offers to ensure that fairness with maximum producer surplus.

Keywords: medicinal-plants, agrientrepreneur, supply chain, relationship integration, Bangladesh

Procedia PDF Downloads 70
1032 Approaches to Reduce the Complexity of Mathematical Models for the Operational Optimization of Large-Scale Virtual Power Plants in Public Energy Supply

Authors: Thomas Weber, Nina Strobel, Thomas Kohne, Eberhard Abele

Abstract:

In context of the energy transition in Germany, the importance of so-called virtual power plants in the energy supply continues to increase. The progressive dismantling of the large power plants and the ongoing construction of many new decentralized plants result in great potential for optimization through synergies between the individual plants. These potentials can be exploited by mathematical optimization algorithms to calculate the optimal application planning of decentralized power and heat generators and storage systems. This also includes linear or linear mixed integer optimization. In this paper, procedures for reducing the number of decision variables to be calculated are explained and validated. On the one hand, this includes combining n similar installation types into one aggregated unit. This aggregated unit is described by the same constraints and target function terms as a single plant. This reduces the number of decision variables per time step and the complexity of the problem to be solved by a factor of n. The exact operating mode of the individual plants can then be calculated in a second optimization in such a way that the output of the individual plants corresponds to the calculated output of the aggregated unit. Another way to reduce the number of decision variables in an optimization problem is to reduce the number of time steps to be calculated. This is useful if a high temporal resolution is not necessary for all time steps. For example, the volatility or the forecast quality of environmental parameters may justify a high or low temporal resolution of the optimization. Both approaches are examined for the resulting calculation time as well as for optimality. Several optimization models for virtual power plants (combined heat and power plants, heat storage, power storage, gas turbine) with different numbers of plants are used as a reference for the investigation of both processes with regard to calculation duration and optimality.

Keywords: CHP, Energy 4.0, energy storage, MILP, optimization, virtual power plant

Procedia PDF Downloads 148
1031 Humins: From Industrial By-Product to High Value Polymers

Authors: Pierluigi Tosi, Ed de Jong, Gerard van Klink, Luc Vincent, Alice Mija

Abstract:

During the last decades renewable and low-cost resources have attracted increasingly interest. Carbohydrates can be derived by lignocellulosic biomasses, which is an attractive option since they represent the most abundant carbon source available in nature. Carbohydrates can be converted in a plethora of industrially relevant compounds, such as 5-hydroxymethylfurfural (HMF) and levulinic acid (LA), within acid catalyzed dehydration of sugars with mineral acids. Unfortunately, these acid catalyzed conversions suffer of the unavoidable formation of highly viscous heterogeneous poly-disperse carbon based materials known as humins. This black colored low value by-product is made by a complex mixture of macromolecules built by covalent random condensations of the several compounds present during the acid catalyzed conversion. Humins molecular structure is still under investigation but seems based on furanic rings network linked by aliphatic chains and decorated by several reactive moieties (ketones, aldehydes, hydroxyls, …). Despite decades of research, currently there is no way to avoid humins formation. The key parameter for enhance the economic viability of carbohydrate conversion processes is, therefore, increasing the economic value of the humins by-product. Herein are presented new humins based polymeric materials that can be prepared starting from the raw by-product by thermal treatment, without any step of purification or pretreatment. Humins foams can be produced with the control of reaction key parameters, obtaining polymeric porous materials with designed porosity, density, thermal and electrical conductivity, chemical and electrical stability, carbon amount and mechanical properties. Physico chemical properties can be enhanced by modifications on the starting raw material or adding different species during the polymerization. A comparisons on the properties of different compositions will be presented, along with tested applications. The authors gratefully acknowledge the European Community for financial support through Marie-Curie H2020-MSCA-ITN-2015 "HUGS" Project.

Keywords: by-product, humins, polymers, valorization

Procedia PDF Downloads 121
1030 Experimental Verification of Similarity Criteria for Sound Absorption of Perforated Panels

Authors: Aleksandra Majchrzak, Katarzyna Baruch, Monika Sobolewska, Bartlomiej Chojnacki, Adam Pilch

Abstract:

Scaled modeling is very common in the areas of science such as aerodynamics or fluid mechanics, since defining characteristic numbers enables to determine relations between objects under test and their models. In acoustics, scaled modeling is aimed mainly at investigation of room acoustics, sound insulation and sound absorption phenomena. Despite such a range of application, there is no method developed that would enable scaling acoustical perforated panels freely, maintaining their sound absorption coefficient in a desired frequency range. However, conducted theoretical and numerical analyses have proven that it is not physically possible to obtain given sound absorption coefficient in a desired frequency range by directly scaling only all of the physical dimensions of a perforated panel, according to a defined characteristic number. This paper is a continuation of the research mentioned above and presents practical evaluation of theoretical and numerical analyses. The measurements of sound absorption coefficient of perforated panels were performed in order to verify previous analyses and as a result find the relations between full-scale perforated panels and their models which will enable to scale them properly. The measurements were conducted in a one-to-eight model of a reverberation chamber of Technical Acoustics Laboratory, AGH. Obtained results verify theses proposed after theoretical and numerical analyses. Finding the relations between full-scale and modeled perforated panels will allow to produce measurement samples equivalent to the original ones. As a consequence, it will make the process of designing acoustical perforated panels easier and will also lower the costs of prototypes production. Having this knowledge, it will be possible to emulate in a constructed model panels used, or to be used, in a full-scale room more precisely and as a result imitate or predict the acoustics of a modeled space more accurately.

Keywords: characteristic numbers, dimensional analysis, model study, scaled modeling, sound absorption coefficient

Procedia PDF Downloads 175
1029 Influence of Climate Change on Landslides in Northeast India: A Case Study

Authors: G. Vishnu, T. V. Bharat

Abstract:

Rainfall plays a major role in the stability of natural slopes in tropical and subtropical regions. These slopes usually have high slope angles and are stable during the dry season. The critical rainfall intensity that might trigger a landslide may not be the highest rainfall. In addition to geological discontinuities and anthropogenic factors, water content, suction, and hydraulic conductivity also play a role. A thorough geotechnical investigation with the principles of unsaturated soil mechanics is required to predict the failures in these cases. The study discusses three landslide events that had occurred in residual hills of Guwahati, India. Rainfall data analysis, history image analysis, land use, and slope maps of the region were analyzed and discussed. The landslide occurred on June (24, 26, and 28) 2020, on the respective sites, but the highest rainfall was on June (6 and 17) 2020. The factors that lead to the landslide occurrence is the combination of critical events initiated with rainfall, causing a reduction in suction. The sites consist of a mixture of rocks and soil. The slope failure occurs due to the saturation of the soil layer leading to loss of soil strength resulting in the flow of the entire soil rock mass. The land-use change, construction activities, other human and natural activities that lead to faster disintegration of rock mass may accelerate the landslide events. Landslides in these slopes are inevitable, and the development of an early warning system (EWS) to save human lives and resources is a feasible way. The actual time of failure of a slope can be better predicted by considering all these factors rather than depending solely on the rainfall intensities. An effective EWS is required with less false alarms in these regions by proper instrumentation of slope and appropriate climatic downscaling.

Keywords: early warning system, historic image analysis, slope instrumentation, unsaturated soil mechanics

Procedia PDF Downloads 89
1028 An Investigation into the Effects of Anxiety Sensitivity in Adolescents on Anxiety Disorder and Childhood Depression

Authors: Ismail Seçer

Abstract:

The purpose of this study is to investigate the effects of anxiety sensitivity in adolescents on anxiety disorder and childhood depression. Mood disorders and anxiety disorders in children and adolescents can be given examples of important research topics in recent years. The participants of the study consist of 670 students in Erzurum and Erzincan city centers. The participants of the study were 670 secondary and high school students studying in city centers of Erzurum and Erzincan. The participants were chosen based on convenience sampling. The participants were between the ages of 13 and 18 (M=15.7, Ss= 1.35) and 355 were male and 315 were female. The data were collected through Anxiety Sensitivity Index and Anxiety and Depression Index for Children and Adolescents. For data analysis, Correlation analysis and Structural Equation Model were used. In this study, correlational descriptive survey was used. This model enables the researcher to make predictions related to different variables based on the information obtained from one or more variables. Therefore, the purpose is to make predictions considering anxiety disorder and childhood depression based on anxiety sensitivity. For this purpose, latent variable and structural equation model was used. Structural equation model is an analysis method which enables the identification of direct and indirect effects by determining the relationship between observable and latent variables and testing their effects on a single model. CFI, RMR, RMSEA and SRMR, which are commonly accepted fit indices in structural equation model, were used. The results revealed that anxiety sensitivity impacts anxiety disorder and childhood depression through direct and indirect effects in a positive way. The results are discussed in line with the relevant literature. This finding can be considered that anxiety sensitivity can be a significant risk source in terms of children's and adolescents’ anxiety disorder experience. This finding is consistent with relevant research highlighting that in case the anxiety sensitivity increases then the obsessive compulsive disorder and panic attack increase too. The adolescents’ experience of anxiety can be attributed to anxiety sensitivity.

Keywords: anxiety sensitivity, anxiety, depression, structural equation

Procedia PDF Downloads 276
1027 Investigation of External Pressure Coefficients on Large Antenna Parabolic Reflector Using Computational Fluid Dynamics

Authors: Varun K, Pramod B. Balareddy

Abstract:

Estimation of wind forces plays a significant role in the in the design of large antenna parabolic reflectors. Reflector surface accuracies are very sensitive to the gain of the antenna system at higher frequencies. Hence accurate estimation of wind forces becomes important, which is primary input for design and analysis of the reflector system. In the present work, numerical simulation of wind flow using Computational Fluid Dynamics (CFD) software is used to investigate the external pressure coefficients. An extensive comparative study has been made between the CFD results and the published wind tunnel data for different wind angle of attacks (α) acting over concave to convex surfaces respectively. Flow simulations using CFD are carried out to estimate the coefficients of Drag, Lift and Moment for the parabolic reflector. Coefficients of pressures (Cp) over the front and the rear face of the reflector are extracted over surface of the reflector to study the net pressure variations. These resultant pressure variations are compared with the published wind tunnel data for different angle of attacks. It was observed from the CFD simulations, both convex and concave face of reflector system experience a band of pressure variations for the positive and negative angle of attacks respectively. In the published wind tunnel data, Pressure variations over convex surfaces are assumed to be uniform and vice versa. Chordwise and spanwise pressure variations were calculated and compared with the published experimental data. In the present work, it was observed that the maximum pressure coefficients for α ranging from +30° to -90° and α=+90° was lower. For α ranging from +45° to +75°, maximum pressure coefficients were higher as compared to wind tunnel data. This variation is due to non-uniform pressure distribution observed over front and back faces of reflector. Variations in Cd, Cl and Cm over α=+90° to α=-90° was in close resemblance with the experimental data.

Keywords: angle of attack, drag coefficient, lift coefficient, pressure coefficient

Procedia PDF Downloads 229
1026 Dielectric Study of Ethanol Water Mixtures at Different Concentration Using Hollow Channel Cantilever Platform

Authors: Maryam S. Ghoraishi, John E. Hawk, Thomas Thundat

Abstract:

Understanding liquid properties in small scale has become important in recent decades as immerging new microelectromechanical systems (MEMS) devices have been widely used for micro pumps, drug delivery, and many other laboratory-on-microchips analysis. Often in microfluidic devices, fluids are transported electrokinetically. Therefore, extensive knowledge of fluid flow, heat transport, electrokinetics and electrochemistry are key to successful lab on a chip design. Among different microfluidic devices, recently developed hollow channel cantilever offers an ideal platform to study different fluid properties simultaneously without drastic decrease in quality factor which normally occurs when traditional cantilevers operate in the liquid phase. Using hollow channel cantilever, we monitor changes in density and viscosity of liquid while simultaneously investigating dielectric properties of alcohol water binary mixtures. Considerable research has been conducted on alcohol-water mixtures since such a mixture is a typical prototype for biomolecules, Micelle formation, and structural stability of proteins (to name a few). Here we show that hollow channel cantilever can be employed to investigate dielectric properties of ethanol/water mixtures in different concentrations. We study dynamic amplitude shifts of hollow channel cantilever oscillation at different concentrations of ethanol/water for different voltages. Our results show how interactions between solute and solvent, and possibly cluster formation, could change dielectric properties and dipole reorientation of the mixture, as well as the resulting force on the hollow cantilever. For comparison, we also examine higher conductivity ionic mixtures of sodium sulfate solution under the same conditions as low conductivity ethanol/water mixtures. We will show the results from systematic investigation of solvent effects on dielectric properties of the binary mixture. We will also address the question of resolution limits in dielectric study of analyte molecules imposed by solvent concentrations.

Keywords: dielectric constant, cantilever sensors, ethanol water mixtures, low frequency

Procedia PDF Downloads 177
1025 Effects of Merging Personal and Social Responsibility with Sports Education Model on Students' Game Performance and Responsibility

Authors: Yi-Hsiang Pan, Chen-Hui Huang, Wei-Ting Hsu

Abstract:

The purposes of the study were to understand these topics as follows: 1. To explore the effect of merging teaching personal and social responsibility (TPSR) with sports education model on students' game performance and responsibility. 2. To explore the effect of sports education model on students' game performance and responsibility. 3. To compare the difference between "merging TPSR with sports education model" and "sports education model" on students' game performance and responsibility. The participants include three high school physical education teachers and six physical education classes. Every teacher teaches an experimental group and a control group. The participants had 121 students, including 65 students in the experimental group and 56 students in the control group. The research methods had game performance assessment, questionnaire investigation, interview, focus group meeting. The research instruments include personal and social responsibility questionnaire and game performance assessment instrument. Paired t-test test and MANCOVA were used to test the difference between "merging TPSR with sports education model" and "sports education model" on students' learning performance. 1) "Merging TPSR with sports education model" showed significant improvements in students' game performance, and responsibilities with self-direction, helping others, cooperation. 2) "Sports education model" also had significant improvements in students' game performance, and responsibilities with effort, self-direction, helping others. 3.) There was no significant difference in game performance and responsibilities between "merging TPSR with sports education model" and "sports education model". 4)."Merging TPSR with sports education model" significantly improve learning atmosphere and peer relationships, it may be developed in the physical education curriculum. The conclusions were as follows: Both "Merging TPSR with sports education model" and "sports education model" can help improve students' responsibility and game performance. However, "Merging TPSR with sports education model" can reduce the competitive atmosphere in highly intensive games between students. The curricular projects of hybrid TPSR-Sport Education model is a good approach for moral character education.

Keywords: curriculum and teaching model, sports self-efficacy, sport enthusiastic, character education

Procedia PDF Downloads 290
1024 Cannabis Sativa L as Natural Source of Promising Anti-Alzheimer Drug Candidates: A Comprehensive Computational Approach Including Molecular Docking, Molecular Dynamics, ADMET and MM-PBSA Studies

Authors: Hassan Nour, Nouh Mounadi, Oussama Abchir, Belaidi Salah, Samir Chtita

Abstract:

Cholinesterase enzymes are biological catalysts essential for the transformation of acetylcholine, which is a neurotransmitter implicated in memory and learning, into acetic acid and choline, altering the neurotransmission process in Alzheimer’s disease patients. Therefore, inhibition of cholinesterase enzymes is a relevant strategy for the symptomatic treatment of Alzheimer’s disease. The current investigation aims to explore potential cholinesterase (ChE) inhibitors through a comprehensive computational approach. Forty-nine phytoconstituents extracted from Cannabis sativa L. were in-silico screened using molecular docking and pharmacokinetic and toxicological analysis to evaluate their possible inhibitory effect on the cholinesterase enzymes. Two phytoconstituents belonging to cannabinoid derivatives were revealed to be promising candidates for Alzheimer's therapy by acting as cholinesterase inhibitors. They have exhibited high binding affinities towards the cholinesterase enzymes and showed their ability to interact with key residues involved in cholinesterase enzymatic activity. In addition, they presented good ADMET profiles allowing them to be promising oral drug candidates. Furthermore, molecular dynamics (MD) simulations were executed to explore their interaction stability under mimetic biological conditions and thus support our findings. To corroborate the docking results, the binding free energy corresponding to the more stable ligand-ChE complexes was re-estimated by applying the MM-PBSA method. MD and MM-PBSA studies affirmed that the ligand-ChE recognition is a spontaneous reaction leading to stable complexes. The conducted investigations have led to great findings that would strongly guide the pharmaceutical industries toward the rational development of potent anti-Alzheimer agents.

Keywords: Alzheimer’s disease, molecular docking, Cannabis sativa L., cholinesterase inhibitors, molecular dynamics, ADMET, MM-PBSA

Procedia PDF Downloads 55
1023 Accessing Properties of Alkali Activated Ground Granulated Blast Furnace Slag Based Self Compacting Geopolymer Concrete Incorporating Nano Silica

Authors: Guneet Saini, Uthej Vattipalli

Abstract:

In a world with increased demand for sustainable construction, waste product of one industry could be a boon to the other in reducing the carbon footprint. Usage of industrial waste such as fly ash and ground granulated blast furnace slag have become the epicenter of curbing the use of cement, one of the major contributors of greenhouse gases. In this paper, empirical studies have been done to develop alkali activated self-compacting geopolymer concrete (GPC) using ground granulated blast furnace slag (GGBS), incorporated with 2% nano-silica by weight, through evaluation of its fresh and hardening properties. Experimental investigation on 6 mix designs of varying molarity of 10M, 12M and 16M of the alkaline solution and a binder content of 450 kg/m³ and 500 kg/m³ has been done and juxtaposed with GPC mix design composed of 16M alkaline solution concentration and 500 kg/m³ binder content without nano-silica. The sodium silicate to sodium hydroxide ratio (SS/SH), alkaline activator liquid to binder ratio (AAL/B) and water to binder ratio (W/B), which significantly affect the performance and mechanical properties of GPC, were fixed at 2.5, 0.45 and 0.4 respectively. To catalyze the early stage geopolymerisation, oven curing is done maintaining the temperature at 60˚C. This paper also elucidates the test results for fresh self-compacting concrete (SCC) done as per EFNARC guidelines. The mechanical properties tests conducted were: compressive strength test after 7 days, 28 days, 56 days and 90 days; flexure test; split tensile strength test after 28 days, 56 days and 90 days; X-ray diffraction test to analyze the mechanical performance and sorptivity test for testing of permeability. The study revealed that the sample of 16M concentration of alkaline solution with 500 Kg/m³ binder content containing 2% nano silica produced the highest compressive, flexural and split tensile strength of 81.33 MPa, 7.875 MPa, and 6.398 MPa respectively, at the end of 90 days.

Keywords: alkaline activator liquid, geopolymer concrete, ground granulated blast furnace slag, nano silica, self compacting

Procedia PDF Downloads 122
1022 Effect of Social Stress on Behavioural and Physiological Responses and its Assessment by non-Invasive Method in Zebu Cattle

Authors: Baishali Deb, Hari Om Pandey, Shrilla Elangbam, Mukesh Singh, Ayon Tarafdar, A. K. S. Tomar, A. K. Pandey, Triveni Dutt

Abstract:

The goal of the present investigation was to determine the impact of social stress on behavioural characteristics, physiological responses, and haemato-biochemical indicators under various social environments in Tharparkar cattle. Serum cortisol and faecal cortisol metabolites analysis were used to determine the stress level of Tharparkar cattle. Social isolation and social mixing were the two different social circumstances used to evaluate the animals. In both the experiments i.e., social isolation and social mixing, the lying period of animals decreased significantly (p<0.05) while standing period significantly (p<0.05) increased. Frequency and duration of activities like idling, walking, exploration, oral manipulation, and elimination increased significantly (p<0.05) in Tharparkar cattle after being subjected to social isolation and social mixing. Time spent in grooming (self-grooming and allo-grooming) in respect to social isolation significantly increased during isolation and post-reunion, whereas there was a significant (p<0.05) decline in the grooming behaviour especially allo-grooming during mixing of the animals. Feeding and rumination time also decreased significantly (p<0.05) in animals during both the experiments. Physiological parameters such as respiration rate, heart rate and pulse rate increased during the treatment periods. There was no significant difference in the haematological parameters for both the experiments. There was significant (p<0.05) increase in serum cortisol and faecal cortisol metabolites (FCM) concentration in animals subjected to social stress. Therefore, it can be concluded that social stress strongly impacts the behaviour and physiological parameters of the animals, causing stress and nervousness, proving that social stress is a valid psychological stress in animals. The higher concentration of FCM in Tharparkar cattle subjected to social stress, further supported by higher serum cortisol and behaviour manifestations, suggest that FCM could be used to assess stress response as a non-invasive method.

Keywords: social stress, fecal cortisol metabolites, non-invasive, animal welfare, behaviour

Procedia PDF Downloads 76
1021 Prevalence of Trichomonas Tenax in Patients with Pulmonary Disease and Watersheds and Its Potential Implications for Pulmonary Virus Infection

Authors: Pei Chi Fang, Wei Chen Lin

Abstract:

Trichomonas tenax is a microaerophilic oral protozoan found in patients with poor oral hygiene. It participates in the inflammatory process of periodontal disease and can potentially be aspirated into the lungs, giving rise to pulmonary trichomoniasis. However, the precise roles of T. tenax in the pulmonary system remain largely unexplored and warrant comprehensive epidemiological investigation. To assess the prevalence of T. tenax infection, we collected bronchoalveolar lavage fluid (BALF) samples from hospitalized patients with lung diseases. A specific nested PCR approach was employed to determine prevalence rates, yielding 21 positive cases out of 61 samples from Ditmanson Medical Foundation Chia-Yi Christian Hospital, and 11 positive cases out of 55 samples from National Cheng Kung University Hospital. Furthermore, there is a critical need for comprehensive data regarding the presence of T. tenax in environmental surface watersheds. In this context, we present findings from investigations in the Yanshuei and Donggang river basins in southern Taiwan, which are crucial sources for public drinking water in the region. In order to elucidate potential implications on pulmonary virus infections, we conducted an analysis of gene expression level changes in H292 cell line after exposure to T. tenax. Our findings revealed significant regulation of multiple virus-related genes, including IFI44L and IFITM3. Ongoing research endeavors are focused on identifying the key components within T. tenax responsible for these observed effects. Crucially, this study lays the groundwork for a preliminary understanding of T. tenax prevalence in patients with pulmonary diseases. It also seeks to establish a meaningful correlation between lung infections and oral hygiene practices, with the ultimate aim of informing distinct treatment and prevention strategies.

Keywords: parasitology, genes, virus, human health, infection, lung

Procedia PDF Downloads 38
1020 A Comparative Study on the Thermophysical and Lubricity Characteristics of Multiwall Carbon Nanotube/Oil and Nanoclay/Oil Nanofluids

Authors: H. Singh, H. Bhowmick

Abstract:

Now-a-days, particle based lubricants have been widely used to enhance the lubrication performance. Use of tailor made micro/nanofluids can reduce the friction losses and dissipate heat in a better way. Use of Carbon Nanotubes (CNTs) has gained interests because of its structure that can endure much better in a system mechanically or thermally in comparison to any other additive in oil. On the other hand, nanoclays have been characterized mechanically and tribologically for the use of clay/polymer composite, and they have been gaining huge interest. Hence it is interesting to be investigated the effect of nanoclays as additive in oil. Thermophysical characteristics of lubricant play a predominant role in defining the friction and wear characteristics of lubricated contacts. However, very limited studies have been carried out to correlate the thermophysical properties of nanolubricants with their lubricity characteristics. Besides, most of the lubricant formulations till dates are found to be optimized for steel/steel contacts. In the present study, Multiwall Carbon Nanotube (MWCNT) and nanoclay are used as particle additives in mineral oil to develop nanofluids of various concentrations. The prepared lubricants are tested for their rheological, thermal and lubricity characteristics under aluminium-steel contacts. From the thermophysical investigation, it is observed that nanoclay particles significantly improve the viscosity of lubricant with an insignificant improvement in thermal conductivity. On the other hand, MWCNT particles moderately increase the viscosity but significantly increase the thermal conductivity of the base oil. Frictional responses of the nanofluids are characterized using a Pin-on-Disc tribometer which reveal some interesting facts. The findings from this study will greatly aid in formulating the particle based lubricants for cutting fluid in metal forming industries as well as fully developed nanolubricants for aluminium and Aluminium Metal Matrix Composite (AMMC) tribocontact for the use in the automotive and their allied industries.

Keywords: MWCNT, Multiwall Carbon Nanotube, nanoclay, nanolubricant, rheology, thermal conductivity

Procedia PDF Downloads 113
1019 Jointly Optimal Statistical Process Control and Maintenance Policy for Deteriorating Processes

Authors: Lucas Paganin, Viliam Makis

Abstract:

With the advent of globalization, the market competition has become a major issue for most companies. One of the main strategies to overcome this situation is the quality improvement of the product at a lower cost to meet customers’ expectations. In order to achieve the desired quality of products, it is important to control the process to meet the specifications, and to implement the optimal maintenance policy for the machines and the production lines. Thus, the overall objective is to reduce process variation and the production and maintenance costs. In this paper, an integrated model involving Statistical Process Control (SPC) and maintenance is developed to achieve this goal. Therefore, the main focus of this paper is to develop the jointly optimal maintenance and statistical process control policy minimizing the total long run expected average cost per unit time. In our model, the production process can go out of control due to either the deterioration of equipment or other assignable causes. The equipment is also subject to failures in any of the operating states due to deterioration and aging. Hence, the process mean is controlled by an Xbar control chart using equidistant sampling epochs. We assume that the machine inspection epochs are the times when the control chart signals an out-of-control condition, considering both true and false alarms. At these times, the production process will be stopped, and an investigation will be conducted not only to determine whether it is a true or false alarm, but also to identify the causes of the true alarm, whether it was caused by the change in the machine setting, by other assignable causes, or by both. If the system is out of control, the proper actions will be taken to bring it back to the in-control state. At these epochs, a maintenance action can be taken, which can be no action, or preventive replacement of the unit. When the equipment is in the failure state, a corrective maintenance action is performed, which can be minimal repair or replacement of the machine and the process is brought to the in-control state. SMDP framework is used to formulate and solve the joint control problem. Numerical example is developed to demonstrate the effectiveness of the control policy.

Keywords: maintenance, semi-Markov decision process, statistical process control, Xbar control chart

Procedia PDF Downloads 72
1018 Reacting Numerical Simulation of Axisymmetric Trapped Vortex Combustors for Methane, Propane and Hydrogen

Authors: Heval Serhat Uluk, Sam M. Dakka, Kuldeep Singh, Richard Jefferson-Loveday

Abstract:

The carbon footprint of the aviation sector in total measured 3.8% in 2017, and it is expected to triple by 2050. New combustion approaches and fuel types are necessary to prevent this. This paper will focus on using propane, methane, and hydrogen as fuel replacements for kerosene and implement a trapped vortex combustor design to increase efficiency. Reacting simulations were conducted for axisymmetric trapped vortex combustor to investigate the static pressure drop, combustion efficiency and pattern factor for various cavity aspect ratios for 0.3, 0.6 and 1 and air mass flow rates for 14 m/s, 28 m/s and 42 m/s. Propane, methane and hydrogen are used as alternative fuels. The combustion model was anchored based on swirl flame configuration with an emphasis on high fidelity of boundary conditions with favorable results of eddy dissipation model implementation. Reynolds Averaged Navier Stokes (RANS) k-ε model turbulence model for the validation effort was used for turbulence modelling. A grid independence study was conducted for the three-dimensional model to reduce computational time. Preliminary results for 24 m/s air mass flow rate provided a close temperature profile inside the cavity relative to the experimental study. The investigation will be carried out on the effect of air mass flow rates and cavity aspect ratio on the combustion efficiency, pattern factor and static pressure drop in the combustor. A comparison study among pure methane, propane and hydrogen will be conducted to investigate their suitability for trapped vortex combustors and conclude their advantages and disadvantages as a fuel replacement. Therefore, the study will be one of the milestones to achieving 2050 zero carbon emissions or reducing carbon emissions.

Keywords: computational fluid dynamics, aerodynamic, aerospace, propulsion, trapped vortex combustor

Procedia PDF Downloads 65
1017 Investigation of Interlayer Shear Effects in Asphalt Overlay on Existing Rigid Airfield Pavement Using Digital Image Correlation

Authors: Yuechao Lei, Lei Zhang

Abstract:

The interface shear between asphalt overlay and existing rigid airport pavements occurs due to differences in the mechanical properties of materials subjected to aircraft loading. Interlayer contact influences the mechanical characteristics of the asphalt overlay directly. However, the effective interlayer relative displacement obtained accurately using existing displacement sensors of the loading apparatus remains challenging. This study aims to utilize digital image correlation technology to enhance the accuracy of interfacial contact parameters by obtaining effective interlayer relative displacements. Composite structure specimens were prepared, and fixtures for interlayer shear tests were designed and fabricated. Subsequently, a digital image recognition scheme for required markers was designed and optimized. Effective interlayer relative displacement values were obtained through image recognition and calculation of surface markers on specimens. Finite element simulations validated the mechanical response of composite specimens with interlayer shearing. Results indicated that an optimized marking approach using the wall mending agent for surface application and color coding enhanced the image recognition quality of marking points on the specimen surface. Further image extraction provided effective interlayer relative displacement values during interlayer shear, thereby improving the accuracy of interface contact parameters. For composite structure specimens utilizing Styrene-Butadiene-Styrene (SBS) modified asphalt as the tack coat, the corresponding maximum interlayer shear stress strength was 0.6 MPa, and fracture energy was 2917 J/m2. This research provides valuable insights for investigating the impact of interlayer contact in composite pavement structures on the mechanical characteristics of asphalt overlay.

Keywords: interlayer contact, effective relative displacement, digital image correlation technology, composite pavement structure, asphalt overlay

Procedia PDF Downloads 27
1016 Effect of Helical Flow on Separation Delay in the Aortic Arch for Different Mechanical Heart Valve Prostheses by Time-Resolved Particle Image Velocimetry

Authors: Qianhui Li, Christoph H. Bruecker

Abstract:

Atherosclerotic plaques are typically found where flow separation and variations of shear stress occur. Although helical flow patterns and flow separations have been recorded in the aorta, their relation has not been clearly clarified and especially in the condition of artificial heart valve prostheses. Therefore, an experimental study is performed to investigate the hemodynamic performance of different mechanical heart valves (MHVs), i.e. the SJM Regent bileaflet mechanical heart valve (BMHV) and the Lapeyre-Triflo FURTIVA trileaflet mechanical heart valve (TMHV), in a transparent model of the human aorta under a physiological pulsatile right-hand helical flow condition. A typical systolic flow profile is applied in the pulse-duplicator to generate a physiological pulsatile flow which thereafter flows past an axial turbine blade structure to imitate the right-hand helical flow induced in the left ventricle. High-speed particle image velocimetry (PIV) measurements are used to map the flow evolution. A circular open orifice nozzle inserted in the valve plane as the reference configuration initially replaces the valve under investigation to understand the hemodynamic effects of the entered helical flow structure on the flow evolution in the aortic arch. Flow field analysis of the open orifice nozzle configuration illuminates the helical flow effectively delays the flow separation at the inner radius wall of the aortic arch. The comparison of the flow evolution for different MHVs shows that the BMHV works like a flow straightener which re-configures the helical flow pattern into three parallel jets (two side-orifice jets and the central orifice jet) while the TMHV preserves the helical flow structure and therefore prevent the flow separation at the inner radius wall of the aortic arch. Therefore the TMHV is of better hemodynamic performance and reduces the pressure loss.

Keywords: flow separation, helical aortic flow, mechanical heart valve, particle image velocimetry

Procedia PDF Downloads 148
1015 Manufacturing New Insulating Materials: A Study on Thermal Properties of Date Palm Wood

Authors: K. Almi, S. Lakel, A. Benchabane, A. Kriker

Abstract:

The fiber–matrix compatibility can be improved if suitable enforcements are chosen. Whenever the reinforcements have more thermal stability, they can resist to the main processes for wood–thermoplastic composites. Several researches are focused on natural resources for the production of biomaterials intended for technical applications. Date palm wood present one of the world’s most important natural resource. Its use as insulating materials will help to solve the severe environmental and recycling problems which other artificial insulating materials caused. This paper reports the results of an experimental investigation on the thermal proprieties of date palm wood from Algeria. A study of physical, chemical and mechanical properties is also carried out. The goal is to use this natural material in the manufacture of thermal insulation materials for buildings. The local natural resources used in this study are the date palm fibers from Biskra oasis in Algeria. The results have shown that there is no significant difference in the morphological proprieties of the four types of residues. Their chemical composition differed slightly; with the lowest amounts of cellulose and lignin content belong to Petiole. Water absorption study proved that Rachis has a low value of sorption whereas Petiole and Fibrillium have a high value of sorption what influenced their mechanical properties. It is seen that the Rachis and leaflets exhibit a high tensile strength values compared to the other residue. On the other hand the low value of bulk density of Petiole and Fibrillium leads to high value of specific tensile strength and young modulus. It was found that the specific young modulus of Petiole and Fibrillium was higher than that of Rachis and Leaflets and that of other natural fibers or even artificial fibers. Compared to the other materials date palm wood provide a good thermal proprieties thus, date palm wood will be a good candidate for the manufacturing efficient and safe insulating materials.

Keywords: composite materials, date palm fiber, natural fibers, tensile tests, thermal proprieties

Procedia PDF Downloads 619
1014 Optimizing Wind Turbine Blade Geometry for Enhanced Performance and Durability: A Computational Approach

Authors: Nwachukwu Ifeanyi

Abstract:

Wind energy is a vital component of the global renewable energy portfolio, with wind turbines serving as the primary means of harnessing this abundant resource. However, the efficiency and stability of wind turbines remain critical challenges in maximizing energy output and ensuring long-term operational viability. This study proposes a comprehensive approach utilizing computational aerodynamics and aeromechanics to optimize wind turbine performance across multiple objectives. The proposed research aims to integrate advanced computational fluid dynamics (CFD) simulations with structural analysis techniques to enhance the aerodynamic efficiency and mechanical stability of wind turbine blades. By leveraging multi-objective optimization algorithms, the study seeks to simultaneously optimize aerodynamic performance metrics such as lift-to-drag ratio and power coefficient while ensuring structural integrity and minimizing fatigue loads on the turbine components. Furthermore, the investigation will explore the influence of various design parameters, including blade geometry, airfoil profiles, and turbine operating conditions, on the overall performance and stability of wind turbines. Through detailed parametric studies and sensitivity analyses, valuable insights into the complex interplay between aerodynamics and structural dynamics will be gained, facilitating the development of next-generation wind turbine designs. Ultimately, this research endeavours to contribute to the advancement of sustainable energy technologies by providing innovative solutions to enhance the efficiency, reliability, and economic viability of wind power generation systems. The findings have the potential to inform the design and optimization of wind turbines, leading to increased energy output, reduced maintenance costs, and greater environmental benefits in the transition towards a cleaner and more sustainable energy future.

Keywords: computation, robotics, mathematics, simulation

Procedia PDF Downloads 23
1013 Thorium-Doped PbS Thin Films for Radiation Damage Studies

Authors: Michael Shandalov, Tzvi Templeman, Michael Schmidt, Itzhak Kelson, Eyal Yahel

Abstract:

We present a new method to produce a model system for the study of radiation damage in non-radioactive materials. The method is based on homogeneously incorporating 228Th ions in PbS thin films using a small volume chemical bath deposition (CBD) technique. The common way to alloy metals with radioactive elements is by melting pure elements, which requires considerable amounts of radioactive material with its safety consequences such as high sample activity. Controlled doping of the thin films with (very) small amounts (100-200ppm) of radioactive elements such as thorium is expected to provide a unique path for studying radiation damage in materials due to decay processes without the need of sealed enclosure. As a first stage, we developed CBD process for controlled doping of PbS thin films (~100 nm thick) with the stable isotope (t1/2~106 years), 232Th. Next, we developed CBD process for controlled doping of PbS thin films with active 228Th isotope. This was achieved by altering deposition parameters such as temperature, pH, reagent concentrations and time. The 228Th-doped films were characterized using X-ray diffraction, which indicated a single phase material. Film morphology and thickness were determined using scanning electron microscopy (SEM). Energy dispersive spectroscopy (EDS) mapping in the analytical transmission electron microscope (A-TEM), X-ray photoelectron spectroscopy (XPS) depth profiles and autoradiography indicated that the Th ions were homogeneously distributed throughout the films, suggesting Pb substitution by Th ions in the crystal lattice. The properties of the PbS (228Th) film activity were investigated by using alpha-spectroscopy and gamma spectroscopy. The resulting films are applicable for isochronal annealing of resistivity measurements and currently under investigation. This work shows promise as a model system for the analysis of dilute defect systems in semiconductor thin films.

Keywords: thin films, doping, radiation damage, chemical bath deposition

Procedia PDF Downloads 368