Search results for: priority based scheduling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29089

Search results for: priority based scheduling

25219 Sensing Mechanism of Nano-Toxic Ions Using Quartz Crystal Microbalance

Authors: Chanho Park, Juneseok You, Kuewhan Jang, Sungsoo Na

Abstract:

Detection technique of nanotoxic materials is strongly imperative, because nano-toxic materials can harmfully influence human health and environment as their engineering applications are growing rapidly in recent years. In present work, we report the DNA immobilized quartz crystal microbalance (QCM) based sensor for detection of nano-toxic materials such as silver ions, Hg2+ etc. by using functionalization of quartz crystal with a target-specific DNA. Since the mass of a target material is comparable to that of an atom, the mass change caused by target binding to DNA on the quartz crystal is so small that it is practically difficult to detect the ions at low concentrations. In our study, we have demonstrated fast and in situ detection of nanotoxic materials using quartz crystal microbalance. We report the label-free and highly sensitive detection of silver ion for present case, which is a typical nano-toxic material by using QCM and silver-specific DNA. The detection is based on the measurement of frequency shift of Quartz crystal from constitution of the cytosine-Ag+-cytosine binding. It is shown that the silver-specific DNA measured frequency shift by QCM enables the capturing of silver ions below 100pM. The results suggest that DNA-based detection opens a new avenue for the development of a practical water-testing sensor.

Keywords: nano-toxic ions, quartz crystal microbalance, frequency shift, target-specific DNA

Procedia PDF Downloads 324
25218 Identification of Wiener Model Using Iterative Schemes

Authors: Vikram Saini, Lillie Dewan

Abstract:

This paper presents the iterative schemes based on Least square, Hierarchical Least Square and Stochastic Approximation Gradient method for the Identification of Wiener model with parametric structure. A gradient method is presented for the parameter estimation of wiener model with noise conditions based on the stochastic approximation. Simulation results are presented for the Wiener model structure with different static non-linear elements in the presence of colored noise to show the comparative analysis of the iterative methods. The stochastic gradient method shows improvement in the estimation performance and provides fast convergence of the parameters estimates.

Keywords: hard non-linearity, least square, parameter estimation, stochastic approximation gradient, Wiener model

Procedia PDF Downloads 408
25217 Exploring Twitter Data on Human Rights Activism on Olympics Stage through Social Network Analysis and Mining

Authors: Teklu Urgessa, Joong Seek Lee

Abstract:

Social media is becoming the primary choice of activists to make their voices heard. This fact is coupled by two main reasons. The first reason is the emergence web 2.0, which gave the users opportunity to become content creators than passive recipients. Secondly the control of the mainstream mass media outlets by the governments and individuals with their political and economic interests. This paper aimed at exploring twitter data of network actors talking about the marathon silver medalists on Rio2016, who showed solidarity with the Oromo protesters in Ethiopia on the marathon race finish line when he won silver. The aim is to discover important insight using social network analysis and mining. The hashtag #FeyisaLelisa was used for Twitter network search. The actors’ network was visualized and analyzed. It showed the central influencers during first 10 days in August, were international media outlets while it was changed to individual activist in September. The degree distribution of the network is scale free where the frequency of degrees decay by power low. Text mining was also used to arrive at meaningful themes from tweet corpus about the event selected for analysis. The semantic network indicated important clusters of concepts (15) that provided different insight regarding the why, who, where, how of the situation related to the event. The sentiments of the words in the tweets were also analyzed and indicated that 95% of the opinions in the tweets were either positive or neutral. Overall, the finding showed that Olympic stage protest of the marathoner brought the issue of Oromo protest to the global stage. The new research framework is proposed based for event-based social network analysis and mining based on the practical procedures followed in this research for event-based social media sense making.

Keywords: human rights, Olympics, social media, network analysis, social network ming

Procedia PDF Downloads 259
25216 Quantization of Damped Systems Based on the Doubling of Degrees of Freedom

Authors: Khaled I. Nawafleh

Abstract:

In this paper, it provide the canonical approach for studying dissipated oscillators based on the doubling of degrees of freedom. Clearly, expressions for Lagrangians of the elementary modes of the system are given, which ends with the familiar classical equations of motion for the dissipative oscillator. The equation for one variable is the time reversed of the motion of the second variable. it discuss in detail the extended Bateman Lagrangian specifically for a dual extended damped oscillator time-dependent. A Hamilton-Jacobi analysis showing the equivalence with the Lagrangian approach is also obtained. For that purpose, the techniques of separation of variables were applied, and the quantization process was achieved.

Keywords: doubling of degrees of freedom, dissipated harmonic oscillator, Hamilton-Jacobi, time-dependent lagrangians, quantization

Procedia PDF Downloads 73
25215 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management

Authors: M. Graus, K. Westhoff, X. Xu

Abstract:

The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.

Keywords: data analytics, green production, industrial energy management, optimization, renewable energies, simulation

Procedia PDF Downloads 439
25214 The Nature of Intelligence and Its Forms: An Ontological-Modeling Approach

Authors: Husam El-Asfour, Fateh Adhnouss, Kenneth McIsaac, Abdul Mutalib Wahaishi, Raafat Aburukba, Idris El-Feghia

Abstract:

Although intelligence is commonly referred to as the observable behavior in various fields and domains, it must also be shown how it develops by exhibiting multiple forms and without observing the inherent behavior. There have been several official and informal definitions of intelligence in various areas; however, no scientific agreement on a definition has been agreed upon. There must be a single definition, structure, and precise modeling for articulating how intelligence is perceived by people and machines in order to comprehend intelligence. Another key challenge is defining the different environment types based on the integral elements (agents) and their possible interactions. On the basis of conceptualization, this paper proposes a formal model for defining and developing intelligence. Forms of intelligence are derived from an ontological view, and thus intelligence is defined, described, and modeled based on the various types of environments.

Keywords: intelligence, forms, transformation, conceptualization, ontological view

Procedia PDF Downloads 147
25213 The Application of Mapping, Practicing, Using Strategy with Instructional Materials Based on the School Curriculum toward the English Achievement of Indonesian EFL Students

Authors: Eny Syatriana

Abstract:

English proficiency of Indonesian secondary school students is below standard. The low proficiency may come from poor teaching materials that do not meet the students’ need. The main objective for English teachers is to improve the English proficiency of the students. The purpose of this study is to explore the application Mapping, Practicing, Using (MPU) strategy with Instructional Materials Based on the School Curriculum toward the English achievement of Indonesian EFL Students. This paper is part my dissertation entitles 'Designing instructional materials for secondary school students based on the school curriculum' consisting of need analysis, design, development, implementation, and evaluation; this paper discusses need analysis and creates a model of creating instructional materials through deep discussion among teachers of secondary schools. The subject consisted of six English teachers and students of three classes at three different secondary schools in Makassar, South Sulawesi, Indonesia. Pretest and posttest design were administered to see the effectiveness of the MPU strategy. Questionnaires were administered to see the teachers and students’ perception toward the instructional materials. The result indicates that the MPU strategy is effective in improving the English achievement; instructional materials with different strategies improve the English achievement of the students. Both teachers and students argue that the presented instructional materials are effective to be used in the teaching and learning process to increase the English proficiency of the students.

Keywords: proficiency, development, English for secondary school students, instructional materials

Procedia PDF Downloads 337
25212 Drivers of E-Participation: Case of Saudi Arabia

Authors: R. Alrashedi, A. Persaud

Abstract:

This study provides insights into the readiness of users to participate in e-government activities in Saudi Arabia. A user-centric model of e-participation is developed based on a review of the literature and empirically tested. The findings are based on an online survey of a sample of 200 hundred Saudi citizens and residents living in Saudi Arabia. The study found that trust of the government, attitude towards e-participation, e-participation through the use of social media, and social influence and social identity positively influence e-participation while perceived benefits of e-government is negatively related to e-participation. This study contributes to the literature by providing empirical evidence of the drivers of e-participation. The study also provides insights that could be used by policymakers to increase the level of e-participation in Saudi Arabia.

Keywords: e-government, e-participation, social media, trust, social influence and social identity

Procedia PDF Downloads 467
25211 Intelligent Human Pose Recognition Based on EMG Signal Analysis and Machine 3D Model

Authors: Si Chen, Quanhong Jiang

Abstract:

In the increasingly mature posture recognition technology, human movement information is widely used in sports rehabilitation, human-computer interaction, medical health, human posture assessment, and other fields today; this project uses the most original ideas; it is proposed to use the collection equipment for the collection of myoelectric data, reflect the muscle posture change on a degree of freedom through data processing, carry out data-muscle three-dimensional model joint adjustment, and realize basic pose recognition. Based on this, bionic aids or medical rehabilitation equipment can be further developed with the help of robotic arms and cutting-edge technology, which has a bright future and unlimited development space.

Keywords: pose recognition, 3D animation, electromyography, machine learning, bionics

Procedia PDF Downloads 83
25210 A Golay Pair Based Synchronization Algorithm for Distributed Multiple-Input Multiple-Output System

Authors: Weizhi Zhong, Xiaoyi Lu, Lei Xu

Abstract:

In order to solve the problem of inaccurate synchronization for distributed multiple-input multiple-output (MIMO) system in multipath environment, a golay pair aided timing synchronization method is proposed in this paper. A new synchronous training sequence based on golay pair is designed. By utilizing the aperiodic auto-correlation complementary property of the new training sequence, the fine timing point is obtained at the receiver. Simulation results show that, compared with the tradition timing synchronization approaches, the proposed algorithm can provide high accuracy in synchronization, especially under multipath condition.

Keywords: distributed MIMO system, golay pair, multipath, synchronization

Procedia PDF Downloads 249
25209 How Context and Problem Based Learning Effects Students Behaviors in Teaching Thermodynamics

Authors: Mukadder Baran, Mustafa Sözbilir

Abstract:

The purpose of this paper is to investigate the applicabillity of the Context- and Problem-Based Learning (CPBL) in general chemistry course to the subject of “Thermodynamics” but also the influence of CPBL on students’ achievement, retention of knowledge, their interest, attitudes, motivation and problem-solving skills. The study group included 13 freshman students who were selected with the sampling method appropriate to the purpose among those taking the course of General Chemistry within the Program of Medical Laboratory Techniques at Hakkari University. The application was carried out in the Spring Term of the academic year of 2012-2013. As the data collection tool, Lesson Observation form were used. In the light of the observations held, it was revealed that CPBL increased the students’ intragroup and intergroup communication skills as well as their self-confidence and developed their skills in time management, presentation, reporting, and technology use; and that they were able to relate chemistry to daily life. Depending on these findings, it could be suggested that the area of use of CPBL be widened; that seminars related to constructive methods be organized for teachers. In this way, it is believed that students will not be passive in the group any longer. In addition, it was concluded that in order to avoid the negative effects of the socio-cultural structure on the education system, research should be conducted in places where there is socio-cultural obstacles, and appropriate solutions should be suggested and put into practice.

Keywords: chemistry, education, science, context-based learning

Procedia PDF Downloads 410
25208 Automatic Segmentation of the Clean Speech Signal

Authors: M. A. Ben Messaoud, A. Bouzid, N. Ellouze

Abstract:

Speech Segmentation is the measure of the change point detection for partitioning an input speech signal into regions each of which accords to only one speaker. In this paper, we apply two features based on multi-scale product (MP) of the clean speech, namely the spectral centroid of MP, and the zero crossings rate of MP. We focus on multi-scale product analysis as an important tool for segmentation extraction. The multi-scale product is based on making the product of the speech wavelet transform coefficients at three successive dyadic scales. We have evaluated our method on the Keele database. Experimental results show the effectiveness of our method presenting a good performance. It shows that the two simple features can find word boundaries, and extracted the segments of the clean speech.

Keywords: multiscale product, spectral centroid, speech segmentation, zero crossings rate

Procedia PDF Downloads 501
25207 Hard Disk Failure Predictions in Supercomputing System Based on CNN-LSTM and Oversampling Technique

Authors: Yingkun Huang, Li Guo, Zekang Lan, Kai Tian

Abstract:

Hard disk drives (HDD) failure of the exascale supercomputing system may lead to service interruption and invalidate previous calculations, and it will cause permanent data loss. Therefore, initiating corrective actions before hard drive failures materialize is critical to the continued operation of jobs. In this paper, a highly accurate analysis model based on CNN-LSTM and oversampling technique was proposed, which can correctly predict the necessity of a disk replacement even ten days in advance. Generally, the learning-based method performs poorly on a training dataset with long-tail distribution, especially fault prediction is a very classic situation as the scarcity of failure data. To overcome the puzzle, a new oversampling was employed to augment the data, and then, an improved CNN-LSTM with the shortcut was built to learn more effective features. The shortcut transmits the results of the previous layer of CNN and is used as the input of the LSTM model after weighted fusion with the output of the next layer. Finally, a detailed, empirical comparison of 6 prediction methods is presented and discussed on a public dataset for evaluation. The experiments indicate that the proposed method predicts disk failure with 0.91 Precision, 0.91 Recall, 0.91 F-measure, and 0.90 MCC for 10 days prediction horizon. Thus, the proposed algorithm is an efficient algorithm for predicting HDD failure in supercomputing.

Keywords: HDD replacement, failure, CNN-LSTM, oversampling, prediction

Procedia PDF Downloads 86
25206 Immersive Learning in University Classrooms

Authors: Raminder Kaur

Abstract:

This paper considers the emerging area of integrating Virtual Reality (VR) technologies into the teaching of Visual Anthropology, Research Methods, and the Anthropology of Contemporary India in the University of Sussex. If deployed in a critical and self-reflexive manner, there are several advantages to VR-based immersive learning: (i) Based on data available for British schools, it has been noted that ‘Learning through experience can boost knowledge retention by up to 75%’. (ii) It can tutor students to learn with and from virtual worlds, devising new collaborative methods where suited. (iii) It can foster inclusive learning by aiding students with SEN and disabilities who may not be able to explore such areas in the physical world. (iv) It can inspire and instill confidence in students with anxieties about approaching new subjects, realms, or regions. (v) It augments our provision of ‘smart classrooms’ synchronised to the kinds of emerging immersive learning environments that students come from in schools.

Keywords: virtual reality, anthropology, immersive learning, university

Procedia PDF Downloads 84
25205 Role of Information and Communication Technology in Pharmaceutical Innovation: Case of Firms in Developing Countries

Authors: Ilham Benali, Nasser Hajji, Nawfel Acha

Abstract:

The pharmaceutical sector is ongoing different constraints related to the Research and Development (R&D) costs, the patents extinction, the demand pressing, the regulatory requirement and the generics development, which drive leading firms in the sector to undergo technological change and to shift to biotechnological paradigm. Based on a large literature review, we present a background of innovation trajectory in pharmaceutical industry and reasons behind this technological transformation. Then we investigate the role that Information and Communication Technology (ICT) is playing in this revolution. In order to situate pharmaceutical firms in developing countries in this trajectory, and to examine the degree of their involvement in the innovation process, we did not find any previous empirical work or sources generating gathered data that allow us to analyze this phenomenon. Therefore, and for the case of Morocco, we tried to do it from scratch by gathering relevant data of the last five years from different sources. As a result, only about 4% of all innovative drugs that have access to the local market in the mentioned period are made locally which substantiates that the industrial model in pharmaceutical sector in developing countries is based on the 'license model'. Finally, we present another alternative, based on ICT use and big data tools that can allow developing countries to shift from status of simple consumers to active actors in the innovation process.

Keywords: biotechnologies, developing countries, innovation, information and communication technology, pharmaceutical firms

Procedia PDF Downloads 155
25204 Prediction of Alzheimer's Disease Based on Blood Biomarkers and Machine Learning Algorithms

Authors: Man-Yun Liu, Emily Chia-Yu Su

Abstract:

Alzheimer's disease (AD) is the public health crisis of the 21st century. AD is a degenerative brain disease and the most common cause of dementia, a costly disease on the healthcare system. Unfortunately, the cause of AD is poorly understood, furthermore; the treatments of AD so far can only alleviate symptoms rather cure or stop the progress of the disease. Currently, there are several ways to diagnose AD; medical imaging can be used to distinguish between AD, other dementias, and early onset AD, and cerebrospinal fluid (CSF). Compared with other diagnostic tools, blood (plasma) test has advantages as an approach to population-based disease screening because it is simpler, less invasive also cost effective. In our study, we used blood biomarkers dataset of The Alzheimer’s disease Neuroimaging Initiative (ADNI) which was funded by National Institutes of Health (NIH) to do data analysis and develop a prediction model. We used independent analysis of datasets to identify plasma protein biomarkers predicting early onset AD. Firstly, to compare the basic demographic statistics between the cohorts, we used SAS Enterprise Guide to do data preprocessing and statistical analysis. Secondly, we used logistic regression, neural network, decision tree to validate biomarkers by SAS Enterprise Miner. This study generated data from ADNI, contained 146 blood biomarkers from 566 participants. Participants include cognitive normal (healthy), mild cognitive impairment (MCI), and patient suffered Alzheimer’s disease (AD). Participants’ samples were separated into two groups, healthy and MCI, healthy and AD, respectively. We used the two groups to compare important biomarkers of AD and MCI. In preprocessing, we used a t-test to filter 41/47 features between the two groups (healthy and AD, healthy and MCI) before using machine learning algorithms. Then we have built model with 4 machine learning methods, the best AUC of two groups separately are 0.991/0.709. We want to stress the importance that the simple, less invasive, common blood (plasma) test may also early diagnose AD. As our opinion, the result will provide evidence that blood-based biomarkers might be an alternative diagnostics tool before further examination with CSF and medical imaging. A comprehensive study on the differences in blood-based biomarkers between AD patients and healthy subjects is warranted. Early detection of AD progression will allow physicians the opportunity for early intervention and treatment.

Keywords: Alzheimer's disease, blood-based biomarkers, diagnostics, early detection, machine learning

Procedia PDF Downloads 329
25203 Symmetric Arabic Language Encryption Technique Based on Modified Playfair Algorithm

Authors: Fairouz Beggas

Abstract:

Due to the large number of exchanges in the networks, the security of communications is essential. Most ways of keeping communication secure rely on encryption. In this work, a symmetric encryption technique is offered to encrypt and decrypt simple Arabic scripts based on a multi-level security. A proposed technique uses an idea of Playfair encryption with a larger table size and an additional layer of encryption to ensure more security. The idea of the proposed algorithm aims to generate a dynamic table that depends on a secret key. The same secret key is also used to create other secret keys to over-encrypt the plaintext in three steps. The obtained results show that the proposed algorithm is faster in terms of encryption/decryption speed and can resist to many types of attacks.

Keywords: arabic data, encryption, playfair, symmetric algorithm

Procedia PDF Downloads 93
25202 Deep Reinforcement Learning Approach for Optimal Control of Industrial Smart Grids

Authors: Niklas Panten, Eberhard Abele

Abstract:

This paper presents a novel approach for real-time and near-optimal control of industrial smart grids by deep reinforcement learning (DRL). To achieve highly energy-efficient factory systems, the energetic linkage of machines, technical building equipment and the building itself is desirable. However, the increased complexity of the interacting sub-systems, multiple time-variant target values and stochastic influences by the production environment, weather and energy markets make it difficult to efficiently control the energy production, storage and consumption in the hybrid industrial smart grids. The studied deep reinforcement learning approach allows to explore the solution space for proper control policies which minimize a cost function. The deep neural network of the DRL agent is based on a multilayer perceptron (MLP), Long Short-Term Memory (LSTM) and convolutional layers. The agent is trained within multiple Modelica-based factory simulation environments by the Advantage Actor Critic algorithm (A2C). The DRL controller is evaluated by means of the simulation and then compared to a conventional, rule-based approach. Finally, the results indicate that the DRL approach is able to improve the control performance and significantly reduce energy respectively operating costs of industrial smart grids.

Keywords: industrial smart grids, energy efficiency, deep reinforcement learning, optimal control

Procedia PDF Downloads 201
25201 An Educational Program Based on Health Belief Model to Prevent Non-Alcoholic Fatty Liver Disease among Iranian Women

Authors: Babak Nemat

Abstract:

Background and Purpose: Non-alcoholic fatty liver is one of the most common liver disorders, which, as the most important cause of death from liver disease, has unpleasant consequences and complications. The aim of this study was to investigate the effect of an educational intervention based on a health belief model to prevent non-alcoholic fatty liver among women. Materials and Methods: This experimental study was performed among 110 women referring to comprehensive health service centers in Malayer City, west of Iran, in 2023. Using the available sampling method, 110 participants were divided into experimental and control groups. The data collection tool included demographic characteristics and a questionnaire based on the health belief model. In the experimental group, three one-hour training sessions were conducted in the form of pamphlets, lectures, and group discussions. Data were analyzed using SPSS software version 21, by correlation tests, paired t-tests, and independent t-tests. Results: The mean age of participants was 38.07±6.28 years, and most of the participants were middle-aged, married, housewives with academic education, middle-income, and overweight. After the educational intervention, the mean scores of the constructs include perceived sensitivity (p=0.01), perceived severity (p=0.01), perceived benefits (p=0.01), guidance for internal (p=0.01), and external action (p=0.01), and perceived self-efficacy (p=0.01) in the experimental group were significantly higher than the control group. The score of perceived barriers in the experimental group decreased after training. The perceived obstacles score in the test group decreased after the training (15.2 ± 3.9 v.s 11.2 ± 3.3, (p<0.01). Conclusion: The findings of the study showed that the design and implementation of educational programs based on the constructs of the health belief model can be effective in preventing women from developing higher levels of non-alcoholic fatty liver.

Keywords: non-alcoholic fatty liver, health belief model, education, women

Procedia PDF Downloads 64
25200 A Culturally Responsive Based Framework for French Immersion Public Schools in Ontario

Authors: Kimberly Auger

Abstract:

This paper offers a rudimentary vision of a French Immersion Framework based on inclusion and equity in an Ontario school system. It examines the role that culture plays in responsive and equitable French Immersion education firstly by contextualizing French Immersion Education and Equity and Inclusive Education in the historical and political situation of Ontario, Canada. By laying a foundational understanding of the role culture plays in education, it then argues the importance of acknowledging and including teacher culture, student culture, and school culture into a French Immersion Framework to create a space that is more equitable, inclusive, and responsive to all.

Keywords: French immersion education, Ontario education, equity and inclusive education, bilingual education

Procedia PDF Downloads 25
25199 Intelligent Recognition of Diabetes Disease via FCM Based Attribute Weighting

Authors: Kemal Polat

Abstract:

In this paper, an attribute weighting method called fuzzy C-means clustering based attribute weighting (FCMAW) for classification of Diabetes disease dataset has been used. The aims of this study are to reduce the variance within attributes of diabetes dataset and to improve the classification accuracy of classifier algorithm transforming from non-linear separable datasets to linearly separable datasets. Pima Indians Diabetes dataset has two classes including normal subjects (500 instances) and diabetes subjects (268 instances). Fuzzy C-means clustering is an improved version of K-means clustering method and is one of most used clustering methods in data mining and machine learning applications. In this study, as the first stage, fuzzy C-means clustering process has been used for finding the centers of attributes in Pima Indians diabetes dataset and then weighted the dataset according to the ratios of the means of attributes to centers of theirs. Secondly, after weighting process, the classifier algorithms including support vector machine (SVM) and k-NN (k- nearest neighbor) classifiers have been used for classifying weighted Pima Indians diabetes dataset. Experimental results show that the proposed attribute weighting method (FCMAW) has obtained very promising results in the classification of Pima Indians diabetes dataset.

Keywords: fuzzy C-means clustering, fuzzy C-means clustering based attribute weighting, Pima Indians diabetes, SVM

Procedia PDF Downloads 419
25198 Lean Commercialization: A New Dawn for Commercializing High Technologies

Authors: Saheed A. Gbadegeshin

Abstract:

Lean Commercialization (LC) is a transformation of new technologies and knowledge to products and services through application of lean/agile principle. This principle focuses on how resources can be minimized on development, manufacturing, and marketing new products/services, which can be accepted by customers. To understand how the LC has been employed by the technology-based companies, a case study approach was employed by interviewing the founders, observing their high technologies, and interviewing the commercialization experts. Two serial entrepreneurs were interviewed in 2012, and their commercialized technologies were monitored from 2012 till 2016. Some results were collected, but to validate the commercialization strategies of these entrepreneurs, four commercialization experts were interviewed in 2017. Initial results, observation notes, and experts’ opinions were analyzed qualitatively. The final findings showed that the entrepreneurs applied the LC unknowingly, and the experts were aware of the LC. Similarly, the entrepreneurs used the LC due to the financial constraints, and their need for success. Additionally, their commercialization practices revealed that LC appeared to be one of their commercialization strategies. Thus, their practices were analyzed, and a framework was developed. Furthermore, the experts noted that LC is a new dawn, which technologists and scientists need to consider for their high technology commercialization. This article contributes to the theory and practice of commercialization. Theoretically, the framework adds value to the commercialization discussion. And, practically the framework can be used by the technology entrepreneurs (technologists and scientists), technology-based enterprises, and technology entrepreneurship educators as a guide in their commercialization adventures.

Keywords: lean commercialization, high technologies, lean start-up, technology-based companies

Procedia PDF Downloads 172
25197 SMART: Solution Methods with Ants Running by Types

Authors: Nicolas Zufferey

Abstract:

Ant algorithms are well-known metaheuristics which have been widely used since two decades. In most of the literature, an ant is a constructive heuristic able to build a solution from scratch. However, other types of ant algorithms have recently emerged: the discussion is thus not limited by the common framework of the constructive ant algorithms. Generally, at each generation of an ant algorithm, each ant builds a solution step by step by adding an element to it. Each choice is based on the greedy force (also called the visibility, the short term profit or the heuristic information) and the trail system (central memory which collects historical information of the search process). Usually, all the ants of the population have the same characteristics and behaviors. In contrast in this paper, a new type of ant metaheuristic is proposed, namely SMART (for Solution Methods with Ants Running by Types). It relies on the use of different population of ants, where each population has its own personality.

Keywords: ant algorithms, evolutionary procedures, metaheuristics, optimization, population-based methods

Procedia PDF Downloads 367
25196 Online Electric Current Based Diagnosis of Stator Faults on Squirrel Cage Induction Motors

Authors: Alejandro Paz Parra, Jose Luis Oslinger Gutierrez, Javier Olaya Ochoa

Abstract:

In the present paper, five electric current based methods to analyze electric faults on the stator of induction motors (IM) are used and compared. The analysis tries to extend the application of the multiple reference frames diagnosis technique. An eccentricity indicator is presented to improve the application of the Park’s Vector Approach technique. Most of the fault indicators are validated and some others revised, agree with the technical literatures and published results. A tri-phase 3hp squirrel cage IM, especially modified to establish different fault levels, is used for validation purposes.

Keywords: motor fault diagnosis, induction motor, MCSA, ESA, Extended Park´s vector approach, multiparameter analysis

Procedia PDF Downloads 353
25195 An Experimental Investigation of the Variation of Evaporator Efficiency According to Load Amount and Textile Type in Hybrid Heat Pump Dryers

Authors: Gokhan Sir, Muhammed Ergun, Onder Balioglu

Abstract:

Nowadays, laundry dryers containing heaters and heat pumps are used to provide fast and efficient drying. In this system, as the drying capacity changes, the sensible and latent heat transfer rate in the evaporator changes. Therefore, the drying time measured for the unit capacity increases as the drying capacity decreases. The objective of this study is to investigate the evaporator efficiency according to load amount and textile type in hybrid heat pump dryers. Air side flow rate and system temperatures (air side and refrigeration side) were monitored instantly, and the specific moisture extraction rate (SMER), evaporator efficiency, and heat transfer mechanism between the textile and hybrid heat pump system were examined. Evaporator efficiency of heat pump dryers for cotton and synthetic based textile types in load amounts of 2, 5, 8 and 10 kg were investigated experimentally. As a result, the maximum evaporator efficiency (%72) was obtained in drying cotton and synthetic based textiles with a capacity of 5 kg; the minimum evaporator efficiency (%40) was obtained in drying cotton and synthetic based textiles with a capacity of 2 kg. The experimental study also reveals that capacity-dependent flow rate changes are the major factor for evaporator efficiency.

Keywords: evaporator, heat pump, hybrid, laundry dryer, textile

Procedia PDF Downloads 143
25194 Electrical Degradation of GaN-based p-channel HFETs Under Dynamic Electrical Stress

Authors: Xuerui Niu, Bolin Wang, Xinchuang Zhang, Xiaohua Ma, Bin Hou, Ling Yang

Abstract:

The application of discrete GaN-based power switches requires the collaboration of silicon-based peripheral circuit structures. However, the packages and interconnection between the Si and GaN devices can introduce parasitic effects to the circuit, which has great impacts on GaN power transistors. GaN-based monolithic power integration technology is an emerging solution which can improve the stability of circuits and allow the GaN-based devices to achieve more functions. Complementary logic circuits consisting of GaN-based E-mode p-channel heterostructure field-effect transistors (p-HFETs) and E-mode n-channel HEMTs can be served as the gate drivers. E-mode p-HFETs with recessed gate have attracted increasing interest because of the low leakage current and large gate swing. However, they suffer from a poor interface between the gate dielectric and polarized nitride layers. The reliability of p-HFETs is analyzed and discussed in this work. In circuit applications, the inverter is always operated with dynamic gate voltage (VGS) rather than a constant VGS. Therefore, dynamic electrical stress has been simulated to resemble the operation conditions for E-mode p-HFETs. The dynamic electrical stress condition is as follows. VGS is a square waveform switching from -5 V to 0 V, VDS is fixed, and the source grounded. The frequency of the square waveform is 100kHz with the rising/falling time of 100 ns and duty ratio of 50%. The effective stress time is 1000s. A number of stress tests are carried out. The stress was briefly interrupted to measure the linear IDS-VGS, saturation IDS-VGS, As VGS switches from -5 V to 0 V and VDS = 0 V, devices are under negative-bias-instability (NBI) condition. Holes are trapped at the interface of oxide layer and GaN channel layer, which results in the reduction of VTH. The negative shift of VTH is serious at the first 10s and then changes slightly with the following stress time. However, different phenomenon is observed when VDS reduces to -5V. VTH shifts negatively during stress condition, and the variation in VTH increases with time, which is different from that when VDS is 0V. Two mechanisms exists in this condition. On the one hand, the electric field in the gate region is influenced by the drain voltage, so that the trapping behavior of holes in the gate region changes. The impact of the gate voltage is weakened. On the other hand, large drain voltage can induce the hot holes generation and lead to serious hot carrier stress (HCS) degradation with time. The poor-quality interface between the oxide layer and GaN channel layer at the gate region makes a major contribution to the high-density interface traps, which will greatly influence the reliability of devices. These results emphasize that the improved etching and pretreatment processes needs to be developed so that high-performance GaN complementary logics with enhanced stability can be achieved.

Keywords: GaN-based E-mode p-HFETs, dynamic electric stress, threshold voltage, monolithic power integration technology

Procedia PDF Downloads 97
25193 Fabrication of Ligand Coated Lipid-Based Nanoparticles for Synergistic Treatment of Autoimmune Disease

Authors: Asiya Mahtab, Sushama Talegaonkar

Abstract:

The research is aimed at developing targeted lipid-based nanocarrier systems of chondroitin sulfate (CS) to deliver an antirheumatic drug to the inflammatory site in arthritic paw. Lipid-based nanoparticle (TEF-lipo) was prepared by using a thin-film hydration method. The coating of prepared drug-loaded nanoparticles was done by the ionic interaction mechanism. TEF-lipo and CS-coated lipid nanoparticle (CS-lipo) were characterized for mean droplet size, zeta potential, and surface morphology. TEF-lipo and CS-lipo were further subjected to in vitro cell line studies on RAW 264.7 murine macrophage, U937, and MG 63 cell lines. The pharmacodynamic study was performed to establish the effectiveness of the prepared lipid-based conventional and targeted nanoparticles in comparison to pure drugs. Droplet size and zeta potential of TEF-lipo were found to be 128. 92 ± 5.42 nm and +12.6 ± 1.2 mV. It was observed that after the coating of TEF-lipo with CS, particle size increased to 155.6± 2.12 nm and zeta potential changed to -10.2± 1.4mV. Transmission electron microscopic analysis revealed that the nanovesicles were uniformly dispersed and detached from each other. Formulations followed sustained release pattern up to 24 h. Results of cell line studies ind icated that CS-lipo formulation showed the highest cytotoxic potential, thereby proving its enhanced ability to kill the RAW 264.7 murine macrophage and U937 cells when compared with other formulations. It is clear from our in vivo pharmacodynamic results that targeted nanocarriers had a higher inhibitory effect on arthritis progression than nontargeted nanocarriers or free drugs. Results demonstrate that this approach will provide effective treatment for rheumatoid arthritis, and CS served as a potential prophylactic against the advancement of cartilage degeneration.

Keywords: adjuvant induced arthritis, chondroitin sulfate, rheumatoid arthritis, teriflunomide

Procedia PDF Downloads 142
25192 Taguchi-Based Six Sigma Approach to Optimize Surface Roughness for Milling Processes

Authors: Sky Chou, Joseph C. Chen

Abstract:

This paper focuses on using Six Sigma methodologies to improve the surface roughness of a manufactured part produced by the CNC milling machine. It presents a case study where the surface roughness of milled aluminum is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for a CNC milling process. The six sigma methodology, DMAIC (design, measure, analyze, improve, and control) approach, was applied in this study to improve the process, reduce defects, and ultimately reduce costs. The Taguchi-based six sigma approach was applied to identify the optimized processing parameters that led to the targeted surface roughness specified by our customer. A L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of feed rate, depth of cut, spindle speed, and surface roughness. The noise factor is the difference between the old cutting tool and the new cutting tool. The confirmation run with the optimal parameters confirmed that the new parameter settings are correct. The new settings also improved the process capability index. The purpose of this study is that the Taguchi–based six sigma approach can be efficiently used to phase out defects and improve the process capability index of the CNC milling process.

Keywords: CNC machining, six sigma, surface roughness, Taguchi methodology

Procedia PDF Downloads 249
25191 Catalytic Applications of Metal-Organic Frameworks for Organic Pollutant Removal in Wastewater Treatment: A Review

Authors: Matthew Ndubuisi Abonyi, Christopher Chiedozie Obi, Joseph Tagbo Nwabanne

Abstract:

This review focuses on the application of Metal-Organic Frameworks (MOF)-based catalysts in the degradation of organic pollutants in wastewater. The degradation of organic pollutants in wastewater remains a critical environmental challenge, necessitating innovative solutions for effective treatment. MOFs have garnered significant attention as promising catalysts for this purpose, owing to their exceptional surface area, tunable porosity, and diverse chemical functionalities. It explores various catalytic mechanisms, including photocatalysis, Fenton-like reactions, and other advanced oxidation processes facilitated by MOFs. The review also explores the design strategies that enhance the catalytic performance of MOFs, such as structural modifications, composite formation, and post-synthetic modifications. Furthermore, real-world case studies are presented, highlighting the practical applications and environmental impact of MOF-based catalysts in wastewater treatment. Challenges associated with the scalability and stability of these materials are discussed, along with future directions for research and development. This review highlights the significant potential of MOF-based catalysts in addressing the pressing issue of water pollution and advocates for continued innovation to optimize their application in wastewater treatment.

Keywords: metal-organic frameworks (MOFs), catalysis, wastewater treatment, organic pollutant degradation, photocatalysis

Procedia PDF Downloads 31
25190 Quality of Service Based Routing Algorithm for Real Time Applications in MANETs Using Ant Colony and Fuzzy Logic

Authors: Farahnaz Karami

Abstract:

Routing is an important, challenging task in mobile ad hoc networks due to node mobility, lack of central control, unstable links, and limited resources. An ant colony has been found to be an attractive technique for routing in Mobile Ad Hoc Networks (MANETs). However, existing swarm intelligence based routing protocols find an optimal path by considering only one or two route selection metrics without considering correlations among such parameters making them unsuitable lonely for routing real time applications. Fuzzy logic combines multiple route selection parameters containing uncertain information or imprecise data in nature, but does not have multipath routing property naturally in order to provide load balancing. The objective of this paper is to design a routing algorithm using fuzzy logic and ant colony that can solve some of routing problems in mobile ad hoc networks, such as nodes energy consumption optimization to increase network lifetime, link failures rate reduction to increase packet delivery reliability and providing load balancing to optimize available bandwidth. In proposed algorithm, the path information will be given to fuzzy inference system by ants. Based on the available path information and considering the parameters required for quality of service (QoS), the fuzzy cost of each path is calculated and the optimal paths will be selected. NS2.35 simulation tools are used for simulation and the results are compared and evaluated with the newest QoS based algorithms in MANETs according to packet delivery ratio, end-to-end delay and routing overhead ratio criterions. The simulation results show significant improvement in the performance of these networks in terms of decreasing end-to-end delay, and routing overhead ratio, and also increasing packet delivery ratio.

Keywords: mobile ad hoc networks, routing, quality of service, ant colony, fuzzy logic

Procedia PDF Downloads 69