Search results for: seismic prediction equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4775

Search results for: seismic prediction equations

905 Numerical Analysis of Core-Annular Blood Flow in Microvessels at Low Reynolds Numbers

Authors: L. Achab, F. Iachachene

Abstract:

In microvessels, red blood cells (RBCs) exhibit a tendency to migrate towards the vessel center, establishing a core-annular flow pattern. The core region, marked by a high concentration of RBCs, is governed by significantly non-Newtonian viscosity. Conversely, the annular layer, composed of cell-free plasma, is characterized by Newtonian low viscosity. This property enables the plasma layer to act as a lubricant for the vessel walls, efficiently reducing resistance to the movement of blood cells. In this study, we investigate the factors influencing blood flow in microvessels and the thickness of the annular plasma layer using a non-miscible fluids approach in a 2D axisymmetric geometry. The governing equations of an incompressible unsteady flow are solved numerically through the Volume of Fluid (VOF) method to track the interface between the two immiscible fluids. To model blood viscosity in the core region, we adopt the Quemada constitutive law which is accurately captures the shear-thinning blood rheology over a wide range of shear rates. Our results are then compared to an established theoretical approach under identical flow conditions, particularly concerning the radial velocity profile and the thickness of the annular plasma layer. The simulation findings for low Reynolds numbers, demonstrate a notable agreement with the theoretical solution, emphasizing the pivotal role of blood’s rheological properties in the core region in determining the thickness of the annular plasma layer.

Keywords: core-annular flows, microvessels, Quemada model, plasma layer thickness, volume of fluid method

Procedia PDF Downloads 56
904 Factors Affecting Slot Machine Performance in an Electronic Gaming Machine Facility

Authors: Etienne Provencal, David L. St-Pierre

Abstract:

A facility exploiting only electronic gambling machines (EGMs) opened in 2007 in Quebec City, Canada under the name of Salons de Jeux du Québec (SdjQ). This facility is one of the first worldwide to rely on that business model. This paper models the performance of such EGMs. The interest from a managerial point of view is to identify the variables that can be controlled or influenced so that a comprehensive model can help improve the overall performance of the business. The EGM individual performance model contains eight different variables under study (Game Title, Progressive jackpot, Bonus Round, Minimum Coin-in, Maximum Coin-in, Denomination, Slant Top and Position). Using data from Quebec City’s SdjQ, a linear regression analysis explains 90.80% of the EGM performance. Moreover, results show a behavior slightly different than that of a casino. The addition of GameTitle as a factor to predict the EGM performance is one of the main contributions of this paper. The choice of the game (GameTitle) is very important. Games having better position do not have significantly better performance than games located elsewhere on the gaming floor. Progressive jackpots have a positive and significant effect on the individual performance of EGMs. The impact of BonusRound on the dependent variable is significant but negative. The effect of Denomination is significant but weakly negative. As expected, the Language of an EGMS does not impact its individual performance. This paper highlights some possible improvements by indicating which features are performing well. Recommendations are given to increase the performance of the EGMs performance.

Keywords: EGM, linear regression, model prediction, slot operations

Procedia PDF Downloads 255
903 Fatigue Life Estimation of Spiral Welded Waterworks Pipelines

Authors: Suk Woo Hong, Chang Sung Seok, Jae Mean Koo

Abstract:

Recently, the welding is widely used in modern industry for joining the structures. However, the waterworks pipes are exposed to the fatigue load by cars, earthquake and etc because of being buried underground. Moreover, the residual stress exists in weld zone by welding process and it is well known that the fatigue life of welded structures is degraded by residual stress. Due to such reasons, the crack can occur in the weld zone of pipeline. In this case, The ground subsidence or sinkhole can occur, if the soil and sand are washed down by fluid leaked from the crack of water pipe. These problems can lead to property damage and endangering lives. For these reasons, the estimation of fatigue characteristics for water pipeline weld zone is needed. Therefore, in this study, for fatigue characteristics estimation of spiral welded waterworks pipe, ASTM standard specimens and Curved Plate specimens were collected from the spiral welded waterworks pipe and the fatigue tests were performed. The S-N curves of each specimen were estimated, and then the fatigue life of weldment Curved Plate specimen was predicted by theoretical and analytical methods. After that, the weldment Curved Plate specimens were collected from the pipe and verification fatigue tests were performed. Finally, it was verified that the predicted S-N curve of weldment Curved Plate specimen was good agreement with fatigue test data.

Keywords: spiral welded pipe, prediction fatigue life, endurance limit modifying factors, residual stress

Procedia PDF Downloads 299
902 Valorization of Waste Reverse Osmosis Desalination Brine and Crystallization Sequence Approach for Kainite Recovery

Authors: Ayoub Bouazza, Ali Faddouli, Said Amal, Rachid Benhida, Khaoula Khaless

Abstract:

Brine waste generated from reverse osmosis (RO) desalination plants contains various valuable compounds, mainly salts, trace elements, and organic matter. These wastes are up to two times saltier than standard seawater. Therefore, there is a strong economic interest in recovering these salts. The current practice in desalination plants is to reject the brine back to the sea, which affects the marine ecosystem and the environment. Our study aims to bring forth a reliable management solution for the valorisation of waste brines. Natural evaporation, isothermal evaporation at 25°C and 50°C, and evaporation using continuous heating were used to crystallize valuable salts from a reverse osmosis desalination plant brine located on the Moroccan Atlantic coast. The crystallization sequence of the brine was studied in comparison with standard seawater. The X-Ray Diffraction (XRD) of the precipitated solid phases showed similar results, where halite was the main solid phase precipitated from both the brine and seawater. However, Jänecke diagram prediction, along with FREZCHEM simulations, showed that Kainite should crystallize before Epsomite and Carnallite. As the absence of kainite formation in many experiments in the literature has been related to the metastability of kainite and the critical relative humidity conditions, and the precipitation of K–Mg salts is very sensitive to climatic conditions. An evaporation process is proposed as a solution to achieve the predicted crystallization path and to affirm the recovery of Kainite.

Keywords: salts crystallization, reverse osmosis, solar evaporation, frezchem, ZLD

Procedia PDF Downloads 103
901 Predictors of Academic Dishonesty among Serially Frustrated Students in Ogun State, Southwest, Nigeria

Authors: Oyesoji Aremu, Taiwo Williams

Abstract:

This study examined some factors (academic self-efficacy, locus of control, motivation and gender) that could predict academic dishonesty among serially frustrated students in Ogun State, South West, Nigeria. Serial academically frustrated students are students who are unable to attain and meet academic expectations set by themselves or significant others. A sample of 250 undergraduate students selected from two faculties from a University in Ogun State,South West Nigeria took part in the study. Multiple regression analysis was employed to determine the joint and relative contributions of the independent variables to the prediction of the dependent variable. T-test was used to test the hypothesis determining the gender difference between the independent variables (academic self-efficacy, locus of control and motivation) and academic dishonesty of serial academically frustrated male and female students. The results of the study showed all the independent variables jointly contributed to predicting academic dishonesty, while only academic self-efficacy and motivation had relative contributions to the dependent measure. There was no significant difference in the academic self-efficacy and motivation among males and females on academic dishonesty of the serial academically frustrated students but locus of control showed a significant difference between male and female students on academic dishonesty. Implications for counseling of the findings are discussed in the study.

Keywords: academic dishonesty, serially frustrated students, academic self-efficacy, locus of control

Procedia PDF Downloads 253
900 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer

Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved

Abstract:

Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.

Keywords: computer-aided system, detection, image segmentation, morphology

Procedia PDF Downloads 150
899 Fatigue Crack Behaviour in a Residual Stress Field at Fillet Welds in Ship Structures

Authors: Anurag Niranjan, Michael Fitzpatrick, Yin Jin Janin, Jazeel Chukkan, Niall Smyth

Abstract:

Fillet welds are used in joining longitudinal stiffeners in ship structures. Welding residual stresses in fillet welds are generally distributed in a non-uniform manner, as shown in previous research the residual stress redistribution occurs under the cyclic loading that is experienced by such joints during service, and the combination of the initial residual stress, local constraints, and loading can alter the stress field in ways that are extremely difficult to predict. As the residual stress influences the crack propagation originating from the toe of the fillet welds, full understanding of the residual stress field and how it evolves is very important for structural integrity calculations. Knowledge of the residual stress redistribution in the presence of a flaw is therefore required for better fatigue life prediction. Moreover, defect assessment procedures such as BS7910 offer very limited guidance for flaw acceptance and the associated residual stress redistribution in the assessment of fillet welds. Therefore the objective of this work is to study a surface-breaking flaw at the weld toe region in a fillet weld under cyclic load, in conjunction with residual stress measurement at pre-defined crack depths. This work will provide details of residual stress redistribution under cyclic load in the presence of a crack. The outcome of this project will inform integrity assessment with respect to the treatment of residual stress in fillet welds. Knowledge of the residual stress evolution for this weld geometry will be greatly beneficial for flaw tolerance assessments (BS 7910, API 591).

Keywords: fillet weld, fatigue, residual stress, structure integrity

Procedia PDF Downloads 142
898 Substantial Fatigue Similarity of a New Small-Scale Test Rig to Actual Wheel-Rail System

Authors: Meysam Naeimi, Zili Li, Roumen Petrov, Rolf Dollevoet, Jilt Sietsma, Jun Wu

Abstract:

The substantial similarity of fatigue mechanism in a new test rig for rolling contact fatigue (RCF) has been investigated. A new reduced-scale test rig is designed to perform controlled RCF tests in wheel-rail materials. The fatigue mechanism of the rig is evaluated in this study using a combined finite element-fatigue prediction approach. The influences of loading conditions on fatigue crack initiation have been studied. Furthermore, the effects of some artificial defects (squat-shape) on fatigue lives are examined. To simulate the vehicle-track interaction by means of the test rig, a three-dimensional finite element (FE) model is built up. The nonlinear material behaviour of the rail steel is modelled in the contact interface. The results of FE simulations are combined with the critical plane concept to determine the material points with the greatest possibility of fatigue failure. Based on the stress-strain responses, by employing of previously postulated criteria for fatigue crack initiation (plastic shakedown and ratchetting), fatigue life analysis is carried out. The results are reported for various loading conditions and different defect sizes. Afterward, the cyclic mechanism of the test rig is evaluated from the operational viewpoint. The results of fatigue life predictions are compared with the expected number of cycles of the test rig by its cyclic nature. Finally, the estimative duration of the experiments until fatigue crack initiation is roughly determined.

Keywords: fatigue, test rig, crack initiation, life, rail, squats

Procedia PDF Downloads 515
897 Validation of SWAT Model for Prediction of Water Yield and Water Balance: Case Study of Upstream Catchment of Jebba Dam in Nigeria

Authors: Adeniyi G. Adeogun, Bolaji F. Sule, Adebayo W. Salami, Michael O. Daramola

Abstract:

Estimation of water yield and water balance in a river catchment is critical to the sustainable management of water resources at watershed level in any country. Therefore, in the present study, Soil and Water Assessment Tool (SWAT) interfaced with Geographical Information System (GIS) was applied as a tool to predict water balance and water yield of a catchment area in Nigeria. The catchment area, which was 12,992km2, is located upstream Jebba hydropower dam in North central part of Nigeria. In this study, data on the observed flow were collected and compared with simulated flow using SWAT. The correlation between the two data sets was evaluated using statistical measures, such as, Nasch-Sucliffe Efficiency (NSE) and coefficient of determination (R2). The model output shows a good agreement between the observed flow and simulated flow as indicated by NSE and R2, which were greater than 0.7 for both calibration and validation period. A total of 42,733 mm of water was predicted by the calibrated model as the water yield potential of the basin for a simulation period 1985 to 2010. This interesting performance obtained with SWAT model suggests that SWAT model could be a promising tool to predict water balance and water yield in sustainable management of water resources. In addition, SWAT could be applied to other water resources in other basins in Nigeria as a decision support tool for sustainable water management in Nigeria.

Keywords: GIS, modeling, sensitivity analysis, SWAT, water yield, watershed level

Procedia PDF Downloads 439
896 Detection and Distribution Pattern of Prevelant Genotypes of Hepatitis C in a Tertiary Care Hospital of Western India

Authors: Upasana Bhumbla

Abstract:

Background: Hepatitis C virus is a major cause of chronic hepatitis, which can further lead to cirrhosis of the liver and hepatocellular carcinoma. Worldwide the burden of Hepatitis C infection has become a serious threat to the human race. Hepatitis C virus (HCV) has population-specific genotypes and provides valuable epidemiological and therapeutic information. Genotyping and assessment of viral load in HCV patients are important for planning the therapeutic strategies. The aim of the study is to study the changing trends of prevalence and genotypic distribution of hepatitis C virus in a tertiary care hospital in Western India. Methods: It is a retrospective study; blood samples were collected and tested for anti HCV antibodies by ELISA in Dept. of Microbiology. In seropositive Hepatitis C patients, quantification of HCV-RNA was done by real-time PCR and in HCV-RNA positive samples, genotyping was conducted. Results: A total of 114 patients who were seropositive for Anti HCV were recruited in the study, out of which 79 (69.29%) were HCV-RNA positive. Out of these positive samples, 54 were further subjected to genotype determination using real-time PCR. Genotype was not detected in 24 samples due to low viral load; 30 samples were positive for genotype. Conclusion: Knowledge of genotype is crucial for the management of HCV infection and prediction of prognosis. Patients infected with HCV genotype 1 and 4 will have to receive Interferon and Ribavirin for 48 weeks. Patients with these genotypes show a poor sustained viral response when tested 24 weeks after completion of therapy. On the contrary, patients infected with HCV genotype 2 and 3 are reported to have a better response to therapy.

Keywords: hepatocellular, genotype, ribavarin, seropositive

Procedia PDF Downloads 127
895 Prediction of the Aerodynamic Stall of a Helicopter’s Main Rotor Using a Computational Fluid Dynamics Analysis

Authors: Assel Thami Lahlou, Soufiane Stouti, Ismail Lagrat, Hamid Mounir, Oussama Bouazaoui

Abstract:

The purpose of this research work is to predict the helicopter from stalling by finding the minimum and maximum values that the pitch angle can take in order to fly in a hover state condition. The stall of a helicopter in hover occurs when the pitch angle is too small to generate the thrust required to support its weight or when the critical angle of attack that gives maximum lift is reached or exceeded. In order to find the minimum pitch angle, a 3D CFD simulation was done in this work using ANSYS FLUENT as the CFD solver. We started with a small value of the pitch angle θ, and we kept increasing its value until we found the thrust coefficient required to fly in a hover state and support the weight of the helicopter. For the CFD analysis, the Multiple Reference Frame (MRF) method with k-ε turbulent model was used to study the 3D flow around the rotor for θmin. On the other hand, a 2D simulation of the airfoil NACA 0012 was executed with a velocity inlet Vin=ΩR/2 to visualize the flow at the location span R/2 of the disk rotor using the Spallart-Allmaras turbulent model. Finding the critical angle of attack at this position will give us the ability to predict the stall in hover flight. The results obtained will be exposed later in the article. This study was so useful in analyzing the limitations of the helicopter’s main rotor and thus, in predicting accidents that can lead to a lot of damage.

Keywords: aerodynamic, CFD, helicopter, stall, blades, main rotor, minimum pitch angle, maximum pitch angle

Procedia PDF Downloads 81
894 Factors Associated with Weight Loss Maintenance after an Intervention Program

Authors: Filipa Cortez, Vanessa Pereira

Abstract:

Introduction: The main challenge of obesity treatment is long-term weight loss maintenance. The 3 phases method is a weight loss program that combines a low carb and moderately high-protein diet, food supplements and a weekly one-to-one consultation with a certified nutritionist. Sustained weight control is the ultimate goal of phase 3. Success criterion was the minimum loss of 10% of initial weight and its maintenance after 12 months. Objective: The aim of this study was to identify factors associated with successful weight loss maintenance after 12 months at the end of 3 phases method. Methods: The study included 199 subjects that achieved their weight loss goal (phase 3). Weight and body mass index (BMI) were obtained at the baseline and every week until the end of the program. Therapeutic adherence was measured weekly on a Likert scale from 1 to 5. Subjects were considered in compliance with nutritional recommendation and supplementation when their classification was ≥ 4. After 12 months of the method, the current weight and number of previous weight-loss attempts were collected by telephone interview. The statistical significance was assumed at p-values < 0.05. Statistical analyses were performed using SPSS TM software v.21. Results: 65.3% of subjects met the success criterion. The factors which displayed a significant weight loss maintenance prediction were: greater initial percentage weight loss (OR=1.44) during the weight loss intervention and a higher number of consultations in phase 3 (OR=1.10). Conclusion: These findings suggest that the percentage weight loss during the weight loss intervention and the number of consultations in phase 3 may facilitate maintenance of weight loss after the 3 phases method.

Keywords: obesity, weight maintenance, low-carbohydrate diet, dietary supplements

Procedia PDF Downloads 150
893 Use Multiphysics Simulations and Resistive Pulse Sensing to Study the Effect of Metal and Non-Metal Nanoparticles in Different Salt Concentration

Authors: Chun-Lin Chiang, Che-Yen Lee, Yu-Shan Yeh, Jiunn-Haur Shaw

Abstract:

Wafer fabrication is a critical part of the semiconductor process, when the finest linewidth with the improvement of technology continues to decline and the structure development from 2D towards to 3D. The nanoparticles contained in the slurry or in the ultrapure water which used for cleaning have a large influence on the manufacturing process. Therefore, semiconductor industry is hoping to find a viable method for on-line detection the nanoparticles size and concentration. The resistive pulse sensing technology is one of the methods that may cover this question. As we know that nanoparticles properties of material differ significantly from their properties at larger length scales. So, we want to clear that the metal and non-metal nanoparticles translocation dynamic when we use the resistive pulse sensing technology. In this study we try to use the finite element method that contains three governing equations to do multiphysics coupling simulations. The Navier-Stokes equation describes the laminar motion, the Nernst-Planck equation describes the ion transport, and the Poisson equation describes the potential distribution in the flow channel. To explore that the metal nanoparticles and the non-metal nanoparticles in different concentration electrolytes, through the nanochannel caused by ion current changes. Then the reliability of the simulation results was verified by resistive pulse sensing test. The existing results show that the lower ion concentration, the greater effect of nanoparticles on the ion concentration in the nanochannel. The conductive spikes are correlated with nanoparticles surface charge. Then we can be concluded that in the resistive pulse sensing technique, the ion concentration in the nanochannel and nanoparticle properties are important for the translocation dynamic, and they have the interactions.

Keywords: multiphysics simulations, resistive pulse sensing, nanoparticles, nanochannel

Procedia PDF Downloads 349
892 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark

Authors: B. Elshafei, X. Mao

Abstract:

The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.

Keywords: data fusion, Gaussian process regression, signal denoise, temporal extrapolation

Procedia PDF Downloads 135
891 Probability-Based Damage Detection of Structures Using Model Updating with Enhanced Ideal Gas Molecular Movement Algorithm

Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee

Abstract:

Model updating method has received increasing attention in damage detection structures based on measured modal parameters. Therefore, a probability-based damage detection (PBDD) procedure based on a model updating procedure is presented in this paper, in which a one-stage model-based damage identification technique based on the dynamic features of a structure is investigated. The presented framework uses a finite element updating method with a Monte Carlo simulation that considers the uncertainty caused by measurement noise. Enhanced ideal gas molecular movement (EIGMM) is used as the main algorithm for model updating. Ideal gas molecular movement (IGMM) is a multiagent algorithm based on the ideal gas molecular movement. Ideal gas molecules disperse rapidly in different directions and cover all the space inside. This is embedded in the high speed of molecules, collisions between them and with the surrounding barriers. In IGMM algorithm to accomplish the optimal solutions, the initial population of gas molecules is randomly generated and the governing equations related to the velocity of gas molecules and collisions between those are utilized. In this paper, an enhanced version of IGMM, which removes unchanged variables after specified iterations, is developed. The proposed method is implemented on two numerical examples in the field of structural damage detection. The results show that the proposed method can perform well and competitive in PBDD of structures.

Keywords: enhanced ideal gas molecular movement (EIGMM), ideal gas molecular movement (IGMM), model updating method, probability-based damage detection (PBDD), uncertainty quantification

Procedia PDF Downloads 277
890 Probabilistic Damage Tolerance Methodology for Solid Fan Blades and Discs

Authors: Andrej Golowin, Viktor Denk, Axel Riepe

Abstract:

Solid fan blades and discs in aero engines are subjected to high combined low and high cycle fatigue loads especially around the contact areas between blade and disc. Therefore, special coatings (e.g. dry film lubricant) and surface treatments (e.g. shot peening or laser shock peening) are applied to increase the strength with respect to combined cyclic fatigue and fretting fatigue, but also to improve damage tolerance capability. The traditional deterministic damage tolerance assessment based on fracture mechanics analysis, which treats service damage as an initial crack, often gives overly conservative results especially in the presence of vibratory stresses. A probabilistic damage tolerance methodology using crack initiation data has been developed for fan discs exposed to relatively high vibratory stresses in cross- and tail-wind conditions at certain resonance speeds for limited time periods. This Monte-Carlo based method uses a damage databank from similar designs, measured vibration levels at typical aircraft operations and wind conditions and experimental crack initiation data derived from testing of artificially damaged specimens with representative surface treatment under combined fatigue conditions. The proposed methodology leads to a more realistic prediction of the minimum damage tolerance life for the most critical locations applicable to modern fan disc designs.

Keywords: combined fatigue, damage tolerance, engine, surface treatment

Procedia PDF Downloads 497
889 Artificial Intelligence in Melanoma Prognosis: A Narrative Review

Authors: Shohreh Ghasemi

Abstract:

Introduction: Melanoma is a complex disease with various clinical and histopathological features that impact prognosis and treatment decisions. Traditional methods of melanoma prognosis involve manual examination and interpretation of clinical and histopathological data by dermatologists and pathologists. However, the subjective nature of these assessments can lead to inter-observer variability and suboptimal prognostic accuracy. AI, with its ability to analyze vast amounts of data and identify patterns, has emerged as a promising tool for improving melanoma prognosis. Methods: A comprehensive literature search was conducted to identify studies that employed AI techniques for melanoma prognosis. The search included databases such as PubMed and Google Scholar, using keywords such as "artificial intelligence," "melanoma," and "prognosis." Studies published between 2010 and 2022 were considered. The selected articles were critically reviewed, and relevant information was extracted. Results: The review identified various AI methodologies utilized in melanoma prognosis, including machine learning algorithms, deep learning techniques, and computer vision. These techniques have been applied to diverse data sources, such as clinical images, dermoscopy images, histopathological slides, and genetic data. Studies have demonstrated the potential of AI in accurately predicting melanoma prognosis, including survival outcomes, recurrence risk, and response to therapy. AI-based prognostic models have shown comparable or even superior performance compared to traditional methods.

Keywords: artificial intelligence, melanoma, accuracy, prognosis prediction, image analysis, personalized medicine

Procedia PDF Downloads 81
888 The Signaling Power of ESG Accounting in Sub-Sahara Africa: A Dynamic Model Approach

Authors: Haruna Maama

Abstract:

Environmental, social and governance (ESG) reporting is gaining considerable attention despite being voluntary. Meanwhile, it consumes resources to provide ESG reporting, raising a question of its value relevance. The study examined the impact of ESG reporting on the market value of listed firms in SSA. The annual and integrated reports of 276 listed sub-Sahara Africa (SSA) firms. The integrated reporting scores of the firm were analysed using a content analysis method. A multiple regression estimation technique using a GMM approach was employed for the analysis. The results revealed that ESG has a positive relationship with firms’ market value, suggesting that investors are interested in the ESG information disclosure of firms in SSA. This suggests that extensive ESG disclosures are attempts by firms to obtain the approval of powerful social, political and environmental stakeholders, especially institutional investors. Furthermore, the market value analysis evidence is consistent with signalling theory, which postulates that firms provide integrated reports as a signal to influence the behaviour of stakeholders. This finding reflects the value placed on investors' social, environmental and governance disclosures, which affirms the views that conventional investors would care about the social, environmental and governance issues of their potential or existing investee firms. Overall, the evidence is consistent with the prediction of signalling theory. In the context of this theory, integrated reporting is seen as part of firms' overall competitive strategy to influence investors' behaviour. The findings of this study make unique contributions to knowledge and practice in corporate reporting.

Keywords: environmental accounting, ESG accounting, signalling theory, sustainability reporting, sub-saharan Africa

Procedia PDF Downloads 77
887 A Non-Linear Eddy Viscosity Model for Turbulent Natural Convection in Geophysical Flows

Authors: J. P. Panda, K. Sasmal, H. V. Warrior

Abstract:

Eddy viscosity models in turbulence modeling can be mainly classified as linear and nonlinear models. Linear formulations are simple and require less computational resources but have the disadvantage that they cannot predict actual flow pattern in complex geophysical flows where streamline curvature and swirling motion are predominant. A constitutive equation of Reynolds stress anisotropy is adopted for the formulation of eddy viscosity including all the possible higher order terms quadratic in the mean velocity gradients, and a simplified model is developed for actual oceanic flows where only the vertical velocity gradients are important. The new model is incorporated into the one dimensional General Ocean Turbulence Model (GOTM). Two realistic oceanic test cases (OWS Papa and FLEX' 76) have been investigated. The new model predictions match well with the observational data and are better in comparison to the predictions of the two equation k-epsilon model. The proposed model can be easily incorporated in the three dimensional Princeton Ocean Model (POM) to simulate a wide range of oceanic processes. Practically, this model can be implemented in the coastal regions where trasverse shear induces higher vorticity, and for prediction of flow in estuaries and lakes, where depth is comparatively less. The model predictions of marine turbulence and other related data (e.g. Sea surface temperature, Surface heat flux and vertical temperature profile) can be utilized in short term ocean and climate forecasting and warning systems.

Keywords: Eddy viscosity, turbulence modeling, GOTM, CFD

Procedia PDF Downloads 202
886 Dispersion Effects in Waves Reflected by Lossy Conductors: The Optics vs. Electromagnetics Approach

Authors: Oibar Martinez, Clara Oliver, Jose Miguel Miranda

Abstract:

The study of dispersion phenomena in electromagnetic waves reflected by conductors at infrared and lower frequencies is a topic which finds a number of applications. We aim to explain in this work what are the most relevant ones and how this phenomenon is modeled from both optics and electromagnetics points of view. We also explain here how the amplitude of an electromagnetic wave reflected by a lossy conductor could depend on both the frequency of the incident wave, as well as on the electrical properties of the conductor, and we illustrate this phenomenon with a practical example. The mathematical analysis made by a specialist in electromagnetics or a microwave engineer is apparently very different from the one made by a specialist in optics. We show here how both approaches lead to the same physical result and what are the key concepts which enable one to understand that despite the differences in the equations the solution to the problem happens to be the same. Our study starts with an analysis made by using the complex refractive index and the reflectance parameter. We show how this reflectance has a dependence with the square root of the frequency when the reflecting material is a good conductor, and the frequency of the wave is low enough. Then we analyze the same problem with a less known approach, which is based on the reflection coefficient of the electric field, a parameter that is most commonly used in electromagnetics and microwave engineering. In summary, this paper presents a mathematical study illustrated with a worked example which unifies the modeling of dispersion effects made by specialists in optics and the one made by specialists in electromagnetics. The main finding of this work is that it is possible to reproduce the dependence of the Fresnel reflectance with frequency from the intrinsic impedance of the reflecting media.

Keywords: dispersion, electromagnetic waves, microwaves, optics

Procedia PDF Downloads 129
885 Determining of the Performance of Data Mining Algorithm Determining the Influential Factors and Prediction of Ischemic Stroke: A Comparative Study in the Southeast of Iran

Authors: Y. Mehdipour, S. Ebrahimi, A. Jahanpour, F. Seyedzaei, B. Sabayan, A. Karimi, H. Amirifard

Abstract:

Ischemic stroke is one of the common reasons for disability and mortality. The fourth leading cause of death in the world and the third in some other sources. Only 1/3 of the patients with ischemic stroke fully recover, 1/3 of them end in permanent disability and 1/3 face death. Thus, the use of predictive models to predict stroke has a vital role in reducing the complications and costs related to this disease. Thus, the aim of this study was to specify the effective factors and predict ischemic stroke with the help of DM methods. The present study was a descriptive-analytic study. The population was 213 cases from among patients referring to Ali ibn Abi Talib (AS) Hospital in Zahedan. Data collection tool was a checklist with the validity and reliability confirmed. This study used DM algorithms of decision tree for modeling. Data analysis was performed using SPSS-19 and SPSS Modeler 14.2. The results of the comparison of algorithms showed that CHAID algorithm with 95.7% accuracy has the best performance. Moreover, based on the model created, factors such as anemia, diabetes mellitus, hyperlipidemia, transient ischemic attacks, coronary artery disease, and atherosclerosis are the most effective factors in stroke. Decision tree algorithms, especially CHAID algorithm, have acceptable precision and predictive ability to determine the factors affecting ischemic stroke. Thus, by creating predictive models through this algorithm, will play a significant role in decreasing the mortality and disability caused by ischemic stroke.

Keywords: data mining, ischemic stroke, decision tree, Bayesian network

Procedia PDF Downloads 174
884 Assessing Effects of an Intervention on Bottle-Weaning and Reducing Daily Milk Intake from Bottles in Toddlers Using Two-Part Random Effects Models

Authors: Yungtai Lo

Abstract:

Two-part random effects models have been used to fit semi-continuous longitudinal data where the response variable has a point mass at 0 and a continuous right-skewed distribution for positive values. We review methods proposed in the literature for analyzing data with excess zeros. A two-part logit-log-normal random effects model, a two-part logit-truncated normal random effects model, a two-part logit-gamma random effects model, and a two-part logit-skew normal random effects model were used to examine effects of a bottle-weaning intervention on reducing bottle use and daily milk intake from bottles in toddlers aged 11 to 13 months in a randomized controlled trial. We show in all four two-part models that the intervention promoted bottle-weaning and reduced daily milk intake from bottles in toddlers drinking from a bottle. We also show that there are no differences in model fit using either the logit link function or the probit link function for modeling the probability of bottle-weaning in all four models. Furthermore, prediction accuracy of the logit or probit link function is not sensitive to the distribution assumption on daily milk intake from bottles in toddlers not off bottles.

Keywords: two-part model, semi-continuous variable, truncated normal, gamma regression, skew normal, Pearson residual, receiver operating characteristic curve

Procedia PDF Downloads 349
883 Effect of Particle Aspect Ratio and Shape Factor on Air Flow inside Pulmonary Region

Authors: Pratibha, Jyoti Kori

Abstract:

Particles in industry, harvesting, coal mines, etc. may not necessarily be spherical in shape. In general, it is difficult to find perfectly spherical particle. The prediction of movement and deposition of non spherical particle in distinct airway generation is much more difficult as compared to spherical particles. Moreover, there is extensive inflexibility in deposition between ducts of a particular generation and inside every alveolar duct since particle concentrations can be much bigger than the mean acinar concentration. Consequently, a large number of particles fail to be exhaled during expiration. This study presents a mathematical model for the movement and deposition of those non-spherical particles by using particle aspect ratio and shape factor. We analyse the pulsatile behavior underneath sinusoidal wall oscillation due to periodic breathing condition through a non-Darcian porous medium or inside pulmonary region. Since the fluid is viscous and Newtonian, the generalized Navier-Stokes equation in two-dimensional coordinate system (r, z) is used with boundary-layer theory. Results are obtained for various values of Reynolds number, Womersley number, Forchsheimer number, particle aspect ratio and shape factor. Numerical computation is done by using finite difference scheme for very fine mesh in MATLAB. It is found that the overall air velocity is significantly increased by changes in aerodynamic diameter, aspect ratio, alveoli size, Reynolds number and the pulse rate; while velocity is decreased by increasing Forchheimer number.

Keywords: deposition, interstitial lung diseases, non-Darcian medium, numerical simulation, shape factor

Procedia PDF Downloads 185
882 Experimental Study of the Dynamics of Sediments in Natural Channels in a Non-Stationary Flow Regime

Authors: Fourar Ali, Fourar Fatima Zohra

Abstract:

Knowledge of sediment characteristics is fundamental to understanding their sedimentary functioning: sedimentation, settlement, and erosion processes of cohesive sediments are controlled by complex interactions between physical, chemical, and biological factors. Sediment transport is of primary importance in river hydraulics and river engineering. Indeed, the displacement of sediments can lead to lasting modifications of the bed in terms of its elevation, slope and roughness. The protection of a bank, for example, is likely to initiate a local incision of the river bed, which, in turn, can lead to the subsidence of the bank. The flows in the natural environment occur in general with heterogeneous boundary conditions because of the distribution of the roughnesses of the fixed or mobile bottoms and of the important deformations of the free surface, especially for the flows with a weak draft considering the irregularity of the bottom. Bedforms significantly influence flow resistance. The arrangement of particles lining the bottom of the stream bed or experimental channel generates waveforms of different sizes that lead to changes in roughness and consequently spatial variability in the turbulent characteristics of the flow. The study which is focused on the laws of friction in alluvial beds, aims to analyze the characteristics of flows and materials constituting the natural channels. Experimental results were obtained by simulating these flows on a rough bottom in an experimental channel at the Hydraulics Laboratory of the University of Batna 2. The system of equations governing the problem is solved using the program named: CLIPPER.5 and ACP.

Keywords: free surface flow, heterogeneous sand, moving bottom bed, friction coefficient, bottom roughness

Procedia PDF Downloads 90
881 Immature Platelet Fraction and Immature Reticulocyte Fraction as Early Predictors of Hematopoietic Recovery Post Stem Cell Transplantation

Authors: Aditi Mittal, Nishit Gupta, Tina Dadu, Anil Handoo

Abstract:

Introduction: Hematopoietic stem cell transplantation (HSCT) is a curative treatment done for hematologic malignancies and other clinical conditions. Its main objective is to reconstitute the hematopoietic system of the recipient by administering an infusion of donor hematopoietic stem cells. Transplant engraftment is the first sign of bone marrow recovery. The main objective of this study is to assess immature platelet fraction (IPF) and immature reticulocyte fraction (IRF) as early indicators of post-hematopoietic stem cell transplant engraftment. Methods: Patients of all age groups and both genders undergoing both autologous and allogeneic transplants were included in the study. All the CBC samples were run on Mindray CAL-8000 (BC-6800 plus; Shenzhen, China) analyser and assessed for IPF and IRF. Neutrophil engraftment was defined as the first of three consecutive days with an ANC >0.5 x 109/L and platelet engraftment with a count >20 x 109/L. The cut-off values for IRF were calculated as 13.5% with a CV of 5% and for IPF was 19% with a CV of 12%. Results: The study sample comprised 200 patients, of whom 116 had undergone autologous HSCT, and 84 had undergone allogeneic HSCT. We observed that IRF anticipated the neutrophil recovery by an average of 5 days prior to IPF. Though there was no significant variation in IPF and IRF for the prediction of platelet recovery, IRF was preceded by 1 or 2 days to IPF in 25% of cases. Conclusions: Both IPF and IRF can be used as reliable parameters as predictors for post-transplant engraftment; however, IRF seems to be more reliable than IPF as a simple, inexpensive, and widely available tool for predicting marrow recovery several days before engraftment.

Keywords: transplantation, stem cells, reticulocyte, engraftment

Procedia PDF Downloads 89
880 Application of the Finite Window Method to a Time-Dependent Convection-Diffusion Equation

Authors: Raoul Ouambo Tobou, Alexis Kuitche, Marcel Edoun

Abstract:

The FWM (Finite Window Method) is a new numerical meshfree technique for solving problems defined either in terms of PDEs (Partial Differential Equation) or by a set of conservation/equilibrium laws. The principle behind the FWM is that in such problem each element of the concerned domain is interacting with its neighbors and will always try to adapt to keep in equilibrium with respect to those neighbors. This leads to a very simple and robust problem solving scheme, well suited for transfer problems. In this work, we have applied the FWM to an unsteady scalar convection-diffusion equation. Despite its simplicity, it is well known that convection-diffusion problems can be challenging to be solved numerically, especially when convection is highly dominant. This has led researchers to set the scalar convection-diffusion equation as a benchmark one used to analyze and derive the required conditions or artifacts needed to numerically solve problems where convection and diffusion occur simultaneously. We have shown here that the standard FWM can be used to solve convection-diffusion equations in a robust manner as no adjustments (Upwinding or Artificial Diffusion addition) were required to obtain good results even for high Peclet numbers and coarse space and time steps. A comparison was performed between the FWM scheme and both a first order implicit Finite Volume Scheme (Upwind scheme) and a third order implicit Finite Volume Scheme (QUICK Scheme). The results of the comparison was that for equal space and time grid spacing, the FWM yields a much better precision than the used Finite Volume schemes, all having similar computational cost and conditioning number.

Keywords: Finite Window Method, Convection-Diffusion, Numerical Technique, Convergence

Procedia PDF Downloads 332
879 Theoretical Framework for Value Creation in Project Oriented Companies

Authors: Mariusz Hofman

Abstract:

The paper ‘Theoretical framework for value creation in Project-Oriented Companies’ is designed to determine, how organisations create value and whether this allows them to achieve market success. An assumption has been made that there are two routes to achieving this value. The first one is to create intangible assets (i.e. the resources of human, structural and relational capital), while the other one is to create added value (understood as the surplus of revenue over costs). It has also been assumed that the combination of the achieved added value and unique intangible assets translates to the success of a project-oriented company. The purpose of the paper is to present hypothetical and deductive model which describing the modus operandi of such companies and approach to model operationalisation. All the latent variables included in the model are theoretical constructs with observational indicators (measures). The existence of a latent variable (construct) and also submodels will be confirmed based on a covariance matrix which in turn is based on empirical data, being a set of observational indicators (measures). This will be achieved with a confirmatory factor analysis (CFA). Due to this statistical procedure, it will be verified whether the matrix arising from the adopted theoretical model differs statistically from the empirical matrix of covariance arising from the system of equations. The fit of the model with the empirical data will be evaluated using χ2, RMSEA and CFI (Comparative Fit Index). How well the theoretical model fits the empirical data is assessed through a number of indicators. If the theoretical conjectures are confirmed, an interesting development path can be defined for project-oriented companies. This will let such organisations perform efficiently in the face of the growing competition and pressure on innovation.

Keywords: value creation, project-oriented company, structural equation modelling

Procedia PDF Downloads 297
878 Analysis on Solar Panel Performance and PV-Inverter Configuration for Tropical Region

Authors: Eko Adhi Setiawan, Duli Asih Siregar, Aiman Setiawan

Abstract:

Solar energy is abundant in nature, particularly in the tropics which have peak sun hour that can reach 8 hours per day. In the fabrication process, Photovoltaic’s (PV) performance are tested in standard test conditions (STC). It specifies a module temperature of 25°C, an irradiance of 1000 W/ m² with an air mass 1.5 (AM1.5) spectrum and zero wind speed. Thus, the results of the performance testing of PV at STC conditions cannot fully represent the performance of PV in the tropics. For example Indonesia, which has a temperature of 20-40°C. In this paper, the effect of temperature on the choice of the 5 kW AC inverter topology on the PV system such as the Central Inverter, String Inverter and AC-Module specifically for the tropics will be discussed. The proper inverter topology can be determined by analysis of the effect of temperature and irradiation on the PV panel. The effect of temperature and irradiation will be represented in the characteristics of I-V and P-V curves. PV’s characteristics on high temperature would be analyzed using Solar panel modeling through MATLAB Simulink based on mathematical equations that form Solar panel’s characteristic curve. Based on PV simulation, it is known then that temperature coefficients of short circuit current (ISC), open circuit voltage (VOC), and maximum output power (PMAX) consecutively as high as 0.56%/oC, -0.31%/oC and -0.4%/oC. Those coefficients can be used to calculate PV’s electrical parameters such as ISC, VOC, and PMAX in certain earth’s surface’s certain point. Then, from the parameters, the utility of the 5 kW AC inverter system can be determined. As the result, for tropical area, string inverter topology has the highest utility rates with 98, 80 %. On the other hand, central inverter and AC-Module Topology has utility rates of 92.69 % and 87.7 % eventually.

Keywords: Photovoltaic, PV-Inverter Configuration, PV Modeling, Solar Panel Characteristics.

Procedia PDF Downloads 379
877 Numerical Modelling of Immiscible Fluids Flow in Oil Reservoir Rocks during Enhanced Oil Recovery Processes

Authors: Zahreddine Hafsi, Manoranjan Mishra , Sami Elaoud

Abstract:

Ensuring the maximum recovery rate of oil from reservoir rocks is a challenging task that requires preliminary numerical analysis of different techniques used to enhance the recovery process. After conventional oil recovery processes and in order to retrieve oil left behind after the primary recovery phase, water flooding in one of several techniques used for enhanced oil recovery (EOR). In this research work, EOR via water flooding is numerically modeled, and hydrodynamic instabilities resulted from immiscible oil-water flow in reservoir rocks are investigated. An oil reservoir is a porous medium consisted of many fractures of tiny dimensions. For modeling purposes, the oil reservoir is considered as a collection of capillary tubes which provides useful insights into how fluids behave in the reservoir pore spaces. Equations governing oil-water flow in oil reservoir rocks are developed and numerically solved following a finite element scheme. Numerical results are obtained using Comsol Multiphysics software. The two phase Darcy module of COMSOL Multiphysics allows modelling the imbibition process by the injection of water (as wetting phase) into an oil reservoir. Van Genuchten, Brooks Corey and Levrett models were considered as retention models and obtained flow configurations are compared, and the governing parameters are discussed. For the considered retention models it was found that onset of instabilities viz. fingering phenomenon is highly dependent on the capillary pressure as well as the boundary conditions, i.e., the inlet pressure and the injection velocity.

Keywords: capillary pressure, EOR process, immiscible flow, numerical modelling

Procedia PDF Downloads 131
876 The Role of Androgens in Prediction of Success in Smoking Cessation in Women

Authors: Michaela Dušková, Kateřina Šimůnková, Martin Hill, Hana Hruškovičová, Hana Pospíšilová, Eva Králíková, Luboslav Stárka

Abstract:

Smoking represents the most widespread substance dependence in the world. Several studies show the nicotine's ability to alter women hormonal homeostasis. Women smokers have higher testosterone and lower estradiol levels throughout life compared to non-smoker women. We monitored the effect of smoking discontinuation on steroid spectrum with 40 premenopausal and 60 postmenopausal women smokers. These women had been examined before they discontinued smoking and also after 6, 12, 24, and 48 weeks of abstinence. At each examination, blood was collected to determine steroid spectrum (measured by GC-MS), LH, FSH, and SHBG (measured by IRMA). Repeated measures ANOVA model was used for evaluation of the data. The study has been approved by the local Ethics Committee. Given the small number of premenopausal women who endured not to smoke, only the first 6 week period data could be analyzed. A slight increase in androgens after the smoking discontinuation occurred. In postmenopausal women, an increase in testosterone, dihydrotestosterone, dehydroepiandrosterone, and other androgens occurred, too. Nicotine replacement therapy, weight changes, and age does not play any role in the androgen level increase. The higher androgens levels correlated with failure in smoking cessation. Women smokers have higher androgen levels, which might play a role in smoking dependence development. Women successful in smoking cessation, compared to the non-successful ones, have lower androgen levels initially and also after smoking discontinuation. The question is what androgen levels women have before they start smoking.

Keywords: addiction, smoking, cessation, androgens

Procedia PDF Downloads 381